Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.41
      1  1.41       agc /*	$NetBSD: zs.c,v 1.41 2003/08/07 16:27:02 agc Exp $	*/
      2   1.1       leo 
      3   1.1       leo /*
      4   1.1       leo  * Copyright (c) 1992, 1993
      5   1.1       leo  *	The Regents of the University of California.  All rights reserved.
      6   1.1       leo  *
      7   1.1       leo  * This software was developed by the Computer Systems Engineering group
      8   1.1       leo  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9   1.1       leo  * contributed to Berkeley.
     10   1.1       leo  *
     11   1.1       leo  *
     12   1.1       leo  * All advertising materials mentioning features or use of this software
     13   1.1       leo  * must display the following acknowledgement:
     14   1.1       leo  *	This product includes software developed by the University of
     15   1.1       leo  *	California, Lawrence Berkeley Laboratory.
     16   1.1       leo  *
     17   1.1       leo  * Redistribution and use in source and binary forms, with or without
     18   1.1       leo  * modification, are permitted provided that the following conditions
     19   1.1       leo  * are met:
     20   1.1       leo  * 1. Redistributions of source code must retain the above copyright
     21   1.1       leo  *    notice, this list of conditions and the following disclaimer.
     22   1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     23   1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     24   1.1       leo  *    documentation and/or other materials provided with the distribution.
     25  1.41       agc  * 3. Neither the name of the University nor the names of its contributors
     26  1.41       agc  *    may be used to endorse or promote products derived from this software
     27  1.41       agc  *    without specific prior written permission.
     28  1.41       agc  *
     29  1.41       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  1.41       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  1.41       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  1.41       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  1.41       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  1.41       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  1.41       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  1.41       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  1.41       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  1.41       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  1.41       agc  * SUCH DAMAGE.
     40  1.41       agc  *
     41  1.41       agc  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     42  1.41       agc  */
     43  1.41       agc 
     44  1.41       agc /*
     45  1.41       agc  * Copyright (c) 1995 L. Weppelman (Atari modifications)
     46  1.41       agc  *
     47  1.41       agc  * This software was developed by the Computer Systems Engineering group
     48  1.41       agc  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     49  1.41       agc  * contributed to Berkeley.
     50  1.41       agc  *
     51  1.41       agc  *
     52  1.41       agc  * All advertising materials mentioning features or use of this software
     53  1.41       agc  * must display the following acknowledgement:
     54  1.41       agc  *	This product includes software developed by the University of
     55  1.41       agc  *	California, Lawrence Berkeley Laboratory.
     56  1.41       agc  *
     57  1.41       agc  * Redistribution and use in source and binary forms, with or without
     58  1.41       agc  * modification, are permitted provided that the following conditions
     59  1.41       agc  * are met:
     60  1.41       agc  * 1. Redistributions of source code must retain the above copyright
     61  1.41       agc  *    notice, this list of conditions and the following disclaimer.
     62  1.41       agc  * 2. Redistributions in binary form must reproduce the above copyright
     63  1.41       agc  *    notice, this list of conditions and the following disclaimer in the
     64  1.41       agc  *    documentation and/or other materials provided with the distribution.
     65   1.1       leo  * 3. All advertising materials mentioning features or use of this software
     66   1.1       leo  *    must display the following acknowledgement:
     67   1.1       leo  *	This product includes software developed by the University of
     68   1.1       leo  *	California, Berkeley and its contributors.
     69   1.1       leo  * 4. Neither the name of the University nor the names of its contributors
     70   1.1       leo  *    may be used to endorse or promote products derived from this software
     71   1.1       leo  *    without specific prior written permission.
     72   1.1       leo  *
     73   1.1       leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     74   1.1       leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     75   1.1       leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     76   1.1       leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     77   1.1       leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     78   1.1       leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     79   1.1       leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     80   1.1       leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     81   1.1       leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     82   1.1       leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     83   1.1       leo  * SUCH DAMAGE.
     84   1.1       leo  *
     85   1.1       leo  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     86   1.1       leo  */
     87   1.1       leo 
     88   1.1       leo /*
     89   1.1       leo  * Zilog Z8530 (ZSCC) driver.
     90   1.1       leo  *
     91   1.1       leo  * Runs two tty ports (modem2 and serial2) on zs0.
     92   1.1       leo  *
     93   1.1       leo  * This driver knows far too much about chip to usage mappings.
     94   1.1       leo  */
     95  1.40     lukem 
     96  1.40     lukem #include <sys/cdefs.h>
     97  1.41       agc __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.41 2003/08/07 16:27:02 agc Exp $");
     98  1.40     lukem 
     99   1.1       leo #include <sys/param.h>
    100   1.9       leo #include <sys/systm.h>
    101   1.1       leo #include <sys/proc.h>
    102   1.1       leo #include <sys/device.h>
    103   1.1       leo #include <sys/conf.h>
    104   1.1       leo #include <sys/file.h>
    105   1.1       leo #include <sys/ioctl.h>
    106  1.13       leo #include <sys/malloc.h>
    107   1.1       leo #include <sys/tty.h>
    108   1.1       leo #include <sys/time.h>
    109   1.1       leo #include <sys/kernel.h>
    110   1.1       leo #include <sys/syslog.h>
    111   1.1       leo 
    112   1.1       leo #include <machine/cpu.h>
    113   1.1       leo #include <machine/iomap.h>
    114   1.1       leo #include <machine/scu.h>
    115   1.1       leo #include <machine/mfp.h>
    116  1.18       leo #include <atari/dev/ym2149reg.h>
    117   1.1       leo 
    118   1.7       cgd #include <dev/ic/z8530reg.h>
    119   1.1       leo #include <atari/dev/zsvar.h>
    120   1.1       leo #include "zs.h"
    121   1.1       leo #if NZS > 1
    122   1.1       leo #error "This driver supports only 1 85C30!"
    123   1.1       leo #endif
    124   1.1       leo 
    125   1.1       leo #if NZS > 0
    126   1.1       leo 
    127  1.12       leo #define PCLK	(8053976)	/* PCLK pin input clock rate */
    128  1.30   mycroft #define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
    129   1.1       leo 
    130   1.1       leo #define splzs	spl5
    131   1.1       leo 
    132   1.1       leo /*
    133   1.1       leo  * Software state per found chip.
    134   1.1       leo  */
    135   1.1       leo struct zs_softc {
    136   1.1       leo     struct	device		zi_dev;    /* base device		  */
    137   1.1       leo     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
    138   1.1       leo     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
    139   1.1       leo };
    140   1.1       leo 
    141   1.8       leo static u_char	cb_scheduled = 0;	/* Already asked for callback? */
    142   1.1       leo /*
    143   1.1       leo  * Define the registers for a closed port
    144   1.1       leo  */
    145   1.6       leo static u_char zs_init_regs[16] = {
    146   1.1       leo /*  0 */	0,
    147   1.1       leo /*  1 */	0,
    148   1.1       leo /*  2 */	0x60,
    149   1.1       leo /*  3 */	0,
    150   1.1       leo /*  4 */	0,
    151   1.1       leo /*  5 */	0,
    152   1.1       leo /*  6 */	0,
    153   1.1       leo /*  7 */	0,
    154   1.1       leo /*  8 */	0,
    155  1.13       leo /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
    156   1.1       leo /* 10 */	ZSWR10_NRZ,
    157   1.1       leo /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    158   1.1       leo /* 12 */	0,
    159   1.1       leo /* 13 */	0,
    160   1.1       leo /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    161   1.1       leo /* 15 */	0
    162   1.1       leo };
    163   1.1       leo 
    164   1.6       leo /*
    165   1.6       leo  * Define the machine dependant clock frequencies
    166   1.6       leo  * If BRgen feeds sender/receiver we always use a
    167   1.6       leo  * divisor 16, therefor the division by 16 can as
    168   1.6       leo  * well be done here.
    169   1.6       leo  */
    170   1.6       leo static u_long zs_freqs_tt[] = {
    171   1.6       leo 	/*
    172   1.6       leo 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    173   1.6       leo 	 * which is set to 307.2KHz during initialisation
    174   1.6       leo 	 * and never changed afterwards.
    175   1.6       leo 	 */
    176   1.6       leo 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    177   1.6       leo 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    178   1.6       leo 	3672000,	/* RTxCA, from PCLK4		*/
    179   1.6       leo 	      0,	/* TRxCA, external		*/
    180   1.6       leo 
    181   1.6       leo 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    182   1.6       leo 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    183   1.6       leo 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    184   1.6       leo 	2457600		/* TRxCB, from BCLK		*/
    185   1.6       leo };
    186  1.24       leo 
    187   1.6       leo static u_long zs_freqs_falcon[] = {
    188   1.6       leo 	/*
    189   1.6       leo 	 * Atari Falcon, XXX no specs available, this might be wrong
    190   1.6       leo 	 */
    191   1.6       leo 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    192   1.6       leo 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    193   1.6       leo 	3672000,	/* RTxCA, ???			*/
    194   1.6       leo 	      0,	/* TRxCA, external		*/
    195   1.6       leo 
    196   1.6       leo 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    197   1.6       leo 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    198   1.6       leo 	3672000,	/* RTxCB, ???			*/
    199   1.6       leo 	2457600		/* TRxCB, ???			*/
    200   1.6       leo };
    201  1.24       leo 
    202  1.24       leo static u_long zs_freqs_hades[] = {
    203  1.24       leo 	/*
    204  1.24       leo 	 * XXX: Channel-A unchecked!!!!!
    205  1.24       leo 	 */
    206  1.24       leo      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    207  1.24       leo 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    208  1.24       leo 	3672000,	/* RTxCA, from PCLK4		*/
    209  1.24       leo 	      0,	/* TRxCA, external		*/
    210  1.24       leo 
    211  1.24       leo      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    212  1.24       leo 	 235550,	/* BRgen, RTxCB, divisor 16	*/
    213  1.24       leo 	3768800,	/* RTxCB, 3.7688MHz		*/
    214  1.24       leo 	3768800		/* TRxCB, 3.7688MHz		*/
    215  1.24       leo };
    216  1.24       leo 
    217   1.6       leo static u_long zs_freqs_generic[] = {
    218   1.6       leo 	/*
    219   1.6       leo 	 * other machines, assume only PCLK is available
    220   1.6       leo 	 */
    221   1.6       leo 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    222   1.6       leo 	      0,	/* BRgen, RTxCA, divisor 16	*/
    223   1.6       leo 	      0,	/* RTxCA, unknown		*/
    224   1.6       leo 	      0,	/* TRxCA, unknown		*/
    225   1.6       leo 
    226   1.6       leo 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    227   1.6       leo 	      0,	/* BRgen, RTxCB, divisor 16	*/
    228   1.6       leo 	      0,	/* RTxCB, unknown		*/
    229   1.6       leo 	      0		/* TRxCB, unknown		*/
    230   1.6       leo };
    231   1.6       leo static u_long *zs_frequencies;
    232   1.6       leo 
    233   1.1       leo /* Definition of the driver for autoconfig. */
    234  1.25       leo static int	zsmatch __P((struct device *, struct cfdata *, void *));
    235   1.1       leo static void	zsattach __P((struct device *, struct device *, void *));
    236  1.17   thorpej 
    237  1.38   thorpej CFATTACH_DECL(zs, sizeof(struct zs_softc),
    238  1.38   thorpej     zsmatch, zsattach, NULL, NULL);
    239  1.17   thorpej 
    240  1.28   thorpej extern struct cfdriver zs_cd;
    241   1.1       leo 
    242  1.15       leo /* {b,c}devsw[] function prototypes */
    243  1.15       leo dev_type_open(zsopen);
    244  1.15       leo dev_type_close(zsclose);
    245  1.15       leo dev_type_read(zsread);
    246  1.15       leo dev_type_write(zswrite);
    247  1.15       leo dev_type_ioctl(zsioctl);
    248  1.36   gehenna dev_type_stop(zsstop);
    249  1.16       leo dev_type_tty(zstty);
    250  1.36   gehenna dev_type_poll(zspoll);
    251  1.36   gehenna 
    252  1.36   gehenna const struct cdevsw zs_cdevsw = {
    253  1.36   gehenna 	zsopen, zsclose, zsread, zswrite, zsioctl,
    254  1.39  jdolecek 	zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
    255  1.36   gehenna };
    256  1.15       leo 
    257   1.1       leo /* Interrupt handlers. */
    258   1.1       leo int		zshard __P((long));
    259   1.1       leo static int	zssoft __P((long));
    260   1.1       leo static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    261   1.1       leo static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    262   1.1       leo static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    263   1.1       leo 
    264   1.6       leo static struct zs_chanstate *zslist;
    265   1.1       leo 
    266   1.1       leo /* Routines called from other code. */
    267   1.1       leo static void	zsstart __P((struct tty *));
    268  1.16       leo 
    269  1.16       leo /* Routines purely local to this driver. */
    270  1.16       leo static void	zsoverrun __P((int, long *, char *));
    271   1.1       leo static int	zsparam __P((struct tty *, struct termios *));
    272   1.6       leo static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    273   1.1       leo static int	zs_modem __P((struct zs_chanstate *, int, int));
    274   1.1       leo static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    275  1.29       leo static void	zs_shutdown __P((struct zs_chanstate *));
    276   1.1       leo 
    277   1.6       leo static int zsshortcuts;	/* number of "shortcut" software interrupts */
    278   1.1       leo 
    279   1.4       leo static int
    280  1.25       leo zsmatch(pdp, cfp, auxp)
    281   1.1       leo struct device	*pdp;
    282  1.25       leo struct cfdata	*cfp;
    283  1.25       leo void		*auxp;
    284   1.1       leo {
    285  1.31       leo 	static int	zs_matched = 0;
    286  1.31       leo 
    287  1.31       leo 	if(strcmp("zs", auxp) || zs_matched)
    288   1.1       leo 		return(0);
    289  1.31       leo 	zs_matched = 1;
    290   1.1       leo 	return(1);
    291   1.1       leo }
    292   1.1       leo 
    293   1.1       leo /*
    294   1.1       leo  * Attach a found zs.
    295   1.1       leo  */
    296   1.1       leo static void
    297   1.1       leo zsattach(parent, dev, aux)
    298   1.1       leo struct device	*parent;
    299   1.1       leo struct device	*dev;
    300   1.1       leo void		*aux;
    301   1.1       leo {
    302   1.1       leo 	register struct zs_softc		*zi;
    303   1.1       leo 	register struct zs_chanstate		*cs;
    304   1.1       leo 	register volatile struct zsdevice	*addr;
    305   1.1       leo 		 char				tmp;
    306   1.1       leo 
    307   1.1       leo 	addr      = (struct zsdevice *)AD_SCC;
    308   1.1       leo 	zi        = (struct zs_softc *)dev;
    309   1.1       leo 	zi->zi_zs = addr;
    310   1.1       leo 	cs        = zi->zi_cs;
    311   1.1       leo 
    312   1.1       leo 	/*
    313   1.1       leo 	 * Get the command register into a known state.
    314   1.1       leo 	 */
    315   1.2   mycroft 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    316   1.2   mycroft 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    317   1.2   mycroft 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    318   1.2   mycroft 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    319   1.1       leo 
    320   1.1       leo 	/*
    321   1.1       leo 	 * Do a hardware reset.
    322   1.1       leo 	 */
    323   1.2   mycroft 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    324   1.1       leo 	delay(50000);	/*enough ? */
    325   1.2   mycroft 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    326   1.1       leo 
    327   1.1       leo 	/*
    328   1.1       leo 	 * Initialize both channels
    329   1.1       leo 	 */
    330   1.2   mycroft 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    331   1.2   mycroft 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    332   1.1       leo 
    333   1.5       leo 	if(machineid & ATARI_TT) {
    334   1.5       leo 		/*
    335   1.6       leo 		 * ininitialise TT-MFP timer C: 307200Hz
    336   1.6       leo 		 * timer C and D share one control register:
    337   1.6       leo 		 *	bits 0-2 control timer D
    338   1.6       leo 		 *	bits 4-6 control timer C
    339   1.6       leo 		 */
    340   1.6       leo 		int cr = MFP2->mf_tcdcr & 7;
    341   1.6       leo 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    342   1.6       leo 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    343   1.6       leo 		cr |= T_Q004 << 4;		/* divisor 4     */
    344   1.6       leo 		MFP2->mf_tcdcr = cr;		/* start timer C */
    345   1.6       leo 		/*
    346   1.5       leo 		 * enable scc related interrupts
    347   1.5       leo 		 */
    348  1.27       leo 		SCU->vme_mask |= SCU_SCC;
    349   1.6       leo 
    350   1.6       leo 		zs_frequencies = zs_freqs_tt;
    351   1.6       leo 	} else if (machineid & ATARI_FALCON) {
    352   1.6       leo 		zs_frequencies = zs_freqs_falcon;
    353  1.24       leo 	} else if (machineid & ATARI_HADES) {
    354  1.24       leo 		zs_frequencies = zs_freqs_hades;
    355   1.6       leo 	} else {
    356   1.6       leo 		zs_frequencies = zs_freqs_generic;
    357   1.5       leo 	}
    358   1.1       leo 
    359   1.1       leo 	/* link into interrupt list with order (A,B) (B=A+1) */
    360   1.1       leo 	cs[0].cs_next = &cs[1];
    361   1.1       leo 	cs[1].cs_next = zslist;
    362   1.1       leo 	zslist        = cs;
    363   1.1       leo 
    364   1.1       leo 	cs->cs_unit  = 0;
    365   1.2   mycroft 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    366   1.1       leo 	cs++;
    367   1.1       leo 	cs->cs_unit  = 1;
    368   1.2   mycroft 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    369   1.1       leo 
    370  1.23  christos 	printf(": serial2 on channel a and modem2 on channel b\n");
    371   1.1       leo }
    372   1.1       leo 
    373   1.1       leo /*
    374   1.1       leo  * Open a zs serial port.
    375   1.1       leo  */
    376   1.1       leo int
    377   1.1       leo zsopen(dev, flags, mode, p)
    378   1.1       leo dev_t		dev;
    379   1.1       leo int		flags;
    380   1.1       leo int		mode;
    381   1.1       leo struct proc	*p;
    382   1.1       leo {
    383   1.1       leo 	register struct tty		*tp;
    384   1.1       leo 	register struct zs_chanstate	*cs;
    385   1.1       leo 		 struct zs_softc	*zi;
    386   1.1       leo 		 int			unit = ZS_UNIT(dev);
    387   1.1       leo 		 int			zs = unit >> 1;
    388   1.1       leo 		 int			error, s;
    389   1.1       leo 
    390  1.17   thorpej 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
    391   1.1       leo 		return (ENXIO);
    392   1.1       leo 	cs = &zi->zi_cs[unit & 1];
    393  1.10       jtc 
    394  1.10       jtc 	/*
    395  1.10       jtc 	 * When port A (ser02) is selected on the TT, make sure
    396  1.10       jtc 	 * the port is enabled.
    397  1.10       jtc 	 */
    398  1.18       leo 	if((machineid & ATARI_TT) && !(unit & 1))
    399  1.26       leo 		ym2149_ser2(1);
    400  1.13       leo 
    401  1.13       leo 	if (cs->cs_rbuf == NULL) {
    402  1.13       leo 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
    403  1.13       leo 								   M_WAITOK);
    404  1.10       jtc 	}
    405  1.10       jtc 
    406   1.1       leo 	tp = cs->cs_ttyp;
    407   1.1       leo 	if(tp == NULL) {
    408  1.21       leo 		cs->cs_ttyp = tp = ttymalloc();
    409  1.21       leo 		tty_attach(tp);
    410  1.21       leo 		tp->t_dev   = dev;
    411  1.21       leo 		tp->t_oproc = zsstart;
    412  1.21       leo 		tp->t_param = zsparam;
    413   1.1       leo 	}
    414   1.1       leo 
    415  1.29       leo 	if ((tp->t_state & TS_ISOPEN) &&
    416  1.29       leo 	    (tp->t_state & TS_XCLUDE) &&
    417  1.29       leo 	    p->p_ucred->cr_uid != 0)
    418  1.29       leo 		return (EBUSY);
    419  1.29       leo 
    420   1.1       leo 	s  = spltty();
    421  1.29       leo 
    422  1.29       leo 	/*
    423  1.29       leo 	 * Do the following iff this is a first open.
    424  1.29       leo 	 */
    425  1.29       leo 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    426   1.1       leo 		if(tp->t_ispeed == 0) {
    427   1.1       leo 			tp->t_iflag = TTYDEF_IFLAG;
    428   1.1       leo 			tp->t_oflag = TTYDEF_OFLAG;
    429   1.1       leo 			tp->t_cflag = TTYDEF_CFLAG;
    430   1.1       leo 			tp->t_lflag = TTYDEF_LFLAG;
    431   1.1       leo 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    432   1.1       leo 		}
    433  1.29       leo 		ttychars(tp);
    434  1.29       leo 		ttsetwater(tp);
    435  1.29       leo 
    436   1.1       leo 		(void)zsparam(tp, &tp->t_termios);
    437  1.29       leo 
    438  1.29       leo 		/*
    439  1.29       leo 		 * Turn on DTR.  We must always do this, even if carrier is not
    440  1.29       leo 		 * present, because otherwise we'd have to use TIOCSDTR
    441  1.29       leo 		 * immediately after setting CLOCAL, which applications do not
    442  1.29       leo 		 * expect.  We always assert DTR while the device is open
    443  1.29       leo 		 * unless explicitly requested to deassert it.
    444  1.29       leo 		 */
    445   1.1       leo 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    446   1.8       leo 		/* May never get a status intr. if DCD already on. -gwr */
    447  1.16       leo 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
    448   1.8       leo 			tp->t_state |= TS_CARR_ON;
    449   1.1       leo 		if(cs->cs_softcar)
    450   1.1       leo 			tp->t_state |= TS_CARR_ON;
    451   1.1       leo 	}
    452  1.29       leo 
    453   1.1       leo 	splx(s);
    454  1.29       leo 
    455  1.29       leo 	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
    456  1.29       leo 	if (error)
    457  1.29       leo 		goto bad;
    458  1.29       leo 
    459  1.32       eeh 	error = tp->t_linesw->l_open(dev, tp);
    460   1.1       leo 	if(error)
    461  1.29       leo 		goto bad;
    462  1.29       leo 	return (0);
    463  1.29       leo 
    464  1.29       leo bad:
    465  1.29       leo 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    466  1.29       leo 		/*
    467  1.29       leo 		 * We failed to open the device, and nobody else had it opened.
    468  1.29       leo 		 * Clean up the state as appropriate.
    469  1.29       leo 		 */
    470  1.29       leo 		zs_shutdown(cs);
    471  1.29       leo 	}
    472   1.1       leo 	return(error);
    473   1.1       leo }
    474   1.1       leo 
    475   1.1       leo /*
    476   1.1       leo  * Close a zs serial port.
    477   1.1       leo  */
    478   1.1       leo int
    479   1.1       leo zsclose(dev, flags, mode, p)
    480   1.1       leo dev_t		dev;
    481   1.1       leo int		flags;
    482   1.1       leo int		mode;
    483   1.1       leo struct proc	*p;
    484   1.1       leo {
    485   1.1       leo 	register struct zs_chanstate	*cs;
    486   1.1       leo 	register struct tty		*tp;
    487   1.1       leo 		 struct zs_softc	*zi;
    488   1.1       leo 		 int			unit = ZS_UNIT(dev);
    489   1.1       leo 
    490  1.17   thorpej 	zi = zs_cd.cd_devs[unit >> 1];
    491   1.1       leo 	cs = &zi->zi_cs[unit & 1];
    492   1.1       leo 	tp = cs->cs_ttyp;
    493  1.29       leo 
    494  1.32       eeh 	tp->t_linesw->l_close(tp, flags);
    495   1.1       leo 	ttyclose(tp);
    496   1.1       leo 
    497  1.29       leo 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    498  1.29       leo 		/*
    499  1.29       leo 		 * Although we got a last close, the device may still be in
    500  1.29       leo 		 * use; e.g. if this was the dialout node, and there are still
    501  1.29       leo 		 * processes waiting for carrier on the non-dialout node.
    502  1.29       leo 		 */
    503  1.29       leo 		zs_shutdown(cs);
    504  1.29       leo 	}
    505   1.1       leo 	return (0);
    506   1.1       leo }
    507   1.1       leo 
    508   1.1       leo /*
    509   1.1       leo  * Read/write zs serial port.
    510   1.1       leo  */
    511   1.1       leo int
    512   1.1       leo zsread(dev, uio, flags)
    513   1.1       leo dev_t		dev;
    514   1.1       leo struct uio	*uio;
    515   1.1       leo int		flags;
    516   1.1       leo {
    517   1.4       leo 	register struct zs_chanstate	*cs;
    518   1.4       leo 	register struct zs_softc	*zi;
    519   1.4       leo 	register struct tty		*tp;
    520   1.4       leo 		 int			unit;
    521   1.4       leo 
    522   1.4       leo 	unit = ZS_UNIT(dev);
    523  1.17   thorpej 	zi   = zs_cd.cd_devs[unit >> 1];
    524   1.4       leo 	cs   = &zi->zi_cs[unit & 1];
    525   1.4       leo 	tp   = cs->cs_ttyp;
    526   1.1       leo 
    527  1.32       eeh 	return(tp->t_linesw->l_read(tp, uio, flags));
    528   1.1       leo }
    529   1.1       leo 
    530   1.4       leo int
    531   1.4       leo zswrite(dev, uio, flags)
    532   1.1       leo dev_t		dev;
    533   1.1       leo struct uio	*uio;
    534   1.1       leo int		flags;
    535   1.1       leo {
    536   1.4       leo 	register struct zs_chanstate	*cs;
    537   1.4       leo 	register struct zs_softc	*zi;
    538   1.4       leo 	register struct tty		*tp;
    539   1.4       leo 		 int			unit;
    540   1.4       leo 
    541   1.4       leo 	unit = ZS_UNIT(dev);
    542  1.17   thorpej 	zi   = zs_cd.cd_devs[unit >> 1];
    543   1.4       leo 	cs   = &zi->zi_cs[unit & 1];
    544   1.4       leo 	tp   = cs->cs_ttyp;
    545   1.1       leo 
    546  1.32       eeh 	return(tp->t_linesw->l_write(tp, uio, flags));
    547  1.34       scw }
    548  1.34       scw 
    549  1.34       scw int
    550  1.34       scw zspoll(dev, events, p)
    551  1.34       scw dev_t		dev;
    552  1.34       scw int		events;
    553  1.34       scw struct proc	*p;
    554  1.34       scw {
    555  1.34       scw 	register struct zs_chanstate	*cs;
    556  1.34       scw 	register struct zs_softc	*zi;
    557  1.34       scw 	register struct tty		*tp;
    558  1.34       scw 		 int			unit;
    559  1.34       scw 
    560  1.34       scw 	unit = ZS_UNIT(dev);
    561  1.34       scw 	zi   = zs_cd.cd_devs[unit >> 1];
    562  1.34       scw 	cs   = &zi->zi_cs[unit & 1];
    563  1.34       scw 	tp   = cs->cs_ttyp;
    564  1.34       scw 
    565  1.34       scw 	return ((*tp->t_linesw->l_poll)(tp, events, p));
    566   1.4       leo }
    567   1.4       leo 
    568   1.4       leo struct tty *
    569   1.4       leo zstty(dev)
    570   1.4       leo dev_t	dev;
    571   1.4       leo {
    572   1.4       leo 	register struct zs_chanstate	*cs;
    573   1.4       leo 	register struct zs_softc	*zi;
    574   1.4       leo 		 int			unit;
    575   1.4       leo 
    576   1.4       leo 	unit = ZS_UNIT(dev);
    577  1.17   thorpej 	zi   = zs_cd.cd_devs[unit >> 1];
    578   1.4       leo 	cs   = &zi->zi_cs[unit & 1];
    579   1.4       leo 	return(cs->cs_ttyp);
    580   1.1       leo }
    581   1.1       leo 
    582   1.1       leo /*
    583   1.1       leo  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    584   1.1       leo  * channels are kept in (A,B) pairs.
    585   1.1       leo  *
    586   1.1       leo  * Do just a little, then get out; set a software interrupt if more
    587   1.1       leo  * work is needed.
    588   1.1       leo  *
    589   1.1       leo  * We deliberately ignore the vectoring Zilog gives us, and match up
    590   1.1       leo  * only the number of `reset interrupt under service' operations, not
    591   1.1       leo  * the order.
    592   1.1       leo  */
    593   1.8       leo 
    594   1.1       leo int
    595   1.1       leo zshard(sr)
    596   1.1       leo long sr;
    597   1.1       leo {
    598   1.1       leo 	register struct zs_chanstate	*a;
    599   1.1       leo #define	b (a + 1)
    600   1.1       leo 	register volatile struct zschan *zc;
    601   1.1       leo 	register int			rr3, intflags = 0, v, i;
    602   1.1       leo 
    603   1.8       leo 	do {
    604   1.8       leo 	    intflags &= ~4;
    605   1.8       leo 	    for(a = zslist; a != NULL; a = b->cs_next) {
    606   1.1       leo 		rr3 = ZS_READ(a->cs_zc, 3);
    607   1.1       leo 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    608   1.8       leo 			intflags |= 4|2;
    609   1.1       leo 			zc = a->cs_zc;
    610   1.1       leo 			i  = a->cs_rbput;
    611   1.1       leo 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    612   1.1       leo 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    613   1.1       leo 				intflags |= 1;
    614   1.1       leo 			}
    615   1.1       leo 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    616   1.1       leo 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    617   1.1       leo 				intflags |= 1;
    618   1.1       leo 			}
    619   1.1       leo 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    620   1.1       leo 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    621   1.1       leo 				intflags |= 1;
    622   1.1       leo 			}
    623   1.1       leo 			a->cs_rbput = i;
    624   1.1       leo 		}
    625   1.1       leo 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    626   1.8       leo 			intflags |= 4|2;
    627   1.1       leo 			zc = b->cs_zc;
    628   1.1       leo 			i  = b->cs_rbput;
    629   1.1       leo 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    630   1.1       leo 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    631   1.1       leo 				intflags |= 1;
    632   1.1       leo 			}
    633   1.1       leo 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    634   1.1       leo 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    635   1.1       leo 				intflags |= 1;
    636   1.1       leo 			}
    637   1.1       leo 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    638   1.1       leo 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    639   1.1       leo 				intflags |= 1;
    640   1.1       leo 			}
    641   1.1       leo 			b->cs_rbput = i;
    642   1.1       leo 		}
    643   1.8       leo 	    }
    644   1.8       leo 	} while(intflags & 4);
    645   1.1       leo #undef b
    646   1.1       leo 
    647   1.1       leo 	if(intflags & 1) {
    648   1.1       leo 		if(BASEPRI(sr)) {
    649   1.1       leo 			spl1();
    650   1.1       leo 			zsshortcuts++;
    651   1.1       leo 			return(zssoft(sr));
    652   1.1       leo 		}
    653   1.8       leo 		else if(!cb_scheduled) {
    654   1.8       leo 			cb_scheduled++;
    655  1.19       leo 			add_sicallback((si_farg)zssoft, 0, 0);
    656   1.8       leo 		}
    657   1.1       leo 	}
    658   1.1       leo 	return(intflags & 2);
    659   1.1       leo }
    660   1.1       leo 
    661   1.1       leo static int
    662   1.1       leo zsrint(cs, zc)
    663   1.1       leo register struct zs_chanstate	*cs;
    664   1.1       leo register volatile struct zschan	*zc;
    665   1.1       leo {
    666   1.8       leo 	register int c;
    667   1.1       leo 
    668   1.8       leo 	/*
    669   1.8       leo 	 * First read the status, because read of the received char
    670   1.8       leo 	 * destroy the status of this char.
    671   1.8       leo 	 */
    672   1.8       leo 	c = ZS_READ(zc, 1);
    673   1.8       leo 	c |= (zc->zc_data << 8);
    674   1.1       leo 
    675   1.1       leo 	/* clear receive error & interrupt condition */
    676   1.1       leo 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    677   1.1       leo 	zc->zc_csr = ZSWR0_CLR_INTR;
    678   1.1       leo 
    679   1.1       leo 	return(ZRING_MAKE(ZRING_RINT, c));
    680   1.1       leo }
    681   1.1       leo 
    682   1.1       leo static int
    683   1.1       leo zsxint(cs, zc)
    684   1.1       leo register struct zs_chanstate	*cs;
    685   1.1       leo register volatile struct zschan	*zc;
    686   1.1       leo {
    687   1.1       leo 	register int i = cs->cs_tbc;
    688   1.1       leo 
    689   1.1       leo 	if(i == 0) {
    690   1.1       leo 		zc->zc_csr = ZSWR0_RESET_TXINT;
    691   1.1       leo 		zc->zc_csr = ZSWR0_CLR_INTR;
    692   1.1       leo 		return(ZRING_MAKE(ZRING_XINT, 0));
    693   1.1       leo 	}
    694   1.1       leo 	cs->cs_tbc = i - 1;
    695   1.1       leo 	zc->zc_data = *cs->cs_tba++;
    696   1.1       leo 	zc->zc_csr = ZSWR0_CLR_INTR;
    697   1.1       leo 	return (0);
    698   1.1       leo }
    699   1.1       leo 
    700   1.1       leo static int
    701   1.1       leo zssint(cs, zc)
    702   1.1       leo register struct zs_chanstate	*cs;
    703   1.1       leo register volatile struct zschan	*zc;
    704   1.1       leo {
    705   1.1       leo 	register int rr0;
    706   1.1       leo 
    707   1.1       leo 	rr0 = zc->zc_csr;
    708   1.1       leo 	zc->zc_csr = ZSWR0_RESET_STATUS;
    709   1.1       leo 	zc->zc_csr = ZSWR0_CLR_INTR;
    710   1.1       leo 	/*
    711   1.1       leo 	 * The chip's hardware flow control is, as noted in zsreg.h,
    712   1.1       leo 	 * busted---if the DCD line goes low the chip shuts off the
    713   1.1       leo 	 * receiver (!).  If we want hardware CTS flow control but do
    714   1.1       leo 	 * not have it, and carrier is now on, turn HFC on; if we have
    715   1.1       leo 	 * HFC now but carrier has gone low, turn it off.
    716   1.1       leo 	 */
    717   1.1       leo 	if(rr0 & ZSRR0_DCD) {
    718   1.1       leo 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    719   1.1       leo 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    720   1.1       leo 			cs->cs_creg[3] |= ZSWR3_HFC;
    721   1.1       leo 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    722   1.1       leo 		}
    723   1.1       leo 	}
    724   1.1       leo 	else {
    725   1.1       leo 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    726   1.1       leo 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    727   1.1       leo 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    728   1.1       leo 		}
    729   1.1       leo 	}
    730   1.1       leo 	return(ZRING_MAKE(ZRING_SINT, rr0));
    731   1.1       leo }
    732   1.1       leo 
    733   1.1       leo /*
    734   1.1       leo  * Print out a ring or fifo overrun error message.
    735   1.1       leo  */
    736   1.1       leo static void
    737   1.1       leo zsoverrun(unit, ptime, what)
    738   1.1       leo int	unit;
    739   1.1       leo long	*ptime;
    740   1.1       leo char	*what;
    741   1.1       leo {
    742   1.1       leo 
    743   1.1       leo 	if(*ptime != time.tv_sec) {
    744   1.1       leo 		*ptime = time.tv_sec;
    745   1.1       leo 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    746   1.1       leo 		    (unit & 1) + 'a', what);
    747   1.1       leo 	}
    748   1.1       leo }
    749   1.1       leo 
    750   1.1       leo /*
    751   1.1       leo  * ZS software interrupt.  Scan all channels for deferred interrupts.
    752   1.1       leo  */
    753   1.1       leo int
    754   1.1       leo zssoft(sr)
    755   1.1       leo long sr;
    756   1.1       leo {
    757   1.1       leo     register struct zs_chanstate	*cs;
    758   1.1       leo     register volatile struct zschan	*zc;
    759   1.1       leo     register struct linesw		*line;
    760   1.1       leo     register struct tty			*tp;
    761   1.1       leo     register int			get, n, c, cc, unit, s;
    762   1.1       leo  	     int			retval = 0;
    763   1.1       leo 
    764   1.8       leo     cb_scheduled = 0;
    765   1.1       leo     s = spltty();
    766   1.1       leo     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    767   1.1       leo 	get = cs->cs_rbget;
    768   1.1       leo again:
    769   1.1       leo 	n = cs->cs_rbput;	/* atomic			*/
    770   1.1       leo 	if(get == n)		/* nothing more on this line	*/
    771   1.1       leo 		continue;
    772   1.1       leo 	retval = 1;
    773   1.1       leo 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    774   1.1       leo 	zc     = cs->cs_zc;
    775   1.1       leo 	tp     = cs->cs_ttyp;
    776  1.33       leo 	line   = tp->t_linesw;
    777   1.1       leo 	/*
    778   1.1       leo 	 * Compute the number of interrupts in the receive ring.
    779   1.1       leo 	 * If the count is overlarge, we lost some events, and
    780   1.1       leo 	 * must advance to the first valid one.  It may get
    781   1.1       leo 	 * overwritten if more data are arriving, but this is
    782   1.1       leo 	 * too expensive to check and gains nothing (we already
    783   1.1       leo 	 * lost out; all we can do at this point is trade one
    784   1.1       leo 	 * kind of loss for another).
    785   1.1       leo 	 */
    786   1.1       leo 	n -= get;
    787   1.1       leo 	if(n > ZLRB_RING_SIZE) {
    788   1.1       leo 		zsoverrun(unit, &cs->cs_rotime, "ring");
    789   1.1       leo 		get += n - ZLRB_RING_SIZE;
    790   1.1       leo 		n    = ZLRB_RING_SIZE;
    791   1.1       leo 	}
    792   1.1       leo 	while(--n >= 0) {
    793   1.1       leo 		/* race to keep ahead of incoming interrupts */
    794   1.1       leo 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    795   1.1       leo 		switch (ZRING_TYPE(c)) {
    796   1.1       leo 
    797   1.1       leo 		case ZRING_RINT:
    798   1.1       leo 			c = ZRING_VALUE(c);
    799   1.1       leo 			if(c & ZSRR1_DO)
    800   1.1       leo 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    801   1.1       leo 			cc = c >> 8;
    802   1.1       leo 			if(c & ZSRR1_FE)
    803   1.1       leo 				cc |= TTY_FE;
    804   1.1       leo 			if(c & ZSRR1_PE)
    805   1.1       leo 				cc |= TTY_PE;
    806   1.1       leo 			line->l_rint(cc, tp);
    807   1.1       leo 			break;
    808   1.1       leo 
    809   1.1       leo 		case ZRING_XINT:
    810   1.1       leo 			/*
    811   1.1       leo 			 * Transmit done: change registers and resume,
    812   1.1       leo 			 * or clear BUSY.
    813   1.1       leo 			 */
    814   1.1       leo 			if(cs->cs_heldchange) {
    815   1.1       leo 				int sps;
    816   1.1       leo 
    817   1.1       leo 				sps = splzs();
    818   1.1       leo 				c = zc->zc_csr;
    819   1.1       leo 				if((c & ZSRR0_DCD) == 0)
    820   1.1       leo 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    821   1.1       leo 				bcopy((caddr_t)cs->cs_preg,
    822   1.1       leo 				    (caddr_t)cs->cs_creg, 16);
    823   1.1       leo 				zs_loadchannelregs(zc, cs->cs_creg);
    824   1.1       leo 				splx(sps);
    825   1.1       leo 				cs->cs_heldchange = 0;
    826   1.1       leo 				if(cs->cs_heldtbc
    827   1.1       leo 					&& (tp->t_state & TS_TTSTOP) == 0) {
    828   1.1       leo 					cs->cs_tbc = cs->cs_heldtbc - 1;
    829   1.1       leo 					zc->zc_data = *cs->cs_tba++;
    830   1.1       leo 					goto again;
    831   1.1       leo 				}
    832   1.1       leo 			}
    833   1.1       leo 			tp->t_state &= ~TS_BUSY;
    834   1.1       leo 			if(tp->t_state & TS_FLUSH)
    835   1.1       leo 				tp->t_state &= ~TS_FLUSH;
    836   1.1       leo 			else ndflush(&tp->t_outq,cs->cs_tba
    837   1.1       leo 						- (caddr_t)tp->t_outq.c_cf);
    838   1.1       leo 			line->l_start(tp);
    839   1.1       leo 			break;
    840   1.1       leo 
    841   1.1       leo 		case ZRING_SINT:
    842   1.1       leo 			/*
    843   1.1       leo 			 * Status line change.  HFC bit is run in
    844   1.1       leo 			 * hardware interrupt, to avoid locking
    845   1.1       leo 			 * at splzs here.
    846   1.1       leo 			 */
    847   1.1       leo 			c = ZRING_VALUE(c);
    848   1.1       leo 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    849   1.1       leo 				cc = (c & ZSRR0_DCD) != 0;
    850   1.1       leo 				if(line->l_modem(tp, cc) == 0)
    851   1.1       leo 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    852   1.1       leo 							cc ? DMBIS : DMBIC);
    853   1.1       leo 			}
    854   1.1       leo 			cs->cs_rr0 = c;
    855   1.1       leo 			break;
    856   1.1       leo 
    857   1.1       leo 		default:
    858   1.1       leo 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    859   1.1       leo 			    unit >> 1, (unit & 1) + 'a', c);
    860   1.1       leo 			break;
    861   1.1       leo 		}
    862   1.1       leo 	}
    863   1.1       leo 	cs->cs_rbget = get;
    864   1.1       leo 	goto again;
    865   1.1       leo     }
    866   1.1       leo     splx(s);
    867   1.1       leo     return (retval);
    868   1.1       leo }
    869   1.1       leo 
    870   1.1       leo int
    871   1.1       leo zsioctl(dev, cmd, data, flag, p)
    872   1.1       leo dev_t		dev;
    873   1.1       leo u_long		cmd;
    874   1.1       leo caddr_t		data;
    875   1.1       leo int		flag;
    876   1.1       leo struct proc	*p;
    877   1.1       leo {
    878   1.1       leo 		 int			unit = ZS_UNIT(dev);
    879  1.17   thorpej 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    880   1.1       leo 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    881   1.1       leo 	register int			error, s;
    882   1.1       leo 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    883   1.1       leo 
    884  1.32       eeh 	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
    885  1.35    atatat 	if(error != EPASSTHROUGH)
    886   1.1       leo 		return(error);
    887  1.35    atatat 
    888   1.1       leo 	error = ttioctl(tp, cmd, data, flag, p);
    889  1.35    atatat 	if(error !=EPASSTHROUGH)
    890   1.1       leo 		return (error);
    891   1.1       leo 
    892   1.1       leo 	switch (cmd) {
    893   1.1       leo 	case TIOCSBRK:
    894   1.1       leo 		s = splzs();
    895   1.1       leo 		cs->cs_preg[5] |= ZSWR5_BREAK;
    896   1.1       leo 		cs->cs_creg[5] |= ZSWR5_BREAK;
    897   1.1       leo 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    898   1.1       leo 		splx(s);
    899   1.1       leo 		break;
    900   1.1       leo 	case TIOCCBRK:
    901   1.1       leo 		s = splzs();
    902   1.1       leo 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    903   1.1       leo 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    904   1.1       leo 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    905   1.1       leo 		splx(s);
    906   1.1       leo 		break;
    907   1.1       leo 	case TIOCGFLAGS: {
    908   1.1       leo 		int bits = 0;
    909   1.1       leo 
    910   1.1       leo 		if(cs->cs_softcar)
    911   1.1       leo 			bits |= TIOCFLAG_SOFTCAR;
    912   1.1       leo 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    913   1.1       leo 			bits |= TIOCFLAG_CLOCAL;
    914   1.1       leo 		if(cs->cs_creg[3] & ZSWR3_HFC)
    915   1.1       leo 			bits |= TIOCFLAG_CRTSCTS;
    916   1.1       leo 		*(int *)data = bits;
    917   1.1       leo 		break;
    918   1.1       leo 	}
    919   1.1       leo 	case TIOCSFLAGS: {
    920  1.15       leo 		int userbits = 0;
    921   1.1       leo 
    922   1.3   mycroft 		error = suser(p->p_ucred, &p->p_acflag);
    923   1.1       leo 		if(error != 0)
    924   1.1       leo 			return (EPERM);
    925   1.1       leo 
    926   1.1       leo 		userbits = *(int *)data;
    927   1.1       leo 
    928   1.1       leo 		/*
    929   1.1       leo 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    930   1.1       leo 		 # defaulting to software flow control.
    931   1.1       leo 		 */
    932   1.1       leo 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    933   1.1       leo 			return(EINVAL);
    934   1.1       leo 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    935  1.11       leo 			return(ENODEV);
    936   1.1       leo 
    937   1.1       leo 		s = splzs();
    938   1.1       leo 		if((userbits & TIOCFLAG_SOFTCAR)) {
    939   1.1       leo 			cs->cs_softcar = 1;	/* turn on softcar */
    940   1.1       leo 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    941   1.1       leo 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    942   1.1       leo 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    943   1.1       leo 		}
    944   1.1       leo 		else if(userbits & TIOCFLAG_CLOCAL) {
    945   1.1       leo 			cs->cs_softcar = 0; 	/* turn off softcar */
    946   1.1       leo 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    947   1.1       leo 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    948   1.1       leo 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    949   1.1       leo 			tp->t_termios.c_cflag |= CLOCAL;
    950   1.1       leo 		}
    951   1.1       leo 		if(userbits & TIOCFLAG_CRTSCTS) {
    952   1.1       leo 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    953   1.1       leo 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    954   1.1       leo 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    955   1.1       leo 			cs->cs_preg[3] |= ZSWR3_HFC;
    956   1.1       leo 			cs->cs_creg[3] |= ZSWR3_HFC;
    957   1.1       leo 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    958   1.1       leo 			tp->t_termios.c_cflag |= CRTSCTS;
    959   1.1       leo 		}
    960   1.1       leo 		else {
    961   1.1       leo 			/* no mdmbuf, so we must want software flow control */
    962   1.1       leo 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    963   1.1       leo 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    964   1.1       leo 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    965   1.1       leo 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    966   1.1       leo 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    967   1.1       leo 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    968   1.1       leo 			tp->t_termios.c_cflag &= ~CRTSCTS;
    969   1.1       leo 		}
    970   1.1       leo 		splx(s);
    971   1.1       leo 		break;
    972   1.1       leo 	}
    973   1.1       leo 	case TIOCSDTR:
    974   1.1       leo 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    975   1.1       leo 		break;
    976   1.1       leo 	case TIOCCDTR:
    977   1.1       leo 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    978   1.1       leo 		break;
    979   1.1       leo 	case TIOCMGET:
    980   1.1       leo 		zs_modem(cs, 0, DMGET);
    981   1.1       leo 		break;
    982   1.1       leo 	case TIOCMSET:
    983   1.1       leo 	case TIOCMBIS:
    984   1.1       leo 	case TIOCMBIC:
    985   1.1       leo 	default:
    986  1.35    atatat 		return (EPASSTHROUGH);
    987   1.1       leo 	}
    988   1.1       leo 	return (0);
    989   1.1       leo }
    990   1.1       leo 
    991   1.1       leo /*
    992   1.1       leo  * Start or restart transmission.
    993   1.1       leo  */
    994   1.1       leo static void
    995   1.1       leo zsstart(tp)
    996   1.1       leo register struct tty *tp;
    997   1.1       leo {
    998   1.1       leo 	register struct zs_chanstate	*cs;
    999   1.1       leo 	register int			s, nch;
   1000   1.1       leo 		 int			unit = ZS_UNIT(tp->t_dev);
   1001  1.17   thorpej 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
   1002   1.1       leo 
   1003   1.1       leo 	cs = &zi->zi_cs[unit & 1];
   1004   1.1       leo 	s  = spltty();
   1005   1.1       leo 
   1006   1.1       leo 	/*
   1007   1.1       leo 	 * If currently active or delaying, no need to do anything.
   1008   1.1       leo 	 */
   1009   1.1       leo 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
   1010   1.1       leo 		goto out;
   1011   1.1       leo 
   1012   1.1       leo 	/*
   1013   1.1       leo 	 * If there are sleepers, and output has drained below low
   1014   1.1       leo 	 * water mark, awaken.
   1015   1.1       leo 	 */
   1016   1.1       leo 	if(tp->t_outq.c_cc <= tp->t_lowat) {
   1017   1.1       leo 		if(tp->t_state & TS_ASLEEP) {
   1018   1.1       leo 			tp->t_state &= ~TS_ASLEEP;
   1019   1.1       leo 			wakeup((caddr_t)&tp->t_outq);
   1020   1.1       leo 		}
   1021   1.1       leo 		selwakeup(&tp->t_wsel);
   1022   1.1       leo 	}
   1023   1.1       leo 
   1024   1.1       leo 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
   1025   1.1       leo 	if(nch) {
   1026   1.1       leo 		register char *p = tp->t_outq.c_cf;
   1027   1.1       leo 
   1028   1.1       leo 		/* mark busy, enable tx done interrupts, & send first byte */
   1029   1.1       leo 		tp->t_state |= TS_BUSY;
   1030   1.1       leo 		(void) splzs();
   1031   1.1       leo 		cs->cs_preg[1] |= ZSWR1_TIE;
   1032   1.1       leo 		cs->cs_creg[1] |= ZSWR1_TIE;
   1033   1.1       leo 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1034   1.1       leo 		cs->cs_zc->zc_data = *p;
   1035   1.1       leo 		cs->cs_tba = p + 1;
   1036   1.1       leo 		cs->cs_tbc = nch - 1;
   1037   1.1       leo 	} else {
   1038   1.1       leo 		/*
   1039   1.1       leo 		 * Nothing to send, turn off transmit done interrupts.
   1040   1.1       leo 		 * This is useful if something is doing polled output.
   1041   1.1       leo 		 */
   1042   1.1       leo 		(void) splzs();
   1043   1.1       leo 		cs->cs_preg[1] &= ~ZSWR1_TIE;
   1044   1.1       leo 		cs->cs_creg[1] &= ~ZSWR1_TIE;
   1045   1.1       leo 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1046   1.1       leo 	}
   1047   1.1       leo out:
   1048   1.1       leo 	splx(s);
   1049   1.1       leo }
   1050   1.1       leo 
   1051   1.1       leo /*
   1052   1.1       leo  * Stop output, e.g., for ^S or output flush.
   1053   1.1       leo  */
   1054   1.1       leo void
   1055   1.1       leo zsstop(tp, flag)
   1056   1.1       leo register struct tty	*tp;
   1057   1.1       leo 	 int		flag;
   1058   1.1       leo {
   1059   1.1       leo 	register struct zs_chanstate	*cs;
   1060   1.1       leo 	register int			s, unit = ZS_UNIT(tp->t_dev);
   1061  1.17   thorpej 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
   1062   1.1       leo 
   1063   1.1       leo 	cs = &zi->zi_cs[unit & 1];
   1064   1.1       leo 	s  = splzs();
   1065   1.1       leo 	if(tp->t_state & TS_BUSY) {
   1066   1.1       leo 		/*
   1067   1.1       leo 		 * Device is transmitting; must stop it.
   1068   1.1       leo 		 */
   1069   1.1       leo 		cs->cs_tbc = 0;
   1070   1.1       leo 		if ((tp->t_state & TS_TTSTOP) == 0)
   1071   1.1       leo 			tp->t_state |= TS_FLUSH;
   1072   1.1       leo 	}
   1073  1.29       leo 	splx(s);
   1074  1.29       leo }
   1075  1.29       leo 
   1076  1.29       leo static void
   1077  1.29       leo zs_shutdown(cs)
   1078  1.29       leo 	struct zs_chanstate	*cs;
   1079  1.29       leo {
   1080  1.29       leo 	struct tty	*tp = cs->cs_ttyp;
   1081  1.29       leo 	int		s;
   1082  1.29       leo 
   1083  1.29       leo 	s = splzs();
   1084  1.29       leo 
   1085  1.29       leo 	/*
   1086  1.29       leo 	 * Hang up if necessary.  Wait a bit, so the other side has time to
   1087  1.29       leo 	 * notice even if we immediately open the port again.
   1088  1.29       leo 	 */
   1089  1.29       leo 	if(tp->t_cflag & HUPCL) {
   1090  1.29       leo 		zs_modem(cs, 0, DMSET);
   1091  1.29       leo 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
   1092  1.29       leo 	}
   1093  1.29       leo 
   1094  1.29       leo 	/* Clear any break condition set with TIOCSBRK. */
   1095  1.29       leo 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
   1096  1.29       leo 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
   1097  1.29       leo 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
   1098  1.29       leo 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1099  1.29       leo 	}
   1100  1.29       leo 
   1101  1.29       leo 	/*
   1102  1.29       leo 	 * Drop all lines and cancel interrupts
   1103  1.29       leo 	 */
   1104  1.29       leo 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
   1105   1.1       leo 	splx(s);
   1106   1.1       leo }
   1107   1.1       leo 
   1108   1.1       leo /*
   1109   1.1       leo  * Set ZS tty parameters from termios.
   1110   1.1       leo  *
   1111   1.1       leo  * This routine makes use of the fact that only registers
   1112   1.1       leo  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
   1113   1.1       leo  */
   1114   1.1       leo static int
   1115   1.1       leo zsparam(tp, t)
   1116   1.1       leo register struct tty	*tp;
   1117   1.1       leo register struct termios	*t;
   1118   1.1       leo {
   1119   1.1       leo 		 int			unit = ZS_UNIT(tp->t_dev);
   1120  1.17   thorpej 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
   1121   1.1       leo 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
   1122   1.6       leo 		 int			cdiv, clkm, brgm, tcon;
   1123   1.1       leo 	register int			tmp, tmp5, cflag, s;
   1124   1.1       leo 
   1125   1.6       leo 	tmp  = t->c_ospeed;
   1126   1.6       leo 	tmp5 = t->c_ispeed;
   1127   1.6       leo 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
   1128   1.1       leo 		return(EINVAL);
   1129   1.1       leo 	if(tmp == 0) {
   1130   1.1       leo 		/* stty 0 => drop DTR and RTS */
   1131   1.1       leo 		zs_modem(cs, 0, DMSET);
   1132   1.1       leo 		return(0);
   1133   1.1       leo 	}
   1134   1.6       leo 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
   1135   1.6       leo 	if (tmp < 0)
   1136   1.1       leo 		return(EINVAL);
   1137   1.6       leo 	tp->t_ispeed = tp->t_ospeed = tmp;
   1138   1.1       leo 
   1139   1.6       leo 	cflag = tp->t_cflag = t->c_cflag;
   1140   1.6       leo 	if (cflag & CSTOPB)
   1141   1.6       leo 		cdiv |= ZSWR4_TWOSB;
   1142   1.6       leo 	else
   1143   1.6       leo 		cdiv |= ZSWR4_ONESB;
   1144   1.6       leo 	if (!(cflag & PARODD))
   1145   1.6       leo 		cdiv |= ZSWR4_EVENP;
   1146   1.6       leo 	if (cflag & PARENB)
   1147   1.6       leo 		cdiv |= ZSWR4_PARENB;
   1148   1.1       leo 
   1149   1.1       leo 	switch(cflag & CSIZE) {
   1150   1.1       leo 	case CS5:
   1151   1.1       leo 		tmp  = ZSWR3_RX_5;
   1152   1.1       leo 		tmp5 = ZSWR5_TX_5;
   1153   1.1       leo 		break;
   1154   1.1       leo 	case CS6:
   1155   1.1       leo 		tmp  = ZSWR3_RX_6;
   1156   1.1       leo 		tmp5 = ZSWR5_TX_6;
   1157   1.1       leo 		break;
   1158   1.1       leo 	case CS7:
   1159   1.1       leo 		tmp  = ZSWR3_RX_7;
   1160   1.1       leo 		tmp5 = ZSWR5_TX_7;
   1161   1.1       leo 		break;
   1162   1.1       leo 	case CS8:
   1163   1.1       leo 	default:
   1164   1.1       leo 		tmp  = ZSWR3_RX_8;
   1165   1.1       leo 		tmp5 = ZSWR5_TX_8;
   1166   1.1       leo 		break;
   1167   1.1       leo 	}
   1168   1.6       leo 	tmp  |= ZSWR3_RX_ENABLE;
   1169   1.6       leo 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1170   1.6       leo 
   1171   1.6       leo 	/*
   1172   1.6       leo 	 * Block interrupts so that state will not
   1173   1.6       leo 	 * be altered until we are done setting it up.
   1174   1.6       leo 	 */
   1175   1.6       leo 	s = splzs();
   1176   1.6       leo 	cs->cs_preg[4]  = cdiv;
   1177   1.6       leo 	cs->cs_preg[11] = clkm;
   1178   1.6       leo 	cs->cs_preg[12] = tcon;
   1179   1.6       leo 	cs->cs_preg[13] = tcon >> 8;
   1180   1.6       leo 	cs->cs_preg[14] = brgm;
   1181   1.6       leo 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1182   1.6       leo 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1183   1.6       leo 	cs->cs_preg[10] = ZSWR10_NRZ;
   1184   1.6       leo 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1185   1.1       leo 
   1186   1.1       leo 	/*
   1187   1.1       leo 	 * Output hardware flow control on the chip is horrendous: if
   1188   1.1       leo 	 * carrier detect drops, the receiver is disabled.  Hence we
   1189   1.1       leo 	 * can only do this when the carrier is on.
   1190   1.1       leo 	 */
   1191   1.1       leo 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1192   1.6       leo 		tmp |= ZSWR3_HFC;
   1193   1.1       leo 	cs->cs_preg[3] = tmp;
   1194   1.6       leo 	cs->cs_preg[5] = tmp5;
   1195   1.1       leo 
   1196   1.1       leo 	/*
   1197   1.1       leo 	 * If nothing is being transmitted, set up new current values,
   1198   1.1       leo 	 * else mark them as pending.
   1199   1.1       leo 	 */
   1200   1.1       leo 	if(cs->cs_heldchange == 0) {
   1201   1.1       leo 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1202   1.1       leo 			cs->cs_heldtbc = cs->cs_tbc;
   1203   1.1       leo 			cs->cs_tbc = 0;
   1204   1.1       leo 			cs->cs_heldchange = 1;
   1205   1.6       leo 		} else {
   1206   1.1       leo 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1207   1.1       leo 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1208   1.1       leo 		}
   1209   1.1       leo 	}
   1210   1.1       leo 	splx(s);
   1211   1.1       leo 	return (0);
   1212   1.6       leo }
   1213   1.6       leo 
   1214   1.6       leo /*
   1215   1.6       leo  * search for the best matching baudrate
   1216   1.6       leo  */
   1217   1.6       leo static int
   1218   1.6       leo zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1219   1.6       leo int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1220   1.6       leo {
   1221   1.6       leo 	int	bestdiff, bestbps, source;
   1222   1.6       leo 
   1223  1.20       leo 	bestdiff = bestbps = 0;
   1224   1.6       leo 	unit = (unit & 1) << 2;
   1225   1.6       leo 	for (source = 0; source < 4; ++source) {
   1226   1.6       leo 		long	freq = zs_frequencies[unit + source];
   1227   1.6       leo 		int	diff, bps, div, clkm, brgm, tcon;
   1228  1.20       leo 
   1229  1.20       leo 		bps = div = clkm = brgm = tcon = 0;
   1230   1.6       leo 		switch (source) {
   1231   1.6       leo 			case 0:	/* BRgen, PCLK */
   1232   1.6       leo 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1233   1.6       leo 				break;
   1234   1.6       leo 			case 1:	/* BRgen, RTxC */
   1235   1.6       leo 				brgm = ZSWR14_BAUD_ENA;
   1236   1.6       leo 				break;
   1237   1.6       leo 			case 2: /* RTxC */
   1238   1.6       leo 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1239   1.6       leo 				break;
   1240   1.6       leo 			case 3: /* TRxC */
   1241   1.6       leo 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1242   1.6       leo 				break;
   1243   1.6       leo 		}
   1244   1.6       leo 		switch (source) {
   1245   1.6       leo 			case 0:
   1246   1.6       leo 			case 1:
   1247   1.6       leo 				div  = ZSWR4_CLK_X16;
   1248   1.6       leo 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1249   1.6       leo 				tcon = BPS_TO_TCONST(freq, wanted);
   1250   1.6       leo 				if (tcon < 0)
   1251   1.6       leo 					tcon = 0;
   1252   1.6       leo 				bps  = TCONST_TO_BPS(freq, tcon);
   1253   1.6       leo 				break;
   1254   1.6       leo 			case 2:
   1255   1.6       leo 			case 3:
   1256   1.6       leo 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1257   1.6       leo 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1258   1.6       leo 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1259   1.6       leo 
   1260   1.6       leo 				if (d1 < d2 && d1 < d3) {
   1261   1.6       leo 					div = ZSWR4_CLK_X16;
   1262   1.6       leo 					bps = b1;
   1263   1.6       leo 				} else if (d2 < d3 && d2 < d1) {
   1264   1.6       leo 					div = ZSWR4_CLK_X32;
   1265   1.6       leo 					bps = b2;
   1266   1.6       leo 				} else {
   1267   1.6       leo 					div = ZSWR4_CLK_X64;
   1268   1.6       leo 					bps = b3;
   1269   1.6       leo 				}
   1270   1.6       leo 				brgm = tcon = 0;
   1271   1.6       leo 				break;
   1272   1.6       leo 			}
   1273   1.6       leo 		}
   1274   1.6       leo 		diff = abs(bps - wanted);
   1275   1.6       leo 		if (!source || diff < bestdiff) {
   1276   1.6       leo 			*divisor   = div;
   1277   1.6       leo 			*clockmode = clkm;
   1278   1.6       leo 			*brgenmode = brgm;
   1279   1.6       leo 			*timeconst = tcon;
   1280   1.6       leo 			bestbps    = bps;
   1281   1.6       leo 			bestdiff   = diff;
   1282   1.6       leo 			if (diff == 0)
   1283   1.6       leo 				break;
   1284   1.6       leo 		}
   1285   1.6       leo 	}
   1286   1.6       leo 	/* Allow deviations upto 5% */
   1287   1.6       leo 	if (20 * bestdiff > wanted)
   1288   1.6       leo 		return -1;
   1289   1.6       leo 	return bestbps;
   1290   1.1       leo }
   1291   1.1       leo 
   1292   1.1       leo /*
   1293   1.1       leo  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1294   1.1       leo  * in transmission, the change is deferred.
   1295   1.1       leo  */
   1296   1.1       leo static int
   1297   1.1       leo zs_modem(cs, bits, how)
   1298   1.1       leo struct zs_chanstate	*cs;
   1299   1.1       leo int			bits, how;
   1300   1.1       leo {
   1301   1.1       leo 	int s, mbits;
   1302   1.1       leo 
   1303   1.1       leo 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1304   1.1       leo 
   1305   1.1       leo 	s = splzs();
   1306   1.1       leo 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1307   1.1       leo 
   1308   1.1       leo 	switch(how) {
   1309   1.1       leo 		case DMSET:
   1310   1.1       leo 				mbits  = bits;
   1311   1.1       leo 				break;
   1312   1.1       leo 		case DMBIS:
   1313   1.1       leo 				mbits |= bits;
   1314   1.1       leo 				break;
   1315   1.1       leo 		case DMBIC:
   1316   1.1       leo 				mbits &= ~bits;
   1317   1.1       leo 				break;
   1318   1.1       leo 		case DMGET:
   1319   1.1       leo 				splx(s);
   1320   1.1       leo 				return(mbits);
   1321   1.1       leo 	}
   1322   1.1       leo 
   1323   1.1       leo 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1324   1.1       leo 	if(cs->cs_heldchange == 0) {
   1325   1.1       leo 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1326   1.1       leo 			cs->cs_heldtbc = cs->cs_tbc;
   1327   1.1       leo 			cs->cs_tbc = 0;
   1328   1.1       leo 			cs->cs_heldchange = 1;
   1329   1.1       leo 		}
   1330   1.1       leo 		else {
   1331   1.1       leo 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1332   1.1       leo 		}
   1333   1.1       leo 	}
   1334   1.1       leo 	splx(s);
   1335   1.1       leo 	return(0);
   1336   1.1       leo }
   1337   1.1       leo 
   1338   1.1       leo /*
   1339   1.1       leo  * Write the given register set to the given zs channel in the proper order.
   1340   1.1       leo  * The channel must not be transmitting at the time.  The receiver will
   1341   1.1       leo  * be disabled for the time it takes to write all the registers.
   1342   1.1       leo  */
   1343   1.1       leo static void
   1344   1.1       leo zs_loadchannelregs(zc, reg)
   1345   1.1       leo volatile struct zschan	*zc;
   1346   1.1       leo u_char			*reg;
   1347   1.1       leo {
   1348   1.1       leo 	int i;
   1349   1.1       leo 
   1350   1.1       leo 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1351   1.1       leo 	i = zc->zc_data;		/* drain fifo */
   1352   1.1       leo 	i = zc->zc_data;
   1353   1.1       leo 	i = zc->zc_data;
   1354   1.1       leo 	ZS_WRITE(zc,  4, reg[4]);
   1355   1.1       leo 	ZS_WRITE(zc, 10, reg[10]);
   1356   1.1       leo 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1357   1.1       leo 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1358   1.1       leo 	ZS_WRITE(zc,  1, reg[1]);
   1359   1.1       leo 	ZS_WRITE(zc,  9, reg[9]);
   1360   1.1       leo 	ZS_WRITE(zc, 11, reg[11]);
   1361   1.1       leo 	ZS_WRITE(zc, 12, reg[12]);
   1362   1.1       leo 	ZS_WRITE(zc, 13, reg[13]);
   1363   1.1       leo 	ZS_WRITE(zc, 14, reg[14]);
   1364   1.1       leo 	ZS_WRITE(zc, 15, reg[15]);
   1365   1.1       leo 	ZS_WRITE(zc,  3, reg[3]);
   1366   1.1       leo 	ZS_WRITE(zc,  5, reg[5]);
   1367   1.1       leo }
   1368   1.1       leo #endif /* NZS > 1 */
   1369