zs.c revision 1.41 1 1.41 agc /* $NetBSD: zs.c,v 1.41 2003/08/07 16:27:02 agc Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1992, 1993
5 1.1 leo * The Regents of the University of California. All rights reserved.
6 1.1 leo *
7 1.1 leo * This software was developed by the Computer Systems Engineering group
8 1.1 leo * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 leo * contributed to Berkeley.
10 1.1 leo *
11 1.1 leo *
12 1.1 leo * All advertising materials mentioning features or use of this software
13 1.1 leo * must display the following acknowledgement:
14 1.1 leo * This product includes software developed by the University of
15 1.1 leo * California, Lawrence Berkeley Laboratory.
16 1.1 leo *
17 1.1 leo * Redistribution and use in source and binary forms, with or without
18 1.1 leo * modification, are permitted provided that the following conditions
19 1.1 leo * are met:
20 1.1 leo * 1. Redistributions of source code must retain the above copyright
21 1.1 leo * notice, this list of conditions and the following disclaimer.
22 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
23 1.1 leo * notice, this list of conditions and the following disclaimer in the
24 1.1 leo * documentation and/or other materials provided with the distribution.
25 1.41 agc * 3. Neither the name of the University nor the names of its contributors
26 1.41 agc * may be used to endorse or promote products derived from this software
27 1.41 agc * without specific prior written permission.
28 1.41 agc *
29 1.41 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.41 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.41 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.41 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.41 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.41 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.41 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.41 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.41 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.41 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.41 agc * SUCH DAMAGE.
40 1.41 agc *
41 1.41 agc * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 1.41 agc */
43 1.41 agc
44 1.41 agc /*
45 1.41 agc * Copyright (c) 1995 L. Weppelman (Atari modifications)
46 1.41 agc *
47 1.41 agc * This software was developed by the Computer Systems Engineering group
48 1.41 agc * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
49 1.41 agc * contributed to Berkeley.
50 1.41 agc *
51 1.41 agc *
52 1.41 agc * All advertising materials mentioning features or use of this software
53 1.41 agc * must display the following acknowledgement:
54 1.41 agc * This product includes software developed by the University of
55 1.41 agc * California, Lawrence Berkeley Laboratory.
56 1.41 agc *
57 1.41 agc * Redistribution and use in source and binary forms, with or without
58 1.41 agc * modification, are permitted provided that the following conditions
59 1.41 agc * are met:
60 1.41 agc * 1. Redistributions of source code must retain the above copyright
61 1.41 agc * notice, this list of conditions and the following disclaimer.
62 1.41 agc * 2. Redistributions in binary form must reproduce the above copyright
63 1.41 agc * notice, this list of conditions and the following disclaimer in the
64 1.41 agc * documentation and/or other materials provided with the distribution.
65 1.1 leo * 3. All advertising materials mentioning features or use of this software
66 1.1 leo * must display the following acknowledgement:
67 1.1 leo * This product includes software developed by the University of
68 1.1 leo * California, Berkeley and its contributors.
69 1.1 leo * 4. Neither the name of the University nor the names of its contributors
70 1.1 leo * may be used to endorse or promote products derived from this software
71 1.1 leo * without specific prior written permission.
72 1.1 leo *
73 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 1.1 leo * SUCH DAMAGE.
84 1.1 leo *
85 1.1 leo * @(#)zs.c 8.1 (Berkeley) 7/19/93
86 1.1 leo */
87 1.1 leo
88 1.1 leo /*
89 1.1 leo * Zilog Z8530 (ZSCC) driver.
90 1.1 leo *
91 1.1 leo * Runs two tty ports (modem2 and serial2) on zs0.
92 1.1 leo *
93 1.1 leo * This driver knows far too much about chip to usage mappings.
94 1.1 leo */
95 1.40 lukem
96 1.40 lukem #include <sys/cdefs.h>
97 1.41 agc __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.41 2003/08/07 16:27:02 agc Exp $");
98 1.40 lukem
99 1.1 leo #include <sys/param.h>
100 1.9 leo #include <sys/systm.h>
101 1.1 leo #include <sys/proc.h>
102 1.1 leo #include <sys/device.h>
103 1.1 leo #include <sys/conf.h>
104 1.1 leo #include <sys/file.h>
105 1.1 leo #include <sys/ioctl.h>
106 1.13 leo #include <sys/malloc.h>
107 1.1 leo #include <sys/tty.h>
108 1.1 leo #include <sys/time.h>
109 1.1 leo #include <sys/kernel.h>
110 1.1 leo #include <sys/syslog.h>
111 1.1 leo
112 1.1 leo #include <machine/cpu.h>
113 1.1 leo #include <machine/iomap.h>
114 1.1 leo #include <machine/scu.h>
115 1.1 leo #include <machine/mfp.h>
116 1.18 leo #include <atari/dev/ym2149reg.h>
117 1.1 leo
118 1.7 cgd #include <dev/ic/z8530reg.h>
119 1.1 leo #include <atari/dev/zsvar.h>
120 1.1 leo #include "zs.h"
121 1.1 leo #if NZS > 1
122 1.1 leo #error "This driver supports only 1 85C30!"
123 1.1 leo #endif
124 1.1 leo
125 1.1 leo #if NZS > 0
126 1.1 leo
127 1.12 leo #define PCLK (8053976) /* PCLK pin input clock rate */
128 1.30 mycroft #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
129 1.1 leo
130 1.1 leo #define splzs spl5
131 1.1 leo
132 1.1 leo /*
133 1.1 leo * Software state per found chip.
134 1.1 leo */
135 1.1 leo struct zs_softc {
136 1.1 leo struct device zi_dev; /* base device */
137 1.1 leo volatile struct zsdevice *zi_zs; /* chip registers */
138 1.1 leo struct zs_chanstate zi_cs[2]; /* chan A and B software state */
139 1.1 leo };
140 1.1 leo
141 1.8 leo static u_char cb_scheduled = 0; /* Already asked for callback? */
142 1.1 leo /*
143 1.1 leo * Define the registers for a closed port
144 1.1 leo */
145 1.6 leo static u_char zs_init_regs[16] = {
146 1.1 leo /* 0 */ 0,
147 1.1 leo /* 1 */ 0,
148 1.1 leo /* 2 */ 0x60,
149 1.1 leo /* 3 */ 0,
150 1.1 leo /* 4 */ 0,
151 1.1 leo /* 5 */ 0,
152 1.1 leo /* 6 */ 0,
153 1.1 leo /* 7 */ 0,
154 1.1 leo /* 8 */ 0,
155 1.13 leo /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
156 1.1 leo /* 10 */ ZSWR10_NRZ,
157 1.1 leo /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
158 1.1 leo /* 12 */ 0,
159 1.1 leo /* 13 */ 0,
160 1.1 leo /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
161 1.1 leo /* 15 */ 0
162 1.1 leo };
163 1.1 leo
164 1.6 leo /*
165 1.6 leo * Define the machine dependant clock frequencies
166 1.6 leo * If BRgen feeds sender/receiver we always use a
167 1.6 leo * divisor 16, therefor the division by 16 can as
168 1.6 leo * well be done here.
169 1.6 leo */
170 1.6 leo static u_long zs_freqs_tt[] = {
171 1.6 leo /*
172 1.6 leo * Atari TT, RTxCB is generated by TT-MFP timer C,
173 1.6 leo * which is set to 307.2KHz during initialisation
174 1.6 leo * and never changed afterwards.
175 1.6 leo */
176 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
177 1.6 leo 229500, /* BRgen, RTxCA, divisor 16 */
178 1.6 leo 3672000, /* RTxCA, from PCLK4 */
179 1.6 leo 0, /* TRxCA, external */
180 1.6 leo
181 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
182 1.6 leo 19200, /* BRgen, RTxCB, divisor 16 */
183 1.6 leo 307200, /* RTxCB, from TT-MFP TCO */
184 1.6 leo 2457600 /* TRxCB, from BCLK */
185 1.6 leo };
186 1.24 leo
187 1.6 leo static u_long zs_freqs_falcon[] = {
188 1.6 leo /*
189 1.6 leo * Atari Falcon, XXX no specs available, this might be wrong
190 1.6 leo */
191 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
192 1.6 leo 229500, /* BRgen, RTxCA, divisor 16 */
193 1.6 leo 3672000, /* RTxCA, ??? */
194 1.6 leo 0, /* TRxCA, external */
195 1.6 leo
196 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
197 1.6 leo 229500, /* BRgen, RTxCB, divisor 16 */
198 1.6 leo 3672000, /* RTxCB, ??? */
199 1.6 leo 2457600 /* TRxCB, ??? */
200 1.6 leo };
201 1.24 leo
202 1.24 leo static u_long zs_freqs_hades[] = {
203 1.24 leo /*
204 1.24 leo * XXX: Channel-A unchecked!!!!!
205 1.24 leo */
206 1.24 leo PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
207 1.24 leo 229500, /* BRgen, RTxCA, divisor 16 */
208 1.24 leo 3672000, /* RTxCA, from PCLK4 */
209 1.24 leo 0, /* TRxCA, external */
210 1.24 leo
211 1.24 leo PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
212 1.24 leo 235550, /* BRgen, RTxCB, divisor 16 */
213 1.24 leo 3768800, /* RTxCB, 3.7688MHz */
214 1.24 leo 3768800 /* TRxCB, 3.7688MHz */
215 1.24 leo };
216 1.24 leo
217 1.6 leo static u_long zs_freqs_generic[] = {
218 1.6 leo /*
219 1.6 leo * other machines, assume only PCLK is available
220 1.6 leo */
221 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
222 1.6 leo 0, /* BRgen, RTxCA, divisor 16 */
223 1.6 leo 0, /* RTxCA, unknown */
224 1.6 leo 0, /* TRxCA, unknown */
225 1.6 leo
226 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
227 1.6 leo 0, /* BRgen, RTxCB, divisor 16 */
228 1.6 leo 0, /* RTxCB, unknown */
229 1.6 leo 0 /* TRxCB, unknown */
230 1.6 leo };
231 1.6 leo static u_long *zs_frequencies;
232 1.6 leo
233 1.1 leo /* Definition of the driver for autoconfig. */
234 1.25 leo static int zsmatch __P((struct device *, struct cfdata *, void *));
235 1.1 leo static void zsattach __P((struct device *, struct device *, void *));
236 1.17 thorpej
237 1.38 thorpej CFATTACH_DECL(zs, sizeof(struct zs_softc),
238 1.38 thorpej zsmatch, zsattach, NULL, NULL);
239 1.17 thorpej
240 1.28 thorpej extern struct cfdriver zs_cd;
241 1.1 leo
242 1.15 leo /* {b,c}devsw[] function prototypes */
243 1.15 leo dev_type_open(zsopen);
244 1.15 leo dev_type_close(zsclose);
245 1.15 leo dev_type_read(zsread);
246 1.15 leo dev_type_write(zswrite);
247 1.15 leo dev_type_ioctl(zsioctl);
248 1.36 gehenna dev_type_stop(zsstop);
249 1.16 leo dev_type_tty(zstty);
250 1.36 gehenna dev_type_poll(zspoll);
251 1.36 gehenna
252 1.36 gehenna const struct cdevsw zs_cdevsw = {
253 1.36 gehenna zsopen, zsclose, zsread, zswrite, zsioctl,
254 1.39 jdolecek zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
255 1.36 gehenna };
256 1.15 leo
257 1.1 leo /* Interrupt handlers. */
258 1.1 leo int zshard __P((long));
259 1.1 leo static int zssoft __P((long));
260 1.1 leo static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
261 1.1 leo static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
262 1.1 leo static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
263 1.1 leo
264 1.6 leo static struct zs_chanstate *zslist;
265 1.1 leo
266 1.1 leo /* Routines called from other code. */
267 1.1 leo static void zsstart __P((struct tty *));
268 1.16 leo
269 1.16 leo /* Routines purely local to this driver. */
270 1.16 leo static void zsoverrun __P((int, long *, char *));
271 1.1 leo static int zsparam __P((struct tty *, struct termios *));
272 1.6 leo static int zsbaudrate __P((int, int, int *, int *, int *, int *));
273 1.1 leo static int zs_modem __P((struct zs_chanstate *, int, int));
274 1.1 leo static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
275 1.29 leo static void zs_shutdown __P((struct zs_chanstate *));
276 1.1 leo
277 1.6 leo static int zsshortcuts; /* number of "shortcut" software interrupts */
278 1.1 leo
279 1.4 leo static int
280 1.25 leo zsmatch(pdp, cfp, auxp)
281 1.1 leo struct device *pdp;
282 1.25 leo struct cfdata *cfp;
283 1.25 leo void *auxp;
284 1.1 leo {
285 1.31 leo static int zs_matched = 0;
286 1.31 leo
287 1.31 leo if(strcmp("zs", auxp) || zs_matched)
288 1.1 leo return(0);
289 1.31 leo zs_matched = 1;
290 1.1 leo return(1);
291 1.1 leo }
292 1.1 leo
293 1.1 leo /*
294 1.1 leo * Attach a found zs.
295 1.1 leo */
296 1.1 leo static void
297 1.1 leo zsattach(parent, dev, aux)
298 1.1 leo struct device *parent;
299 1.1 leo struct device *dev;
300 1.1 leo void *aux;
301 1.1 leo {
302 1.1 leo register struct zs_softc *zi;
303 1.1 leo register struct zs_chanstate *cs;
304 1.1 leo register volatile struct zsdevice *addr;
305 1.1 leo char tmp;
306 1.1 leo
307 1.1 leo addr = (struct zsdevice *)AD_SCC;
308 1.1 leo zi = (struct zs_softc *)dev;
309 1.1 leo zi->zi_zs = addr;
310 1.1 leo cs = zi->zi_cs;
311 1.1 leo
312 1.1 leo /*
313 1.1 leo * Get the command register into a known state.
314 1.1 leo */
315 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
316 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
317 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
318 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
319 1.1 leo
320 1.1 leo /*
321 1.1 leo * Do a hardware reset.
322 1.1 leo */
323 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
324 1.1 leo delay(50000); /*enough ? */
325 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
326 1.1 leo
327 1.1 leo /*
328 1.1 leo * Initialize both channels
329 1.1 leo */
330 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
331 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
332 1.1 leo
333 1.5 leo if(machineid & ATARI_TT) {
334 1.5 leo /*
335 1.6 leo * ininitialise TT-MFP timer C: 307200Hz
336 1.6 leo * timer C and D share one control register:
337 1.6 leo * bits 0-2 control timer D
338 1.6 leo * bits 4-6 control timer C
339 1.6 leo */
340 1.6 leo int cr = MFP2->mf_tcdcr & 7;
341 1.6 leo MFP2->mf_tcdcr = cr; /* stop timer C */
342 1.6 leo MFP2->mf_tcdr = 1; /* counter 1 */
343 1.6 leo cr |= T_Q004 << 4; /* divisor 4 */
344 1.6 leo MFP2->mf_tcdcr = cr; /* start timer C */
345 1.6 leo /*
346 1.5 leo * enable scc related interrupts
347 1.5 leo */
348 1.27 leo SCU->vme_mask |= SCU_SCC;
349 1.6 leo
350 1.6 leo zs_frequencies = zs_freqs_tt;
351 1.6 leo } else if (machineid & ATARI_FALCON) {
352 1.6 leo zs_frequencies = zs_freqs_falcon;
353 1.24 leo } else if (machineid & ATARI_HADES) {
354 1.24 leo zs_frequencies = zs_freqs_hades;
355 1.6 leo } else {
356 1.6 leo zs_frequencies = zs_freqs_generic;
357 1.5 leo }
358 1.1 leo
359 1.1 leo /* link into interrupt list with order (A,B) (B=A+1) */
360 1.1 leo cs[0].cs_next = &cs[1];
361 1.1 leo cs[1].cs_next = zslist;
362 1.1 leo zslist = cs;
363 1.1 leo
364 1.1 leo cs->cs_unit = 0;
365 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
366 1.1 leo cs++;
367 1.1 leo cs->cs_unit = 1;
368 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
369 1.1 leo
370 1.23 christos printf(": serial2 on channel a and modem2 on channel b\n");
371 1.1 leo }
372 1.1 leo
373 1.1 leo /*
374 1.1 leo * Open a zs serial port.
375 1.1 leo */
376 1.1 leo int
377 1.1 leo zsopen(dev, flags, mode, p)
378 1.1 leo dev_t dev;
379 1.1 leo int flags;
380 1.1 leo int mode;
381 1.1 leo struct proc *p;
382 1.1 leo {
383 1.1 leo register struct tty *tp;
384 1.1 leo register struct zs_chanstate *cs;
385 1.1 leo struct zs_softc *zi;
386 1.1 leo int unit = ZS_UNIT(dev);
387 1.1 leo int zs = unit >> 1;
388 1.1 leo int error, s;
389 1.1 leo
390 1.17 thorpej if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
391 1.1 leo return (ENXIO);
392 1.1 leo cs = &zi->zi_cs[unit & 1];
393 1.10 jtc
394 1.10 jtc /*
395 1.10 jtc * When port A (ser02) is selected on the TT, make sure
396 1.10 jtc * the port is enabled.
397 1.10 jtc */
398 1.18 leo if((machineid & ATARI_TT) && !(unit & 1))
399 1.26 leo ym2149_ser2(1);
400 1.13 leo
401 1.13 leo if (cs->cs_rbuf == NULL) {
402 1.13 leo cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
403 1.13 leo M_WAITOK);
404 1.10 jtc }
405 1.10 jtc
406 1.1 leo tp = cs->cs_ttyp;
407 1.1 leo if(tp == NULL) {
408 1.21 leo cs->cs_ttyp = tp = ttymalloc();
409 1.21 leo tty_attach(tp);
410 1.21 leo tp->t_dev = dev;
411 1.21 leo tp->t_oproc = zsstart;
412 1.21 leo tp->t_param = zsparam;
413 1.1 leo }
414 1.1 leo
415 1.29 leo if ((tp->t_state & TS_ISOPEN) &&
416 1.29 leo (tp->t_state & TS_XCLUDE) &&
417 1.29 leo p->p_ucred->cr_uid != 0)
418 1.29 leo return (EBUSY);
419 1.29 leo
420 1.1 leo s = spltty();
421 1.29 leo
422 1.29 leo /*
423 1.29 leo * Do the following iff this is a first open.
424 1.29 leo */
425 1.29 leo if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
426 1.1 leo if(tp->t_ispeed == 0) {
427 1.1 leo tp->t_iflag = TTYDEF_IFLAG;
428 1.1 leo tp->t_oflag = TTYDEF_OFLAG;
429 1.1 leo tp->t_cflag = TTYDEF_CFLAG;
430 1.1 leo tp->t_lflag = TTYDEF_LFLAG;
431 1.1 leo tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
432 1.1 leo }
433 1.29 leo ttychars(tp);
434 1.29 leo ttsetwater(tp);
435 1.29 leo
436 1.1 leo (void)zsparam(tp, &tp->t_termios);
437 1.29 leo
438 1.29 leo /*
439 1.29 leo * Turn on DTR. We must always do this, even if carrier is not
440 1.29 leo * present, because otherwise we'd have to use TIOCSDTR
441 1.29 leo * immediately after setting CLOCAL, which applications do not
442 1.29 leo * expect. We always assert DTR while the device is open
443 1.29 leo * unless explicitly requested to deassert it.
444 1.29 leo */
445 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
446 1.8 leo /* May never get a status intr. if DCD already on. -gwr */
447 1.16 leo if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
448 1.8 leo tp->t_state |= TS_CARR_ON;
449 1.1 leo if(cs->cs_softcar)
450 1.1 leo tp->t_state |= TS_CARR_ON;
451 1.1 leo }
452 1.29 leo
453 1.1 leo splx(s);
454 1.29 leo
455 1.29 leo error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
456 1.29 leo if (error)
457 1.29 leo goto bad;
458 1.29 leo
459 1.32 eeh error = tp->t_linesw->l_open(dev, tp);
460 1.1 leo if(error)
461 1.29 leo goto bad;
462 1.29 leo return (0);
463 1.29 leo
464 1.29 leo bad:
465 1.29 leo if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
466 1.29 leo /*
467 1.29 leo * We failed to open the device, and nobody else had it opened.
468 1.29 leo * Clean up the state as appropriate.
469 1.29 leo */
470 1.29 leo zs_shutdown(cs);
471 1.29 leo }
472 1.1 leo return(error);
473 1.1 leo }
474 1.1 leo
475 1.1 leo /*
476 1.1 leo * Close a zs serial port.
477 1.1 leo */
478 1.1 leo int
479 1.1 leo zsclose(dev, flags, mode, p)
480 1.1 leo dev_t dev;
481 1.1 leo int flags;
482 1.1 leo int mode;
483 1.1 leo struct proc *p;
484 1.1 leo {
485 1.1 leo register struct zs_chanstate *cs;
486 1.1 leo register struct tty *tp;
487 1.1 leo struct zs_softc *zi;
488 1.1 leo int unit = ZS_UNIT(dev);
489 1.1 leo
490 1.17 thorpej zi = zs_cd.cd_devs[unit >> 1];
491 1.1 leo cs = &zi->zi_cs[unit & 1];
492 1.1 leo tp = cs->cs_ttyp;
493 1.29 leo
494 1.32 eeh tp->t_linesw->l_close(tp, flags);
495 1.1 leo ttyclose(tp);
496 1.1 leo
497 1.29 leo if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
498 1.29 leo /*
499 1.29 leo * Although we got a last close, the device may still be in
500 1.29 leo * use; e.g. if this was the dialout node, and there are still
501 1.29 leo * processes waiting for carrier on the non-dialout node.
502 1.29 leo */
503 1.29 leo zs_shutdown(cs);
504 1.29 leo }
505 1.1 leo return (0);
506 1.1 leo }
507 1.1 leo
508 1.1 leo /*
509 1.1 leo * Read/write zs serial port.
510 1.1 leo */
511 1.1 leo int
512 1.1 leo zsread(dev, uio, flags)
513 1.1 leo dev_t dev;
514 1.1 leo struct uio *uio;
515 1.1 leo int flags;
516 1.1 leo {
517 1.4 leo register struct zs_chanstate *cs;
518 1.4 leo register struct zs_softc *zi;
519 1.4 leo register struct tty *tp;
520 1.4 leo int unit;
521 1.4 leo
522 1.4 leo unit = ZS_UNIT(dev);
523 1.17 thorpej zi = zs_cd.cd_devs[unit >> 1];
524 1.4 leo cs = &zi->zi_cs[unit & 1];
525 1.4 leo tp = cs->cs_ttyp;
526 1.1 leo
527 1.32 eeh return(tp->t_linesw->l_read(tp, uio, flags));
528 1.1 leo }
529 1.1 leo
530 1.4 leo int
531 1.4 leo zswrite(dev, uio, flags)
532 1.1 leo dev_t dev;
533 1.1 leo struct uio *uio;
534 1.1 leo int flags;
535 1.1 leo {
536 1.4 leo register struct zs_chanstate *cs;
537 1.4 leo register struct zs_softc *zi;
538 1.4 leo register struct tty *tp;
539 1.4 leo int unit;
540 1.4 leo
541 1.4 leo unit = ZS_UNIT(dev);
542 1.17 thorpej zi = zs_cd.cd_devs[unit >> 1];
543 1.4 leo cs = &zi->zi_cs[unit & 1];
544 1.4 leo tp = cs->cs_ttyp;
545 1.1 leo
546 1.32 eeh return(tp->t_linesw->l_write(tp, uio, flags));
547 1.34 scw }
548 1.34 scw
549 1.34 scw int
550 1.34 scw zspoll(dev, events, p)
551 1.34 scw dev_t dev;
552 1.34 scw int events;
553 1.34 scw struct proc *p;
554 1.34 scw {
555 1.34 scw register struct zs_chanstate *cs;
556 1.34 scw register struct zs_softc *zi;
557 1.34 scw register struct tty *tp;
558 1.34 scw int unit;
559 1.34 scw
560 1.34 scw unit = ZS_UNIT(dev);
561 1.34 scw zi = zs_cd.cd_devs[unit >> 1];
562 1.34 scw cs = &zi->zi_cs[unit & 1];
563 1.34 scw tp = cs->cs_ttyp;
564 1.34 scw
565 1.34 scw return ((*tp->t_linesw->l_poll)(tp, events, p));
566 1.4 leo }
567 1.4 leo
568 1.4 leo struct tty *
569 1.4 leo zstty(dev)
570 1.4 leo dev_t dev;
571 1.4 leo {
572 1.4 leo register struct zs_chanstate *cs;
573 1.4 leo register struct zs_softc *zi;
574 1.4 leo int unit;
575 1.4 leo
576 1.4 leo unit = ZS_UNIT(dev);
577 1.17 thorpej zi = zs_cd.cd_devs[unit >> 1];
578 1.4 leo cs = &zi->zi_cs[unit & 1];
579 1.4 leo return(cs->cs_ttyp);
580 1.1 leo }
581 1.1 leo
582 1.1 leo /*
583 1.1 leo * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
584 1.1 leo * channels are kept in (A,B) pairs.
585 1.1 leo *
586 1.1 leo * Do just a little, then get out; set a software interrupt if more
587 1.1 leo * work is needed.
588 1.1 leo *
589 1.1 leo * We deliberately ignore the vectoring Zilog gives us, and match up
590 1.1 leo * only the number of `reset interrupt under service' operations, not
591 1.1 leo * the order.
592 1.1 leo */
593 1.8 leo
594 1.1 leo int
595 1.1 leo zshard(sr)
596 1.1 leo long sr;
597 1.1 leo {
598 1.1 leo register struct zs_chanstate *a;
599 1.1 leo #define b (a + 1)
600 1.1 leo register volatile struct zschan *zc;
601 1.1 leo register int rr3, intflags = 0, v, i;
602 1.1 leo
603 1.8 leo do {
604 1.8 leo intflags &= ~4;
605 1.8 leo for(a = zslist; a != NULL; a = b->cs_next) {
606 1.1 leo rr3 = ZS_READ(a->cs_zc, 3);
607 1.1 leo if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
608 1.8 leo intflags |= 4|2;
609 1.1 leo zc = a->cs_zc;
610 1.1 leo i = a->cs_rbput;
611 1.1 leo if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
612 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
613 1.1 leo intflags |= 1;
614 1.1 leo }
615 1.1 leo if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
616 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
617 1.1 leo intflags |= 1;
618 1.1 leo }
619 1.1 leo if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
620 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
621 1.1 leo intflags |= 1;
622 1.1 leo }
623 1.1 leo a->cs_rbput = i;
624 1.1 leo }
625 1.1 leo if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
626 1.8 leo intflags |= 4|2;
627 1.1 leo zc = b->cs_zc;
628 1.1 leo i = b->cs_rbput;
629 1.1 leo if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
630 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
631 1.1 leo intflags |= 1;
632 1.1 leo }
633 1.1 leo if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
634 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
635 1.1 leo intflags |= 1;
636 1.1 leo }
637 1.1 leo if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
638 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
639 1.1 leo intflags |= 1;
640 1.1 leo }
641 1.1 leo b->cs_rbput = i;
642 1.1 leo }
643 1.8 leo }
644 1.8 leo } while(intflags & 4);
645 1.1 leo #undef b
646 1.1 leo
647 1.1 leo if(intflags & 1) {
648 1.1 leo if(BASEPRI(sr)) {
649 1.1 leo spl1();
650 1.1 leo zsshortcuts++;
651 1.1 leo return(zssoft(sr));
652 1.1 leo }
653 1.8 leo else if(!cb_scheduled) {
654 1.8 leo cb_scheduled++;
655 1.19 leo add_sicallback((si_farg)zssoft, 0, 0);
656 1.8 leo }
657 1.1 leo }
658 1.1 leo return(intflags & 2);
659 1.1 leo }
660 1.1 leo
661 1.1 leo static int
662 1.1 leo zsrint(cs, zc)
663 1.1 leo register struct zs_chanstate *cs;
664 1.1 leo register volatile struct zschan *zc;
665 1.1 leo {
666 1.8 leo register int c;
667 1.1 leo
668 1.8 leo /*
669 1.8 leo * First read the status, because read of the received char
670 1.8 leo * destroy the status of this char.
671 1.8 leo */
672 1.8 leo c = ZS_READ(zc, 1);
673 1.8 leo c |= (zc->zc_data << 8);
674 1.1 leo
675 1.1 leo /* clear receive error & interrupt condition */
676 1.1 leo zc->zc_csr = ZSWR0_RESET_ERRORS;
677 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
678 1.1 leo
679 1.1 leo return(ZRING_MAKE(ZRING_RINT, c));
680 1.1 leo }
681 1.1 leo
682 1.1 leo static int
683 1.1 leo zsxint(cs, zc)
684 1.1 leo register struct zs_chanstate *cs;
685 1.1 leo register volatile struct zschan *zc;
686 1.1 leo {
687 1.1 leo register int i = cs->cs_tbc;
688 1.1 leo
689 1.1 leo if(i == 0) {
690 1.1 leo zc->zc_csr = ZSWR0_RESET_TXINT;
691 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
692 1.1 leo return(ZRING_MAKE(ZRING_XINT, 0));
693 1.1 leo }
694 1.1 leo cs->cs_tbc = i - 1;
695 1.1 leo zc->zc_data = *cs->cs_tba++;
696 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
697 1.1 leo return (0);
698 1.1 leo }
699 1.1 leo
700 1.1 leo static int
701 1.1 leo zssint(cs, zc)
702 1.1 leo register struct zs_chanstate *cs;
703 1.1 leo register volatile struct zschan *zc;
704 1.1 leo {
705 1.1 leo register int rr0;
706 1.1 leo
707 1.1 leo rr0 = zc->zc_csr;
708 1.1 leo zc->zc_csr = ZSWR0_RESET_STATUS;
709 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
710 1.1 leo /*
711 1.1 leo * The chip's hardware flow control is, as noted in zsreg.h,
712 1.1 leo * busted---if the DCD line goes low the chip shuts off the
713 1.1 leo * receiver (!). If we want hardware CTS flow control but do
714 1.1 leo * not have it, and carrier is now on, turn HFC on; if we have
715 1.1 leo * HFC now but carrier has gone low, turn it off.
716 1.1 leo */
717 1.1 leo if(rr0 & ZSRR0_DCD) {
718 1.1 leo if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
719 1.1 leo (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
720 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
721 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
722 1.1 leo }
723 1.1 leo }
724 1.1 leo else {
725 1.1 leo if (cs->cs_creg[3] & ZSWR3_HFC) {
726 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
727 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
728 1.1 leo }
729 1.1 leo }
730 1.1 leo return(ZRING_MAKE(ZRING_SINT, rr0));
731 1.1 leo }
732 1.1 leo
733 1.1 leo /*
734 1.1 leo * Print out a ring or fifo overrun error message.
735 1.1 leo */
736 1.1 leo static void
737 1.1 leo zsoverrun(unit, ptime, what)
738 1.1 leo int unit;
739 1.1 leo long *ptime;
740 1.1 leo char *what;
741 1.1 leo {
742 1.1 leo
743 1.1 leo if(*ptime != time.tv_sec) {
744 1.1 leo *ptime = time.tv_sec;
745 1.1 leo log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
746 1.1 leo (unit & 1) + 'a', what);
747 1.1 leo }
748 1.1 leo }
749 1.1 leo
750 1.1 leo /*
751 1.1 leo * ZS software interrupt. Scan all channels for deferred interrupts.
752 1.1 leo */
753 1.1 leo int
754 1.1 leo zssoft(sr)
755 1.1 leo long sr;
756 1.1 leo {
757 1.1 leo register struct zs_chanstate *cs;
758 1.1 leo register volatile struct zschan *zc;
759 1.1 leo register struct linesw *line;
760 1.1 leo register struct tty *tp;
761 1.1 leo register int get, n, c, cc, unit, s;
762 1.1 leo int retval = 0;
763 1.1 leo
764 1.8 leo cb_scheduled = 0;
765 1.1 leo s = spltty();
766 1.1 leo for(cs = zslist; cs != NULL; cs = cs->cs_next) {
767 1.1 leo get = cs->cs_rbget;
768 1.1 leo again:
769 1.1 leo n = cs->cs_rbput; /* atomic */
770 1.1 leo if(get == n) /* nothing more on this line */
771 1.1 leo continue;
772 1.1 leo retval = 1;
773 1.1 leo unit = cs->cs_unit; /* set up to handle interrupts */
774 1.1 leo zc = cs->cs_zc;
775 1.1 leo tp = cs->cs_ttyp;
776 1.33 leo line = tp->t_linesw;
777 1.1 leo /*
778 1.1 leo * Compute the number of interrupts in the receive ring.
779 1.1 leo * If the count is overlarge, we lost some events, and
780 1.1 leo * must advance to the first valid one. It may get
781 1.1 leo * overwritten if more data are arriving, but this is
782 1.1 leo * too expensive to check and gains nothing (we already
783 1.1 leo * lost out; all we can do at this point is trade one
784 1.1 leo * kind of loss for another).
785 1.1 leo */
786 1.1 leo n -= get;
787 1.1 leo if(n > ZLRB_RING_SIZE) {
788 1.1 leo zsoverrun(unit, &cs->cs_rotime, "ring");
789 1.1 leo get += n - ZLRB_RING_SIZE;
790 1.1 leo n = ZLRB_RING_SIZE;
791 1.1 leo }
792 1.1 leo while(--n >= 0) {
793 1.1 leo /* race to keep ahead of incoming interrupts */
794 1.1 leo c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
795 1.1 leo switch (ZRING_TYPE(c)) {
796 1.1 leo
797 1.1 leo case ZRING_RINT:
798 1.1 leo c = ZRING_VALUE(c);
799 1.1 leo if(c & ZSRR1_DO)
800 1.1 leo zsoverrun(unit, &cs->cs_fotime, "fifo");
801 1.1 leo cc = c >> 8;
802 1.1 leo if(c & ZSRR1_FE)
803 1.1 leo cc |= TTY_FE;
804 1.1 leo if(c & ZSRR1_PE)
805 1.1 leo cc |= TTY_PE;
806 1.1 leo line->l_rint(cc, tp);
807 1.1 leo break;
808 1.1 leo
809 1.1 leo case ZRING_XINT:
810 1.1 leo /*
811 1.1 leo * Transmit done: change registers and resume,
812 1.1 leo * or clear BUSY.
813 1.1 leo */
814 1.1 leo if(cs->cs_heldchange) {
815 1.1 leo int sps;
816 1.1 leo
817 1.1 leo sps = splzs();
818 1.1 leo c = zc->zc_csr;
819 1.1 leo if((c & ZSRR0_DCD) == 0)
820 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
821 1.1 leo bcopy((caddr_t)cs->cs_preg,
822 1.1 leo (caddr_t)cs->cs_creg, 16);
823 1.1 leo zs_loadchannelregs(zc, cs->cs_creg);
824 1.1 leo splx(sps);
825 1.1 leo cs->cs_heldchange = 0;
826 1.1 leo if(cs->cs_heldtbc
827 1.1 leo && (tp->t_state & TS_TTSTOP) == 0) {
828 1.1 leo cs->cs_tbc = cs->cs_heldtbc - 1;
829 1.1 leo zc->zc_data = *cs->cs_tba++;
830 1.1 leo goto again;
831 1.1 leo }
832 1.1 leo }
833 1.1 leo tp->t_state &= ~TS_BUSY;
834 1.1 leo if(tp->t_state & TS_FLUSH)
835 1.1 leo tp->t_state &= ~TS_FLUSH;
836 1.1 leo else ndflush(&tp->t_outq,cs->cs_tba
837 1.1 leo - (caddr_t)tp->t_outq.c_cf);
838 1.1 leo line->l_start(tp);
839 1.1 leo break;
840 1.1 leo
841 1.1 leo case ZRING_SINT:
842 1.1 leo /*
843 1.1 leo * Status line change. HFC bit is run in
844 1.1 leo * hardware interrupt, to avoid locking
845 1.1 leo * at splzs here.
846 1.1 leo */
847 1.1 leo c = ZRING_VALUE(c);
848 1.1 leo if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
849 1.1 leo cc = (c & ZSRR0_DCD) != 0;
850 1.1 leo if(line->l_modem(tp, cc) == 0)
851 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
852 1.1 leo cc ? DMBIS : DMBIC);
853 1.1 leo }
854 1.1 leo cs->cs_rr0 = c;
855 1.1 leo break;
856 1.1 leo
857 1.1 leo default:
858 1.1 leo log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
859 1.1 leo unit >> 1, (unit & 1) + 'a', c);
860 1.1 leo break;
861 1.1 leo }
862 1.1 leo }
863 1.1 leo cs->cs_rbget = get;
864 1.1 leo goto again;
865 1.1 leo }
866 1.1 leo splx(s);
867 1.1 leo return (retval);
868 1.1 leo }
869 1.1 leo
870 1.1 leo int
871 1.1 leo zsioctl(dev, cmd, data, flag, p)
872 1.1 leo dev_t dev;
873 1.1 leo u_long cmd;
874 1.1 leo caddr_t data;
875 1.1 leo int flag;
876 1.1 leo struct proc *p;
877 1.1 leo {
878 1.1 leo int unit = ZS_UNIT(dev);
879 1.17 thorpej struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
880 1.1 leo register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
881 1.1 leo register int error, s;
882 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
883 1.1 leo
884 1.32 eeh error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
885 1.35 atatat if(error != EPASSTHROUGH)
886 1.1 leo return(error);
887 1.35 atatat
888 1.1 leo error = ttioctl(tp, cmd, data, flag, p);
889 1.35 atatat if(error !=EPASSTHROUGH)
890 1.1 leo return (error);
891 1.1 leo
892 1.1 leo switch (cmd) {
893 1.1 leo case TIOCSBRK:
894 1.1 leo s = splzs();
895 1.1 leo cs->cs_preg[5] |= ZSWR5_BREAK;
896 1.1 leo cs->cs_creg[5] |= ZSWR5_BREAK;
897 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
898 1.1 leo splx(s);
899 1.1 leo break;
900 1.1 leo case TIOCCBRK:
901 1.1 leo s = splzs();
902 1.1 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
903 1.1 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
904 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
905 1.1 leo splx(s);
906 1.1 leo break;
907 1.1 leo case TIOCGFLAGS: {
908 1.1 leo int bits = 0;
909 1.1 leo
910 1.1 leo if(cs->cs_softcar)
911 1.1 leo bits |= TIOCFLAG_SOFTCAR;
912 1.1 leo if(cs->cs_creg[15] & ZSWR15_DCD_IE)
913 1.1 leo bits |= TIOCFLAG_CLOCAL;
914 1.1 leo if(cs->cs_creg[3] & ZSWR3_HFC)
915 1.1 leo bits |= TIOCFLAG_CRTSCTS;
916 1.1 leo *(int *)data = bits;
917 1.1 leo break;
918 1.1 leo }
919 1.1 leo case TIOCSFLAGS: {
920 1.15 leo int userbits = 0;
921 1.1 leo
922 1.3 mycroft error = suser(p->p_ucred, &p->p_acflag);
923 1.1 leo if(error != 0)
924 1.1 leo return (EPERM);
925 1.1 leo
926 1.1 leo userbits = *(int *)data;
927 1.1 leo
928 1.1 leo /*
929 1.1 leo * can have `local' or `softcar', and `rtscts' or `mdmbuf'
930 1.1 leo # defaulting to software flow control.
931 1.1 leo */
932 1.1 leo if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
933 1.1 leo return(EINVAL);
934 1.1 leo if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
935 1.11 leo return(ENODEV);
936 1.1 leo
937 1.1 leo s = splzs();
938 1.1 leo if((userbits & TIOCFLAG_SOFTCAR)) {
939 1.1 leo cs->cs_softcar = 1; /* turn on softcar */
940 1.1 leo cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
941 1.1 leo cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
942 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
943 1.1 leo }
944 1.1 leo else if(userbits & TIOCFLAG_CLOCAL) {
945 1.1 leo cs->cs_softcar = 0; /* turn off softcar */
946 1.1 leo cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
947 1.1 leo cs->cs_creg[15] |= ZSWR15_DCD_IE;
948 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
949 1.1 leo tp->t_termios.c_cflag |= CLOCAL;
950 1.1 leo }
951 1.1 leo if(userbits & TIOCFLAG_CRTSCTS) {
952 1.1 leo cs->cs_preg[15] |= ZSWR15_CTS_IE;
953 1.1 leo cs->cs_creg[15] |= ZSWR15_CTS_IE;
954 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
955 1.1 leo cs->cs_preg[3] |= ZSWR3_HFC;
956 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
957 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
958 1.1 leo tp->t_termios.c_cflag |= CRTSCTS;
959 1.1 leo }
960 1.1 leo else {
961 1.1 leo /* no mdmbuf, so we must want software flow control */
962 1.1 leo cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
963 1.1 leo cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
964 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
965 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
966 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
967 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
968 1.1 leo tp->t_termios.c_cflag &= ~CRTSCTS;
969 1.1 leo }
970 1.1 leo splx(s);
971 1.1 leo break;
972 1.1 leo }
973 1.1 leo case TIOCSDTR:
974 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIS);
975 1.1 leo break;
976 1.1 leo case TIOCCDTR:
977 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIC);
978 1.1 leo break;
979 1.1 leo case TIOCMGET:
980 1.1 leo zs_modem(cs, 0, DMGET);
981 1.1 leo break;
982 1.1 leo case TIOCMSET:
983 1.1 leo case TIOCMBIS:
984 1.1 leo case TIOCMBIC:
985 1.1 leo default:
986 1.35 atatat return (EPASSTHROUGH);
987 1.1 leo }
988 1.1 leo return (0);
989 1.1 leo }
990 1.1 leo
991 1.1 leo /*
992 1.1 leo * Start or restart transmission.
993 1.1 leo */
994 1.1 leo static void
995 1.1 leo zsstart(tp)
996 1.1 leo register struct tty *tp;
997 1.1 leo {
998 1.1 leo register struct zs_chanstate *cs;
999 1.1 leo register int s, nch;
1000 1.1 leo int unit = ZS_UNIT(tp->t_dev);
1001 1.17 thorpej struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1002 1.1 leo
1003 1.1 leo cs = &zi->zi_cs[unit & 1];
1004 1.1 leo s = spltty();
1005 1.1 leo
1006 1.1 leo /*
1007 1.1 leo * If currently active or delaying, no need to do anything.
1008 1.1 leo */
1009 1.1 leo if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1010 1.1 leo goto out;
1011 1.1 leo
1012 1.1 leo /*
1013 1.1 leo * If there are sleepers, and output has drained below low
1014 1.1 leo * water mark, awaken.
1015 1.1 leo */
1016 1.1 leo if(tp->t_outq.c_cc <= tp->t_lowat) {
1017 1.1 leo if(tp->t_state & TS_ASLEEP) {
1018 1.1 leo tp->t_state &= ~TS_ASLEEP;
1019 1.1 leo wakeup((caddr_t)&tp->t_outq);
1020 1.1 leo }
1021 1.1 leo selwakeup(&tp->t_wsel);
1022 1.1 leo }
1023 1.1 leo
1024 1.1 leo nch = ndqb(&tp->t_outq, 0); /* XXX */
1025 1.1 leo if(nch) {
1026 1.1 leo register char *p = tp->t_outq.c_cf;
1027 1.1 leo
1028 1.1 leo /* mark busy, enable tx done interrupts, & send first byte */
1029 1.1 leo tp->t_state |= TS_BUSY;
1030 1.1 leo (void) splzs();
1031 1.1 leo cs->cs_preg[1] |= ZSWR1_TIE;
1032 1.1 leo cs->cs_creg[1] |= ZSWR1_TIE;
1033 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1034 1.1 leo cs->cs_zc->zc_data = *p;
1035 1.1 leo cs->cs_tba = p + 1;
1036 1.1 leo cs->cs_tbc = nch - 1;
1037 1.1 leo } else {
1038 1.1 leo /*
1039 1.1 leo * Nothing to send, turn off transmit done interrupts.
1040 1.1 leo * This is useful if something is doing polled output.
1041 1.1 leo */
1042 1.1 leo (void) splzs();
1043 1.1 leo cs->cs_preg[1] &= ~ZSWR1_TIE;
1044 1.1 leo cs->cs_creg[1] &= ~ZSWR1_TIE;
1045 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1046 1.1 leo }
1047 1.1 leo out:
1048 1.1 leo splx(s);
1049 1.1 leo }
1050 1.1 leo
1051 1.1 leo /*
1052 1.1 leo * Stop output, e.g., for ^S or output flush.
1053 1.1 leo */
1054 1.1 leo void
1055 1.1 leo zsstop(tp, flag)
1056 1.1 leo register struct tty *tp;
1057 1.1 leo int flag;
1058 1.1 leo {
1059 1.1 leo register struct zs_chanstate *cs;
1060 1.1 leo register int s, unit = ZS_UNIT(tp->t_dev);
1061 1.17 thorpej struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1062 1.1 leo
1063 1.1 leo cs = &zi->zi_cs[unit & 1];
1064 1.1 leo s = splzs();
1065 1.1 leo if(tp->t_state & TS_BUSY) {
1066 1.1 leo /*
1067 1.1 leo * Device is transmitting; must stop it.
1068 1.1 leo */
1069 1.1 leo cs->cs_tbc = 0;
1070 1.1 leo if ((tp->t_state & TS_TTSTOP) == 0)
1071 1.1 leo tp->t_state |= TS_FLUSH;
1072 1.1 leo }
1073 1.29 leo splx(s);
1074 1.29 leo }
1075 1.29 leo
1076 1.29 leo static void
1077 1.29 leo zs_shutdown(cs)
1078 1.29 leo struct zs_chanstate *cs;
1079 1.29 leo {
1080 1.29 leo struct tty *tp = cs->cs_ttyp;
1081 1.29 leo int s;
1082 1.29 leo
1083 1.29 leo s = splzs();
1084 1.29 leo
1085 1.29 leo /*
1086 1.29 leo * Hang up if necessary. Wait a bit, so the other side has time to
1087 1.29 leo * notice even if we immediately open the port again.
1088 1.29 leo */
1089 1.29 leo if(tp->t_cflag & HUPCL) {
1090 1.29 leo zs_modem(cs, 0, DMSET);
1091 1.29 leo (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1092 1.29 leo }
1093 1.29 leo
1094 1.29 leo /* Clear any break condition set with TIOCSBRK. */
1095 1.29 leo if(cs->cs_creg[5] & ZSWR5_BREAK) {
1096 1.29 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
1097 1.29 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
1098 1.29 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1099 1.29 leo }
1100 1.29 leo
1101 1.29 leo /*
1102 1.29 leo * Drop all lines and cancel interrupts
1103 1.29 leo */
1104 1.29 leo zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1105 1.1 leo splx(s);
1106 1.1 leo }
1107 1.1 leo
1108 1.1 leo /*
1109 1.1 leo * Set ZS tty parameters from termios.
1110 1.1 leo *
1111 1.1 leo * This routine makes use of the fact that only registers
1112 1.1 leo * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1113 1.1 leo */
1114 1.1 leo static int
1115 1.1 leo zsparam(tp, t)
1116 1.1 leo register struct tty *tp;
1117 1.1 leo register struct termios *t;
1118 1.1 leo {
1119 1.1 leo int unit = ZS_UNIT(tp->t_dev);
1120 1.17 thorpej struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1121 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1122 1.6 leo int cdiv, clkm, brgm, tcon;
1123 1.1 leo register int tmp, tmp5, cflag, s;
1124 1.1 leo
1125 1.6 leo tmp = t->c_ospeed;
1126 1.6 leo tmp5 = t->c_ispeed;
1127 1.6 leo if(tmp < 0 || (tmp5 && tmp5 != tmp))
1128 1.1 leo return(EINVAL);
1129 1.1 leo if(tmp == 0) {
1130 1.1 leo /* stty 0 => drop DTR and RTS */
1131 1.1 leo zs_modem(cs, 0, DMSET);
1132 1.1 leo return(0);
1133 1.1 leo }
1134 1.6 leo tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1135 1.6 leo if (tmp < 0)
1136 1.1 leo return(EINVAL);
1137 1.6 leo tp->t_ispeed = tp->t_ospeed = tmp;
1138 1.1 leo
1139 1.6 leo cflag = tp->t_cflag = t->c_cflag;
1140 1.6 leo if (cflag & CSTOPB)
1141 1.6 leo cdiv |= ZSWR4_TWOSB;
1142 1.6 leo else
1143 1.6 leo cdiv |= ZSWR4_ONESB;
1144 1.6 leo if (!(cflag & PARODD))
1145 1.6 leo cdiv |= ZSWR4_EVENP;
1146 1.6 leo if (cflag & PARENB)
1147 1.6 leo cdiv |= ZSWR4_PARENB;
1148 1.1 leo
1149 1.1 leo switch(cflag & CSIZE) {
1150 1.1 leo case CS5:
1151 1.1 leo tmp = ZSWR3_RX_5;
1152 1.1 leo tmp5 = ZSWR5_TX_5;
1153 1.1 leo break;
1154 1.1 leo case CS6:
1155 1.1 leo tmp = ZSWR3_RX_6;
1156 1.1 leo tmp5 = ZSWR5_TX_6;
1157 1.1 leo break;
1158 1.1 leo case CS7:
1159 1.1 leo tmp = ZSWR3_RX_7;
1160 1.1 leo tmp5 = ZSWR5_TX_7;
1161 1.1 leo break;
1162 1.1 leo case CS8:
1163 1.1 leo default:
1164 1.1 leo tmp = ZSWR3_RX_8;
1165 1.1 leo tmp5 = ZSWR5_TX_8;
1166 1.1 leo break;
1167 1.1 leo }
1168 1.6 leo tmp |= ZSWR3_RX_ENABLE;
1169 1.6 leo tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1170 1.6 leo
1171 1.6 leo /*
1172 1.6 leo * Block interrupts so that state will not
1173 1.6 leo * be altered until we are done setting it up.
1174 1.6 leo */
1175 1.6 leo s = splzs();
1176 1.6 leo cs->cs_preg[4] = cdiv;
1177 1.6 leo cs->cs_preg[11] = clkm;
1178 1.6 leo cs->cs_preg[12] = tcon;
1179 1.6 leo cs->cs_preg[13] = tcon >> 8;
1180 1.6 leo cs->cs_preg[14] = brgm;
1181 1.6 leo cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1182 1.6 leo cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1183 1.6 leo cs->cs_preg[10] = ZSWR10_NRZ;
1184 1.6 leo cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1185 1.1 leo
1186 1.1 leo /*
1187 1.1 leo * Output hardware flow control on the chip is horrendous: if
1188 1.1 leo * carrier detect drops, the receiver is disabled. Hence we
1189 1.1 leo * can only do this when the carrier is on.
1190 1.1 leo */
1191 1.1 leo if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1192 1.6 leo tmp |= ZSWR3_HFC;
1193 1.1 leo cs->cs_preg[3] = tmp;
1194 1.6 leo cs->cs_preg[5] = tmp5;
1195 1.1 leo
1196 1.1 leo /*
1197 1.1 leo * If nothing is being transmitted, set up new current values,
1198 1.1 leo * else mark them as pending.
1199 1.1 leo */
1200 1.1 leo if(cs->cs_heldchange == 0) {
1201 1.1 leo if (cs->cs_ttyp->t_state & TS_BUSY) {
1202 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1203 1.1 leo cs->cs_tbc = 0;
1204 1.1 leo cs->cs_heldchange = 1;
1205 1.6 leo } else {
1206 1.1 leo bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1207 1.1 leo zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1208 1.1 leo }
1209 1.1 leo }
1210 1.1 leo splx(s);
1211 1.1 leo return (0);
1212 1.6 leo }
1213 1.6 leo
1214 1.6 leo /*
1215 1.6 leo * search for the best matching baudrate
1216 1.6 leo */
1217 1.6 leo static int
1218 1.6 leo zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1219 1.6 leo int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1220 1.6 leo {
1221 1.6 leo int bestdiff, bestbps, source;
1222 1.6 leo
1223 1.20 leo bestdiff = bestbps = 0;
1224 1.6 leo unit = (unit & 1) << 2;
1225 1.6 leo for (source = 0; source < 4; ++source) {
1226 1.6 leo long freq = zs_frequencies[unit + source];
1227 1.6 leo int diff, bps, div, clkm, brgm, tcon;
1228 1.20 leo
1229 1.20 leo bps = div = clkm = brgm = tcon = 0;
1230 1.6 leo switch (source) {
1231 1.6 leo case 0: /* BRgen, PCLK */
1232 1.6 leo brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1233 1.6 leo break;
1234 1.6 leo case 1: /* BRgen, RTxC */
1235 1.6 leo brgm = ZSWR14_BAUD_ENA;
1236 1.6 leo break;
1237 1.6 leo case 2: /* RTxC */
1238 1.6 leo clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1239 1.6 leo break;
1240 1.6 leo case 3: /* TRxC */
1241 1.6 leo clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1242 1.6 leo break;
1243 1.6 leo }
1244 1.6 leo switch (source) {
1245 1.6 leo case 0:
1246 1.6 leo case 1:
1247 1.6 leo div = ZSWR4_CLK_X16;
1248 1.6 leo clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1249 1.6 leo tcon = BPS_TO_TCONST(freq, wanted);
1250 1.6 leo if (tcon < 0)
1251 1.6 leo tcon = 0;
1252 1.6 leo bps = TCONST_TO_BPS(freq, tcon);
1253 1.6 leo break;
1254 1.6 leo case 2:
1255 1.6 leo case 3:
1256 1.6 leo { int b1 = freq / 16, d1 = abs(b1 - wanted);
1257 1.6 leo int b2 = freq / 32, d2 = abs(b2 - wanted);
1258 1.6 leo int b3 = freq / 64, d3 = abs(b3 - wanted);
1259 1.6 leo
1260 1.6 leo if (d1 < d2 && d1 < d3) {
1261 1.6 leo div = ZSWR4_CLK_X16;
1262 1.6 leo bps = b1;
1263 1.6 leo } else if (d2 < d3 && d2 < d1) {
1264 1.6 leo div = ZSWR4_CLK_X32;
1265 1.6 leo bps = b2;
1266 1.6 leo } else {
1267 1.6 leo div = ZSWR4_CLK_X64;
1268 1.6 leo bps = b3;
1269 1.6 leo }
1270 1.6 leo brgm = tcon = 0;
1271 1.6 leo break;
1272 1.6 leo }
1273 1.6 leo }
1274 1.6 leo diff = abs(bps - wanted);
1275 1.6 leo if (!source || diff < bestdiff) {
1276 1.6 leo *divisor = div;
1277 1.6 leo *clockmode = clkm;
1278 1.6 leo *brgenmode = brgm;
1279 1.6 leo *timeconst = tcon;
1280 1.6 leo bestbps = bps;
1281 1.6 leo bestdiff = diff;
1282 1.6 leo if (diff == 0)
1283 1.6 leo break;
1284 1.6 leo }
1285 1.6 leo }
1286 1.6 leo /* Allow deviations upto 5% */
1287 1.6 leo if (20 * bestdiff > wanted)
1288 1.6 leo return -1;
1289 1.6 leo return bestbps;
1290 1.1 leo }
1291 1.1 leo
1292 1.1 leo /*
1293 1.1 leo * Raise or lower modem control (DTR/RTS) signals. If a character is
1294 1.1 leo * in transmission, the change is deferred.
1295 1.1 leo */
1296 1.1 leo static int
1297 1.1 leo zs_modem(cs, bits, how)
1298 1.1 leo struct zs_chanstate *cs;
1299 1.1 leo int bits, how;
1300 1.1 leo {
1301 1.1 leo int s, mbits;
1302 1.1 leo
1303 1.1 leo bits &= ZSWR5_DTR | ZSWR5_RTS;
1304 1.1 leo
1305 1.1 leo s = splzs();
1306 1.1 leo mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1307 1.1 leo
1308 1.1 leo switch(how) {
1309 1.1 leo case DMSET:
1310 1.1 leo mbits = bits;
1311 1.1 leo break;
1312 1.1 leo case DMBIS:
1313 1.1 leo mbits |= bits;
1314 1.1 leo break;
1315 1.1 leo case DMBIC:
1316 1.1 leo mbits &= ~bits;
1317 1.1 leo break;
1318 1.1 leo case DMGET:
1319 1.1 leo splx(s);
1320 1.1 leo return(mbits);
1321 1.1 leo }
1322 1.1 leo
1323 1.1 leo cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1324 1.1 leo if(cs->cs_heldchange == 0) {
1325 1.1 leo if(cs->cs_ttyp->t_state & TS_BUSY) {
1326 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1327 1.1 leo cs->cs_tbc = 0;
1328 1.1 leo cs->cs_heldchange = 1;
1329 1.1 leo }
1330 1.1 leo else {
1331 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1332 1.1 leo }
1333 1.1 leo }
1334 1.1 leo splx(s);
1335 1.1 leo return(0);
1336 1.1 leo }
1337 1.1 leo
1338 1.1 leo /*
1339 1.1 leo * Write the given register set to the given zs channel in the proper order.
1340 1.1 leo * The channel must not be transmitting at the time. The receiver will
1341 1.1 leo * be disabled for the time it takes to write all the registers.
1342 1.1 leo */
1343 1.1 leo static void
1344 1.1 leo zs_loadchannelregs(zc, reg)
1345 1.1 leo volatile struct zschan *zc;
1346 1.1 leo u_char *reg;
1347 1.1 leo {
1348 1.1 leo int i;
1349 1.1 leo
1350 1.1 leo zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1351 1.1 leo i = zc->zc_data; /* drain fifo */
1352 1.1 leo i = zc->zc_data;
1353 1.1 leo i = zc->zc_data;
1354 1.1 leo ZS_WRITE(zc, 4, reg[4]);
1355 1.1 leo ZS_WRITE(zc, 10, reg[10]);
1356 1.1 leo ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1357 1.1 leo ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1358 1.1 leo ZS_WRITE(zc, 1, reg[1]);
1359 1.1 leo ZS_WRITE(zc, 9, reg[9]);
1360 1.1 leo ZS_WRITE(zc, 11, reg[11]);
1361 1.1 leo ZS_WRITE(zc, 12, reg[12]);
1362 1.1 leo ZS_WRITE(zc, 13, reg[13]);
1363 1.1 leo ZS_WRITE(zc, 14, reg[14]);
1364 1.1 leo ZS_WRITE(zc, 15, reg[15]);
1365 1.1 leo ZS_WRITE(zc, 3, reg[3]);
1366 1.1 leo ZS_WRITE(zc, 5, reg[5]);
1367 1.1 leo }
1368 1.1 leo #endif /* NZS > 1 */
1369