zs.c revision 1.4 1 1.4 leo /* $NetBSD: zs.c,v 1.4 1995/04/22 22:06:45 leo Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 1.1 leo * Copyright (c) 1992, 1993
6 1.1 leo * The Regents of the University of California. All rights reserved.
7 1.1 leo *
8 1.1 leo * This software was developed by the Computer Systems Engineering group
9 1.1 leo * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 1.1 leo * contributed to Berkeley.
11 1.1 leo *
12 1.1 leo *
13 1.1 leo * All advertising materials mentioning features or use of this software
14 1.1 leo * must display the following acknowledgement:
15 1.1 leo * This product includes software developed by the University of
16 1.1 leo * California, Lawrence Berkeley Laboratory.
17 1.1 leo *
18 1.1 leo * Redistribution and use in source and binary forms, with or without
19 1.1 leo * modification, are permitted provided that the following conditions
20 1.1 leo * are met:
21 1.1 leo * 1. Redistributions of source code must retain the above copyright
22 1.1 leo * notice, this list of conditions and the following disclaimer.
23 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
24 1.1 leo * notice, this list of conditions and the following disclaimer in the
25 1.1 leo * documentation and/or other materials provided with the distribution.
26 1.1 leo * 3. All advertising materials mentioning features or use of this software
27 1.1 leo * must display the following acknowledgement:
28 1.1 leo * This product includes software developed by the University of
29 1.1 leo * California, Berkeley and its contributors.
30 1.1 leo * 4. Neither the name of the University nor the names of its contributors
31 1.1 leo * may be used to endorse or promote products derived from this software
32 1.1 leo * without specific prior written permission.
33 1.1 leo *
34 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 1.1 leo * SUCH DAMAGE.
45 1.1 leo *
46 1.1 leo * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 1.1 leo */
48 1.1 leo
49 1.1 leo /*
50 1.1 leo * Zilog Z8530 (ZSCC) driver.
51 1.1 leo *
52 1.1 leo * Runs two tty ports (modem2 and serial2) on zs0.
53 1.1 leo *
54 1.1 leo * This driver knows far too much about chip to usage mappings.
55 1.1 leo */
56 1.1 leo #include <sys/param.h>
57 1.1 leo #include <sys/proc.h>
58 1.1 leo #include <sys/device.h>
59 1.1 leo #include <sys/conf.h>
60 1.1 leo #include <sys/file.h>
61 1.1 leo #include <sys/ioctl.h>
62 1.1 leo #include <sys/tty.h>
63 1.1 leo #include <sys/time.h>
64 1.1 leo #include <sys/kernel.h>
65 1.1 leo #include <sys/syslog.h>
66 1.1 leo
67 1.1 leo #include <machine/cpu.h>
68 1.1 leo #include <machine/iomap.h>
69 1.1 leo #include <machine/scu.h>
70 1.1 leo #include <machine/mfp.h>
71 1.1 leo
72 1.2 mycroft #include <dev/ic/z8530.h>
73 1.1 leo #include <atari/dev/zsvar.h>
74 1.1 leo #include "zs.h"
75 1.1 leo #if NZS > 1
76 1.1 leo #error "This driver supports only 1 85C30!"
77 1.1 leo #endif
78 1.1 leo
79 1.1 leo #if NZS > 0
80 1.1 leo
81 1.1 leo #define PCLK (8000000) /* PCLK pin input clock rate */
82 1.1 leo
83 1.1 leo #define splzs spl5
84 1.1 leo
85 1.1 leo /*
86 1.1 leo * Software state per found chip.
87 1.1 leo */
88 1.1 leo struct zs_softc {
89 1.1 leo struct device zi_dev; /* base device */
90 1.1 leo volatile struct zsdevice *zi_zs; /* chip registers */
91 1.1 leo struct zs_chanstate zi_cs[2]; /* chan A and B software state */
92 1.1 leo };
93 1.1 leo
94 1.1 leo /*
95 1.1 leo * Define the registers for a closed port
96 1.1 leo */
97 1.1 leo u_char zs_init_regs[16] = {
98 1.1 leo /* 0 */ 0,
99 1.1 leo /* 1 */ 0,
100 1.1 leo /* 2 */ 0x60,
101 1.1 leo /* 3 */ 0,
102 1.1 leo /* 4 */ 0,
103 1.1 leo /* 5 */ 0,
104 1.1 leo /* 6 */ 0,
105 1.1 leo /* 7 */ 0,
106 1.1 leo /* 8 */ 0,
107 1.1 leo /* 9 */ ZSWR9_VECTOR_INCL_STAT,
108 1.1 leo /* 10 */ ZSWR10_NRZ,
109 1.1 leo /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
110 1.1 leo /* 12 */ 0,
111 1.1 leo /* 13 */ 0,
112 1.1 leo /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
113 1.1 leo /* 15 */ 0
114 1.1 leo };
115 1.1 leo
116 1.1 leo /* Definition of the driver for autoconfig. */
117 1.1 leo static int zsmatch __P((struct device *, struct cfdata *, void *));
118 1.1 leo static void zsattach __P((struct device *, struct device *, void *));
119 1.1 leo struct cfdriver zscd = {
120 1.1 leo NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
121 1.1 leo sizeof(struct zs_softc), NULL, 0 };
122 1.1 leo
123 1.1 leo /* Interrupt handlers. */
124 1.1 leo int zshard __P((long));
125 1.1 leo static int zssoft __P((long));
126 1.1 leo static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
127 1.1 leo static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
128 1.1 leo static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
129 1.1 leo
130 1.1 leo struct zs_chanstate *zslist;
131 1.1 leo
132 1.1 leo /* Routines called from other code. */
133 1.1 leo static void zsstart __P((struct tty *));
134 1.1 leo void zsstop __P((struct tty *, int));
135 1.1 leo static int zsparam __P((struct tty *, struct termios *));
136 1.1 leo
137 1.1 leo /* Routines purely local to this driver. */
138 1.1 leo static void zs_reset __P((volatile struct zschan *, int, int));
139 1.1 leo static int zs_modem __P((struct zs_chanstate *, int, int));
140 1.1 leo static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
141 1.1 leo
142 1.1 leo int zsshortcuts; /* number of "shortcut" software interrupts */
143 1.1 leo
144 1.4 leo static int
145 1.4 leo zsmatch(pdp, cfp, auxp)
146 1.1 leo struct device *pdp;
147 1.1 leo struct cfdata *cfp;
148 1.1 leo void *auxp;
149 1.1 leo {
150 1.1 leo if(strcmp("zs", auxp) || cfp->cf_unit != 0)
151 1.1 leo return(0);
152 1.1 leo return(1);
153 1.1 leo }
154 1.1 leo
155 1.1 leo /*
156 1.1 leo * Attach a found zs.
157 1.1 leo */
158 1.1 leo static void
159 1.1 leo zsattach(parent, dev, aux)
160 1.1 leo struct device *parent;
161 1.1 leo struct device *dev;
162 1.1 leo void *aux;
163 1.1 leo {
164 1.1 leo register struct zs_softc *zi;
165 1.1 leo register struct zs_chanstate *cs;
166 1.1 leo register volatile struct zsdevice *addr;
167 1.1 leo register struct tty *tp;
168 1.1 leo char tmp;
169 1.1 leo
170 1.1 leo addr = (struct zsdevice *)AD_SCC;
171 1.1 leo zi = (struct zs_softc *)dev;
172 1.1 leo zi->zi_zs = addr;
173 1.1 leo cs = zi->zi_cs;
174 1.1 leo
175 1.1 leo /*
176 1.1 leo * Get the command register into a known state.
177 1.1 leo */
178 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
179 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
180 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
181 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
182 1.1 leo
183 1.1 leo /*
184 1.1 leo * Do a hardware reset.
185 1.1 leo */
186 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
187 1.1 leo delay(50000); /*enough ? */
188 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
189 1.1 leo
190 1.1 leo /*
191 1.1 leo * Initialize both channels
192 1.1 leo */
193 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
194 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
195 1.1 leo
196 1.1 leo /*
197 1.1 leo * enable scc related interrupts
198 1.1 leo */
199 1.1 leo SCU->sys_mask |= SCU_SCC;
200 1.1 leo
201 1.1 leo /* link into interrupt list with order (A,B) (B=A+1) */
202 1.1 leo cs[0].cs_next = &cs[1];
203 1.1 leo cs[1].cs_next = zslist;
204 1.1 leo zslist = cs;
205 1.1 leo
206 1.1 leo cs->cs_unit = 0;
207 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
208 1.1 leo cs++;
209 1.1 leo cs->cs_unit = 1;
210 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
211 1.1 leo
212 1.1 leo printf(": serial2 on channel a and modem2 on channel b\n");
213 1.1 leo }
214 1.1 leo
215 1.1 leo /*
216 1.1 leo * Open a zs serial port.
217 1.1 leo */
218 1.1 leo int
219 1.1 leo zsopen(dev, flags, mode, p)
220 1.1 leo dev_t dev;
221 1.1 leo int flags;
222 1.1 leo int mode;
223 1.1 leo struct proc *p;
224 1.1 leo {
225 1.1 leo register struct tty *tp;
226 1.1 leo register struct zs_chanstate *cs;
227 1.1 leo struct zs_softc *zi;
228 1.1 leo int unit = ZS_UNIT(dev);
229 1.1 leo int zs = unit >> 1;
230 1.1 leo int error, s;
231 1.1 leo
232 1.1 leo if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
233 1.1 leo return (ENXIO);
234 1.1 leo cs = &zi->zi_cs[unit & 1];
235 1.1 leo tp = cs->cs_ttyp;
236 1.1 leo if(tp == NULL) {
237 1.4 leo cs->cs_ttyp = tp = ttymalloc();
238 1.1 leo tp->t_dev = dev;
239 1.1 leo tp->t_oproc = zsstart;
240 1.1 leo tp->t_param = zsparam;
241 1.1 leo }
242 1.1 leo
243 1.1 leo s = spltty();
244 1.1 leo if((tp->t_state & TS_ISOPEN) == 0) {
245 1.1 leo ttychars(tp);
246 1.1 leo if(tp->t_ispeed == 0) {
247 1.1 leo tp->t_iflag = TTYDEF_IFLAG;
248 1.1 leo tp->t_oflag = TTYDEF_OFLAG;
249 1.1 leo tp->t_cflag = TTYDEF_CFLAG;
250 1.1 leo tp->t_lflag = TTYDEF_LFLAG;
251 1.1 leo tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
252 1.1 leo }
253 1.1 leo (void)zsparam(tp, &tp->t_termios);
254 1.1 leo ttsetwater(tp);
255 1.1 leo }
256 1.1 leo else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
257 1.1 leo splx(s);
258 1.1 leo return (EBUSY);
259 1.1 leo }
260 1.1 leo error = 0;
261 1.1 leo for(;;) {
262 1.1 leo /* loop, turning on the device, until carrier present */
263 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
264 1.1 leo if(cs->cs_softcar)
265 1.1 leo tp->t_state |= TS_CARR_ON;
266 1.1 leo if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
267 1.1 leo tp->t_state & TS_CARR_ON)
268 1.1 leo break;
269 1.1 leo tp->t_state |= TS_WOPEN;
270 1.1 leo if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
271 1.1 leo ttopen, 0)) {
272 1.1 leo if(!(tp->t_state & TS_ISOPEN)) {
273 1.1 leo zs_modem(cs, 0, DMSET);
274 1.1 leo tp->t_state &= ~TS_WOPEN;
275 1.1 leo ttwakeup(tp);
276 1.1 leo }
277 1.1 leo splx(s);
278 1.1 leo return error;
279 1.1 leo }
280 1.1 leo }
281 1.1 leo splx(s);
282 1.1 leo if(error == 0)
283 1.1 leo error = linesw[tp->t_line].l_open(dev, tp);
284 1.1 leo if(error)
285 1.1 leo zs_modem(cs, 0, DMSET);
286 1.1 leo return(error);
287 1.1 leo }
288 1.1 leo
289 1.1 leo /*
290 1.1 leo * Close a zs serial port.
291 1.1 leo */
292 1.1 leo int
293 1.1 leo zsclose(dev, flags, mode, p)
294 1.1 leo dev_t dev;
295 1.1 leo int flags;
296 1.1 leo int mode;
297 1.1 leo struct proc *p;
298 1.1 leo {
299 1.1 leo register struct zs_chanstate *cs;
300 1.1 leo register struct tty *tp;
301 1.1 leo struct zs_softc *zi;
302 1.1 leo int unit = ZS_UNIT(dev);
303 1.1 leo int s;
304 1.1 leo
305 1.1 leo zi = zscd.cd_devs[unit >> 1];
306 1.1 leo cs = &zi->zi_cs[unit & 1];
307 1.1 leo tp = cs->cs_ttyp;
308 1.1 leo linesw[tp->t_line].l_close(tp, flags);
309 1.1 leo if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
310 1.1 leo (tp->t_state & TS_ISOPEN) == 0) {
311 1.1 leo zs_modem(cs, 0, DMSET);
312 1.1 leo /* hold low for 1 second */
313 1.1 leo (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
314 1.1 leo }
315 1.1 leo if(cs->cs_creg[5] & ZSWR5_BREAK) {
316 1.1 leo s = splzs();
317 1.1 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
318 1.1 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
319 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
320 1.1 leo splx(s);
321 1.1 leo }
322 1.1 leo ttyclose(tp);
323 1.1 leo
324 1.1 leo /*
325 1.1 leo * Drop all lines and cancel interrupts
326 1.1 leo */
327 1.1 leo zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
328 1.1 leo return (0);
329 1.1 leo }
330 1.1 leo
331 1.1 leo /*
332 1.1 leo * Read/write zs serial port.
333 1.1 leo */
334 1.1 leo int
335 1.1 leo zsread(dev, uio, flags)
336 1.1 leo dev_t dev;
337 1.1 leo struct uio *uio;
338 1.1 leo int flags;
339 1.1 leo {
340 1.4 leo register struct zs_chanstate *cs;
341 1.4 leo register struct zs_softc *zi;
342 1.4 leo register struct tty *tp;
343 1.4 leo int unit;
344 1.4 leo
345 1.4 leo unit = ZS_UNIT(dev);
346 1.4 leo zi = zscd.cd_devs[unit >> 1];
347 1.4 leo cs = &zi->zi_cs[unit & 1];
348 1.4 leo tp = cs->cs_ttyp;
349 1.1 leo
350 1.1 leo return(linesw[tp->t_line].l_read(tp, uio, flags));
351 1.1 leo }
352 1.1 leo
353 1.4 leo int
354 1.4 leo zswrite(dev, uio, flags)
355 1.1 leo dev_t dev;
356 1.1 leo struct uio *uio;
357 1.1 leo int flags;
358 1.1 leo {
359 1.4 leo register struct zs_chanstate *cs;
360 1.4 leo register struct zs_softc *zi;
361 1.4 leo register struct tty *tp;
362 1.4 leo int unit;
363 1.4 leo
364 1.4 leo unit = ZS_UNIT(dev);
365 1.4 leo zi = zscd.cd_devs[unit >> 1];
366 1.4 leo cs = &zi->zi_cs[unit & 1];
367 1.4 leo tp = cs->cs_ttyp;
368 1.1 leo
369 1.1 leo return(linesw[tp->t_line].l_write(tp, uio, flags));
370 1.4 leo }
371 1.4 leo
372 1.4 leo struct tty *
373 1.4 leo zstty(dev)
374 1.4 leo dev_t dev;
375 1.4 leo {
376 1.4 leo register struct zs_chanstate *cs;
377 1.4 leo register struct zs_softc *zi;
378 1.4 leo int unit;
379 1.4 leo
380 1.4 leo unit = ZS_UNIT(dev);
381 1.4 leo zi = zscd.cd_devs[unit >> 1];
382 1.4 leo cs = &zi->zi_cs[unit & 1];
383 1.4 leo return(cs->cs_ttyp);
384 1.1 leo }
385 1.1 leo
386 1.1 leo /*
387 1.1 leo * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
388 1.1 leo * channels are kept in (A,B) pairs.
389 1.1 leo *
390 1.1 leo * Do just a little, then get out; set a software interrupt if more
391 1.1 leo * work is needed.
392 1.1 leo *
393 1.1 leo * We deliberately ignore the vectoring Zilog gives us, and match up
394 1.1 leo * only the number of `reset interrupt under service' operations, not
395 1.1 leo * the order.
396 1.1 leo */
397 1.1 leo int
398 1.1 leo zshard(sr)
399 1.1 leo long sr;
400 1.1 leo {
401 1.1 leo register struct zs_chanstate *a;
402 1.1 leo #define b (a + 1)
403 1.1 leo register volatile struct zschan *zc;
404 1.1 leo register int rr3, intflags = 0, v, i;
405 1.1 leo
406 1.1 leo for(a = zslist; a != NULL; a = b->cs_next) {
407 1.1 leo rr3 = ZS_READ(a->cs_zc, 3);
408 1.1 leo if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
409 1.1 leo intflags |= 2;
410 1.1 leo zc = a->cs_zc;
411 1.1 leo i = a->cs_rbput;
412 1.1 leo if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
413 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
414 1.1 leo intflags |= 1;
415 1.1 leo }
416 1.1 leo if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
417 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
418 1.1 leo intflags |= 1;
419 1.1 leo }
420 1.1 leo if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
421 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
422 1.1 leo intflags |= 1;
423 1.1 leo }
424 1.1 leo a->cs_rbput = i;
425 1.1 leo }
426 1.1 leo if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
427 1.1 leo intflags |= 2;
428 1.1 leo zc = b->cs_zc;
429 1.1 leo i = b->cs_rbput;
430 1.1 leo if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
431 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
432 1.1 leo intflags |= 1;
433 1.1 leo }
434 1.1 leo if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
435 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
436 1.1 leo intflags |= 1;
437 1.1 leo }
438 1.1 leo if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
439 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
440 1.1 leo intflags |= 1;
441 1.1 leo }
442 1.1 leo b->cs_rbput = i;
443 1.1 leo }
444 1.1 leo }
445 1.1 leo #undef b
446 1.1 leo
447 1.1 leo if(intflags & 1) {
448 1.1 leo if(BASEPRI(sr)) {
449 1.1 leo spl1();
450 1.1 leo zsshortcuts++;
451 1.1 leo return(zssoft(sr));
452 1.1 leo }
453 1.1 leo else add_sicallback(zssoft, 0, 0);
454 1.1 leo }
455 1.1 leo return(intflags & 2);
456 1.1 leo }
457 1.1 leo
458 1.1 leo static int
459 1.1 leo zsrint(cs, zc)
460 1.1 leo register struct zs_chanstate *cs;
461 1.1 leo register volatile struct zschan *zc;
462 1.1 leo {
463 1.1 leo register int c = zc->zc_data;
464 1.1 leo
465 1.1 leo /* compose receive character and status */
466 1.1 leo c <<= 8;
467 1.1 leo c |= ZS_READ(zc, 1);
468 1.1 leo
469 1.1 leo /* clear receive error & interrupt condition */
470 1.1 leo zc->zc_csr = ZSWR0_RESET_ERRORS;
471 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
472 1.1 leo
473 1.1 leo return(ZRING_MAKE(ZRING_RINT, c));
474 1.1 leo }
475 1.1 leo
476 1.1 leo static int
477 1.1 leo zsxint(cs, zc)
478 1.1 leo register struct zs_chanstate *cs;
479 1.1 leo register volatile struct zschan *zc;
480 1.1 leo {
481 1.1 leo register int i = cs->cs_tbc;
482 1.1 leo
483 1.1 leo if(i == 0) {
484 1.1 leo zc->zc_csr = ZSWR0_RESET_TXINT;
485 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
486 1.1 leo return(ZRING_MAKE(ZRING_XINT, 0));
487 1.1 leo }
488 1.1 leo cs->cs_tbc = i - 1;
489 1.1 leo zc->zc_data = *cs->cs_tba++;
490 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
491 1.1 leo return (0);
492 1.1 leo }
493 1.1 leo
494 1.1 leo static int
495 1.1 leo zssint(cs, zc)
496 1.1 leo register struct zs_chanstate *cs;
497 1.1 leo register volatile struct zschan *zc;
498 1.1 leo {
499 1.1 leo register int rr0;
500 1.1 leo
501 1.1 leo rr0 = zc->zc_csr;
502 1.1 leo zc->zc_csr = ZSWR0_RESET_STATUS;
503 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
504 1.1 leo /*
505 1.1 leo * The chip's hardware flow control is, as noted in zsreg.h,
506 1.1 leo * busted---if the DCD line goes low the chip shuts off the
507 1.1 leo * receiver (!). If we want hardware CTS flow control but do
508 1.1 leo * not have it, and carrier is now on, turn HFC on; if we have
509 1.1 leo * HFC now but carrier has gone low, turn it off.
510 1.1 leo */
511 1.1 leo if(rr0 & ZSRR0_DCD) {
512 1.1 leo if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
513 1.1 leo (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
514 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
515 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
516 1.1 leo }
517 1.1 leo }
518 1.1 leo else {
519 1.1 leo if (cs->cs_creg[3] & ZSWR3_HFC) {
520 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
521 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
522 1.1 leo }
523 1.1 leo }
524 1.1 leo return(ZRING_MAKE(ZRING_SINT, rr0));
525 1.1 leo }
526 1.1 leo
527 1.1 leo /*
528 1.1 leo * Print out a ring or fifo overrun error message.
529 1.1 leo */
530 1.1 leo static void
531 1.1 leo zsoverrun(unit, ptime, what)
532 1.1 leo int unit;
533 1.1 leo long *ptime;
534 1.1 leo char *what;
535 1.1 leo {
536 1.1 leo
537 1.1 leo if(*ptime != time.tv_sec) {
538 1.1 leo *ptime = time.tv_sec;
539 1.1 leo log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
540 1.1 leo (unit & 1) + 'a', what);
541 1.1 leo }
542 1.1 leo }
543 1.1 leo
544 1.1 leo /*
545 1.1 leo * ZS software interrupt. Scan all channels for deferred interrupts.
546 1.1 leo */
547 1.1 leo int
548 1.1 leo zssoft(sr)
549 1.1 leo long sr;
550 1.1 leo {
551 1.1 leo register struct zs_chanstate *cs;
552 1.1 leo register volatile struct zschan *zc;
553 1.1 leo register struct linesw *line;
554 1.1 leo register struct tty *tp;
555 1.1 leo register int get, n, c, cc, unit, s;
556 1.1 leo int retval = 0;
557 1.1 leo
558 1.1 leo s = spltty();
559 1.1 leo for(cs = zslist; cs != NULL; cs = cs->cs_next) {
560 1.1 leo get = cs->cs_rbget;
561 1.1 leo again:
562 1.1 leo n = cs->cs_rbput; /* atomic */
563 1.1 leo if(get == n) /* nothing more on this line */
564 1.1 leo continue;
565 1.1 leo retval = 1;
566 1.1 leo unit = cs->cs_unit; /* set up to handle interrupts */
567 1.1 leo zc = cs->cs_zc;
568 1.1 leo tp = cs->cs_ttyp;
569 1.1 leo line = &linesw[tp->t_line];
570 1.1 leo /*
571 1.1 leo * Compute the number of interrupts in the receive ring.
572 1.1 leo * If the count is overlarge, we lost some events, and
573 1.1 leo * must advance to the first valid one. It may get
574 1.1 leo * overwritten if more data are arriving, but this is
575 1.1 leo * too expensive to check and gains nothing (we already
576 1.1 leo * lost out; all we can do at this point is trade one
577 1.1 leo * kind of loss for another).
578 1.1 leo */
579 1.1 leo n -= get;
580 1.1 leo if(n > ZLRB_RING_SIZE) {
581 1.1 leo zsoverrun(unit, &cs->cs_rotime, "ring");
582 1.1 leo get += n - ZLRB_RING_SIZE;
583 1.1 leo n = ZLRB_RING_SIZE;
584 1.1 leo }
585 1.1 leo while(--n >= 0) {
586 1.1 leo /* race to keep ahead of incoming interrupts */
587 1.1 leo c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
588 1.1 leo switch (ZRING_TYPE(c)) {
589 1.1 leo
590 1.1 leo case ZRING_RINT:
591 1.1 leo c = ZRING_VALUE(c);
592 1.1 leo if(c & ZSRR1_DO)
593 1.1 leo zsoverrun(unit, &cs->cs_fotime, "fifo");
594 1.1 leo cc = c >> 8;
595 1.1 leo if(c & ZSRR1_FE)
596 1.1 leo cc |= TTY_FE;
597 1.1 leo if(c & ZSRR1_PE)
598 1.1 leo cc |= TTY_PE;
599 1.1 leo line->l_rint(cc, tp);
600 1.1 leo break;
601 1.1 leo
602 1.1 leo case ZRING_XINT:
603 1.1 leo /*
604 1.1 leo * Transmit done: change registers and resume,
605 1.1 leo * or clear BUSY.
606 1.1 leo */
607 1.1 leo if(cs->cs_heldchange) {
608 1.1 leo int sps;
609 1.1 leo
610 1.1 leo sps = splzs();
611 1.1 leo c = zc->zc_csr;
612 1.1 leo if((c & ZSRR0_DCD) == 0)
613 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
614 1.1 leo bcopy((caddr_t)cs->cs_preg,
615 1.1 leo (caddr_t)cs->cs_creg, 16);
616 1.1 leo zs_loadchannelregs(zc, cs->cs_creg);
617 1.1 leo splx(sps);
618 1.1 leo cs->cs_heldchange = 0;
619 1.1 leo if(cs->cs_heldtbc
620 1.1 leo && (tp->t_state & TS_TTSTOP) == 0) {
621 1.1 leo cs->cs_tbc = cs->cs_heldtbc - 1;
622 1.1 leo zc->zc_data = *cs->cs_tba++;
623 1.1 leo goto again;
624 1.1 leo }
625 1.1 leo }
626 1.1 leo tp->t_state &= ~TS_BUSY;
627 1.1 leo if(tp->t_state & TS_FLUSH)
628 1.1 leo tp->t_state &= ~TS_FLUSH;
629 1.1 leo else ndflush(&tp->t_outq,cs->cs_tba
630 1.1 leo - (caddr_t)tp->t_outq.c_cf);
631 1.1 leo line->l_start(tp);
632 1.1 leo break;
633 1.1 leo
634 1.1 leo case ZRING_SINT:
635 1.1 leo /*
636 1.1 leo * Status line change. HFC bit is run in
637 1.1 leo * hardware interrupt, to avoid locking
638 1.1 leo * at splzs here.
639 1.1 leo */
640 1.1 leo c = ZRING_VALUE(c);
641 1.1 leo if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
642 1.1 leo cc = (c & ZSRR0_DCD) != 0;
643 1.1 leo if(line->l_modem(tp, cc) == 0)
644 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
645 1.1 leo cc ? DMBIS : DMBIC);
646 1.1 leo }
647 1.1 leo cs->cs_rr0 = c;
648 1.1 leo break;
649 1.1 leo
650 1.1 leo default:
651 1.1 leo log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
652 1.1 leo unit >> 1, (unit & 1) + 'a', c);
653 1.1 leo break;
654 1.1 leo }
655 1.1 leo }
656 1.1 leo cs->cs_rbget = get;
657 1.1 leo goto again;
658 1.1 leo }
659 1.1 leo splx(s);
660 1.1 leo return (retval);
661 1.1 leo }
662 1.1 leo
663 1.1 leo int
664 1.1 leo zsioctl(dev, cmd, data, flag, p)
665 1.1 leo dev_t dev;
666 1.1 leo u_long cmd;
667 1.1 leo caddr_t data;
668 1.1 leo int flag;
669 1.1 leo struct proc *p;
670 1.1 leo {
671 1.1 leo int unit = ZS_UNIT(dev);
672 1.1 leo struct zs_softc *zi = zscd.cd_devs[unit >> 1];
673 1.1 leo register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
674 1.1 leo register int error, s;
675 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
676 1.1 leo
677 1.1 leo error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
678 1.1 leo if(error >= 0)
679 1.1 leo return(error);
680 1.1 leo error = ttioctl(tp, cmd, data, flag, p);
681 1.1 leo if(error >= 0)
682 1.1 leo return (error);
683 1.1 leo
684 1.1 leo switch (cmd) {
685 1.1 leo case TIOCSBRK:
686 1.1 leo s = splzs();
687 1.1 leo cs->cs_preg[5] |= ZSWR5_BREAK;
688 1.1 leo cs->cs_creg[5] |= ZSWR5_BREAK;
689 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
690 1.1 leo splx(s);
691 1.1 leo break;
692 1.1 leo case TIOCCBRK:
693 1.1 leo s = splzs();
694 1.1 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
695 1.1 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
696 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
697 1.1 leo splx(s);
698 1.1 leo break;
699 1.1 leo case TIOCGFLAGS: {
700 1.1 leo int bits = 0;
701 1.1 leo
702 1.1 leo if(cs->cs_softcar)
703 1.1 leo bits |= TIOCFLAG_SOFTCAR;
704 1.1 leo if(cs->cs_creg[15] & ZSWR15_DCD_IE)
705 1.1 leo bits |= TIOCFLAG_CLOCAL;
706 1.1 leo if(cs->cs_creg[3] & ZSWR3_HFC)
707 1.1 leo bits |= TIOCFLAG_CRTSCTS;
708 1.1 leo *(int *)data = bits;
709 1.1 leo break;
710 1.1 leo }
711 1.1 leo case TIOCSFLAGS: {
712 1.1 leo int userbits, driverbits = 0;
713 1.1 leo
714 1.3 mycroft error = suser(p->p_ucred, &p->p_acflag);
715 1.1 leo if(error != 0)
716 1.1 leo return (EPERM);
717 1.1 leo
718 1.1 leo userbits = *(int *)data;
719 1.1 leo
720 1.1 leo /*
721 1.1 leo * can have `local' or `softcar', and `rtscts' or `mdmbuf'
722 1.1 leo # defaulting to software flow control.
723 1.1 leo */
724 1.1 leo if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
725 1.1 leo return(EINVAL);
726 1.1 leo if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
727 1.1 leo return(ENXIO);
728 1.1 leo
729 1.1 leo s = splzs();
730 1.1 leo if((userbits & TIOCFLAG_SOFTCAR)) {
731 1.1 leo cs->cs_softcar = 1; /* turn on softcar */
732 1.1 leo cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
733 1.1 leo cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
734 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
735 1.1 leo }
736 1.1 leo else if(userbits & TIOCFLAG_CLOCAL) {
737 1.1 leo cs->cs_softcar = 0; /* turn off softcar */
738 1.1 leo cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
739 1.1 leo cs->cs_creg[15] |= ZSWR15_DCD_IE;
740 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
741 1.1 leo tp->t_termios.c_cflag |= CLOCAL;
742 1.1 leo }
743 1.1 leo if(userbits & TIOCFLAG_CRTSCTS) {
744 1.1 leo cs->cs_preg[15] |= ZSWR15_CTS_IE;
745 1.1 leo cs->cs_creg[15] |= ZSWR15_CTS_IE;
746 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
747 1.1 leo cs->cs_preg[3] |= ZSWR3_HFC;
748 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
749 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
750 1.1 leo tp->t_termios.c_cflag |= CRTSCTS;
751 1.1 leo }
752 1.1 leo else {
753 1.1 leo /* no mdmbuf, so we must want software flow control */
754 1.1 leo cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
755 1.1 leo cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
756 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
757 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
758 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
759 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
760 1.1 leo tp->t_termios.c_cflag &= ~CRTSCTS;
761 1.1 leo }
762 1.1 leo splx(s);
763 1.1 leo break;
764 1.1 leo }
765 1.1 leo case TIOCSDTR:
766 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIS);
767 1.1 leo break;
768 1.1 leo case TIOCCDTR:
769 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIC);
770 1.1 leo break;
771 1.1 leo case TIOCMGET:
772 1.1 leo zs_modem(cs, 0, DMGET);
773 1.1 leo break;
774 1.1 leo case TIOCMSET:
775 1.1 leo case TIOCMBIS:
776 1.1 leo case TIOCMBIC:
777 1.1 leo default:
778 1.1 leo return (ENOTTY);
779 1.1 leo }
780 1.1 leo return (0);
781 1.1 leo }
782 1.1 leo
783 1.1 leo /*
784 1.1 leo * Start or restart transmission.
785 1.1 leo */
786 1.1 leo static void
787 1.1 leo zsstart(tp)
788 1.1 leo register struct tty *tp;
789 1.1 leo {
790 1.1 leo register struct zs_chanstate *cs;
791 1.1 leo register int s, nch;
792 1.1 leo int unit = ZS_UNIT(tp->t_dev);
793 1.1 leo struct zs_softc *zi = zscd.cd_devs[unit >> 1];
794 1.1 leo
795 1.1 leo cs = &zi->zi_cs[unit & 1];
796 1.1 leo s = spltty();
797 1.1 leo
798 1.1 leo /*
799 1.1 leo * If currently active or delaying, no need to do anything.
800 1.1 leo */
801 1.1 leo if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
802 1.1 leo goto out;
803 1.1 leo
804 1.1 leo /*
805 1.1 leo * If there are sleepers, and output has drained below low
806 1.1 leo * water mark, awaken.
807 1.1 leo */
808 1.1 leo if(tp->t_outq.c_cc <= tp->t_lowat) {
809 1.1 leo if(tp->t_state & TS_ASLEEP) {
810 1.1 leo tp->t_state &= ~TS_ASLEEP;
811 1.1 leo wakeup((caddr_t)&tp->t_outq);
812 1.1 leo }
813 1.1 leo selwakeup(&tp->t_wsel);
814 1.1 leo }
815 1.1 leo
816 1.1 leo nch = ndqb(&tp->t_outq, 0); /* XXX */
817 1.1 leo if(nch) {
818 1.1 leo register char *p = tp->t_outq.c_cf;
819 1.1 leo
820 1.1 leo /* mark busy, enable tx done interrupts, & send first byte */
821 1.1 leo tp->t_state |= TS_BUSY;
822 1.1 leo (void) splzs();
823 1.1 leo cs->cs_preg[1] |= ZSWR1_TIE;
824 1.1 leo cs->cs_creg[1] |= ZSWR1_TIE;
825 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
826 1.1 leo cs->cs_zc->zc_data = *p;
827 1.1 leo cs->cs_tba = p + 1;
828 1.1 leo cs->cs_tbc = nch - 1;
829 1.1 leo } else {
830 1.1 leo /*
831 1.1 leo * Nothing to send, turn off transmit done interrupts.
832 1.1 leo * This is useful if something is doing polled output.
833 1.1 leo */
834 1.1 leo (void) splzs();
835 1.1 leo cs->cs_preg[1] &= ~ZSWR1_TIE;
836 1.1 leo cs->cs_creg[1] &= ~ZSWR1_TIE;
837 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
838 1.1 leo }
839 1.1 leo out:
840 1.1 leo splx(s);
841 1.1 leo }
842 1.1 leo
843 1.1 leo /*
844 1.1 leo * Stop output, e.g., for ^S or output flush.
845 1.1 leo */
846 1.1 leo void
847 1.1 leo zsstop(tp, flag)
848 1.1 leo register struct tty *tp;
849 1.1 leo int flag;
850 1.1 leo {
851 1.1 leo register struct zs_chanstate *cs;
852 1.1 leo register int s, unit = ZS_UNIT(tp->t_dev);
853 1.1 leo struct zs_softc *zi = zscd.cd_devs[unit >> 1];
854 1.1 leo
855 1.1 leo cs = &zi->zi_cs[unit & 1];
856 1.1 leo s = splzs();
857 1.1 leo if(tp->t_state & TS_BUSY) {
858 1.1 leo /*
859 1.1 leo * Device is transmitting; must stop it.
860 1.1 leo */
861 1.1 leo cs->cs_tbc = 0;
862 1.1 leo if ((tp->t_state & TS_TTSTOP) == 0)
863 1.1 leo tp->t_state |= TS_FLUSH;
864 1.1 leo }
865 1.1 leo splx(s);
866 1.1 leo }
867 1.1 leo
868 1.1 leo /*
869 1.1 leo * Set ZS tty parameters from termios.
870 1.1 leo *
871 1.1 leo * This routine makes use of the fact that only registers
872 1.1 leo * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
873 1.1 leo */
874 1.1 leo static int
875 1.1 leo zsparam(tp, t)
876 1.1 leo register struct tty *tp;
877 1.1 leo register struct termios *t;
878 1.1 leo {
879 1.1 leo int unit = ZS_UNIT(tp->t_dev);
880 1.1 leo struct zs_softc *zi = zscd.cd_devs[unit >> 1];
881 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
882 1.1 leo register int tmp, tmp5, cflag, s;
883 1.1 leo
884 1.1 leo tmp = t->c_ospeed;
885 1.1 leo if(tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
886 1.1 leo return(EINVAL);
887 1.1 leo if(tmp == 0) {
888 1.1 leo /* stty 0 => drop DTR and RTS */
889 1.1 leo zs_modem(cs, 0, DMSET);
890 1.1 leo return(0);
891 1.1 leo }
892 1.1 leo tmp = BPS_TO_TCONST(PCLK / 16, tmp);
893 1.1 leo if(tmp < 2)
894 1.1 leo return(EINVAL);
895 1.1 leo
896 1.1 leo cflag = t->c_cflag;
897 1.1 leo tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
898 1.1 leo tp->t_cflag = cflag;
899 1.1 leo
900 1.1 leo /*
901 1.1 leo * Block interrupts so that state will not
902 1.1 leo * be altered until we are done setting it up.
903 1.1 leo */
904 1.1 leo s = splzs();
905 1.1 leo cs->cs_preg[12] = tmp;
906 1.1 leo cs->cs_preg[13] = tmp >> 8;
907 1.1 leo cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
908 1.1 leo switch(cflag & CSIZE) {
909 1.1 leo case CS5:
910 1.1 leo tmp = ZSWR3_RX_5;
911 1.1 leo tmp5 = ZSWR5_TX_5;
912 1.1 leo break;
913 1.1 leo case CS6:
914 1.1 leo tmp = ZSWR3_RX_6;
915 1.1 leo tmp5 = ZSWR5_TX_6;
916 1.1 leo break;
917 1.1 leo case CS7:
918 1.1 leo tmp = ZSWR3_RX_7;
919 1.1 leo tmp5 = ZSWR5_TX_7;
920 1.1 leo break;
921 1.1 leo case CS8:
922 1.1 leo default:
923 1.1 leo tmp = ZSWR3_RX_8;
924 1.1 leo tmp5 = ZSWR5_TX_8;
925 1.1 leo break;
926 1.1 leo }
927 1.1 leo
928 1.1 leo /*
929 1.1 leo * Output hardware flow control on the chip is horrendous: if
930 1.1 leo * carrier detect drops, the receiver is disabled. Hence we
931 1.1 leo * can only do this when the carrier is on.
932 1.1 leo */
933 1.1 leo if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
934 1.1 leo tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
935 1.1 leo else tmp |= ZSWR3_RX_ENABLE;
936 1.1 leo cs->cs_preg[3] = tmp;
937 1.1 leo cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
938 1.1 leo
939 1.1 leo tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
940 1.1 leo if((cflag & PARODD) == 0)
941 1.1 leo tmp |= ZSWR4_EVENP;
942 1.1 leo if (cflag & PARENB)
943 1.1 leo tmp |= ZSWR4_PARENB;
944 1.1 leo cs->cs_preg[4] = tmp;
945 1.1 leo cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
946 1.1 leo cs->cs_preg[10] = ZSWR10_NRZ;
947 1.1 leo cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
948 1.1 leo cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
949 1.1 leo cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
950 1.1 leo
951 1.1 leo /*
952 1.1 leo * If nothing is being transmitted, set up new current values,
953 1.1 leo * else mark them as pending.
954 1.1 leo */
955 1.1 leo if(cs->cs_heldchange == 0) {
956 1.1 leo if (cs->cs_ttyp->t_state & TS_BUSY) {
957 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
958 1.1 leo cs->cs_tbc = 0;
959 1.1 leo cs->cs_heldchange = 1;
960 1.1 leo }
961 1.1 leo else {
962 1.1 leo bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
963 1.1 leo zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
964 1.1 leo }
965 1.1 leo }
966 1.1 leo splx(s);
967 1.1 leo return (0);
968 1.1 leo }
969 1.1 leo
970 1.1 leo /*
971 1.1 leo * Raise or lower modem control (DTR/RTS) signals. If a character is
972 1.1 leo * in transmission, the change is deferred.
973 1.1 leo */
974 1.1 leo static int
975 1.1 leo zs_modem(cs, bits, how)
976 1.1 leo struct zs_chanstate *cs;
977 1.1 leo int bits, how;
978 1.1 leo {
979 1.1 leo int s, mbits;
980 1.1 leo
981 1.1 leo bits &= ZSWR5_DTR | ZSWR5_RTS;
982 1.1 leo
983 1.1 leo s = splzs();
984 1.1 leo mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
985 1.1 leo
986 1.1 leo switch(how) {
987 1.1 leo case DMSET:
988 1.1 leo mbits = bits;
989 1.1 leo break;
990 1.1 leo case DMBIS:
991 1.1 leo mbits |= bits;
992 1.1 leo break;
993 1.1 leo case DMBIC:
994 1.1 leo mbits &= ~bits;
995 1.1 leo break;
996 1.1 leo case DMGET:
997 1.1 leo splx(s);
998 1.1 leo return(mbits);
999 1.1 leo }
1000 1.1 leo
1001 1.1 leo cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1002 1.1 leo if(cs->cs_heldchange == 0) {
1003 1.1 leo if(cs->cs_ttyp->t_state & TS_BUSY) {
1004 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1005 1.1 leo cs->cs_tbc = 0;
1006 1.1 leo cs->cs_heldchange = 1;
1007 1.1 leo }
1008 1.1 leo else {
1009 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1010 1.1 leo }
1011 1.1 leo }
1012 1.1 leo splx(s);
1013 1.1 leo return(0);
1014 1.1 leo }
1015 1.1 leo
1016 1.1 leo /*
1017 1.1 leo * Write the given register set to the given zs channel in the proper order.
1018 1.1 leo * The channel must not be transmitting at the time. The receiver will
1019 1.1 leo * be disabled for the time it takes to write all the registers.
1020 1.1 leo */
1021 1.1 leo static void
1022 1.1 leo zs_loadchannelregs(zc, reg)
1023 1.1 leo volatile struct zschan *zc;
1024 1.1 leo u_char *reg;
1025 1.1 leo {
1026 1.1 leo int i;
1027 1.1 leo
1028 1.1 leo zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1029 1.1 leo i = zc->zc_data; /* drain fifo */
1030 1.1 leo i = zc->zc_data;
1031 1.1 leo i = zc->zc_data;
1032 1.1 leo ZS_WRITE(zc, 4, reg[4]);
1033 1.1 leo ZS_WRITE(zc, 10, reg[10]);
1034 1.1 leo ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1035 1.1 leo ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1036 1.1 leo ZS_WRITE(zc, 1, reg[1]);
1037 1.1 leo ZS_WRITE(zc, 9, reg[9]);
1038 1.1 leo ZS_WRITE(zc, 11, reg[11]);
1039 1.1 leo ZS_WRITE(zc, 12, reg[12]);
1040 1.1 leo ZS_WRITE(zc, 13, reg[13]);
1041 1.1 leo ZS_WRITE(zc, 14, reg[14]);
1042 1.1 leo ZS_WRITE(zc, 15, reg[15]);
1043 1.1 leo ZS_WRITE(zc, 3, reg[3]);
1044 1.1 leo ZS_WRITE(zc, 5, reg[5]);
1045 1.1 leo }
1046 1.1 leo #endif /* NZS > 1 */
1047