zs.c revision 1.43.2.2 1 1.43.2.2 yamt /* $NetBSD: zs.c,v 1.43.2.2 2006/12/30 20:45:44 yamt Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1992, 1993
5 1.1 leo * The Regents of the University of California. All rights reserved.
6 1.1 leo *
7 1.1 leo * This software was developed by the Computer Systems Engineering group
8 1.1 leo * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 leo * contributed to Berkeley.
10 1.1 leo *
11 1.1 leo *
12 1.1 leo * All advertising materials mentioning features or use of this software
13 1.1 leo * must display the following acknowledgement:
14 1.1 leo * This product includes software developed by the University of
15 1.1 leo * California, Lawrence Berkeley Laboratory.
16 1.1 leo *
17 1.1 leo * Redistribution and use in source and binary forms, with or without
18 1.1 leo * modification, are permitted provided that the following conditions
19 1.1 leo * are met:
20 1.1 leo * 1. Redistributions of source code must retain the above copyright
21 1.1 leo * notice, this list of conditions and the following disclaimer.
22 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
23 1.1 leo * notice, this list of conditions and the following disclaimer in the
24 1.1 leo * documentation and/or other materials provided with the distribution.
25 1.41 agc * 3. Neither the name of the University nor the names of its contributors
26 1.41 agc * may be used to endorse or promote products derived from this software
27 1.41 agc * without specific prior written permission.
28 1.41 agc *
29 1.41 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.41 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.41 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.41 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.41 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.41 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.41 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.41 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.41 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.41 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.41 agc * SUCH DAMAGE.
40 1.41 agc *
41 1.41 agc * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 1.41 agc */
43 1.41 agc
44 1.42 leo /*-
45 1.42 leo * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 1.42 leo * All rights reserved.
47 1.41 agc *
48 1.42 leo * This code is derived from software contributed to The NetBSD Foundation
49 1.42 leo * by Leo Weppelman.
50 1.41 agc *
51 1.41 agc * Redistribution and use in source and binary forms, with or without
52 1.41 agc * modification, are permitted provided that the following conditions
53 1.41 agc * are met:
54 1.41 agc * 1. Redistributions of source code must retain the above copyright
55 1.41 agc * notice, this list of conditions and the following disclaimer.
56 1.41 agc * 2. Redistributions in binary form must reproduce the above copyright
57 1.41 agc * notice, this list of conditions and the following disclaimer in the
58 1.41 agc * documentation and/or other materials provided with the distribution.
59 1.42 leo * 3. Neither the name of The NetBSD Foundation nor the names of its
60 1.42 leo * contributors may be used to endorse or promote products derived
61 1.42 leo * from this software without specific prior written permission.
62 1.1 leo *
63 1.42 leo * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
64 1.42 leo * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 1.42 leo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 1.42 leo * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
67 1.42 leo * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 1.42 leo * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 1.42 leo * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 1.42 leo * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 1.42 leo * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 1.42 leo * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 1.42 leo * POSSIBILITY OF SUCH DAMAGE.
74 1.1 leo */
75 1.1 leo
76 1.1 leo /*
77 1.1 leo * Zilog Z8530 (ZSCC) driver.
78 1.1 leo *
79 1.1 leo * Runs two tty ports (modem2 and serial2) on zs0.
80 1.1 leo *
81 1.1 leo * This driver knows far too much about chip to usage mappings.
82 1.1 leo */
83 1.40 lukem
84 1.40 lukem #include <sys/cdefs.h>
85 1.43.2.2 yamt __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.43.2.2 2006/12/30 20:45:44 yamt Exp $");
86 1.40 lukem
87 1.1 leo #include <sys/param.h>
88 1.9 leo #include <sys/systm.h>
89 1.1 leo #include <sys/proc.h>
90 1.1 leo #include <sys/device.h>
91 1.1 leo #include <sys/conf.h>
92 1.1 leo #include <sys/file.h>
93 1.1 leo #include <sys/ioctl.h>
94 1.13 leo #include <sys/malloc.h>
95 1.1 leo #include <sys/tty.h>
96 1.1 leo #include <sys/time.h>
97 1.1 leo #include <sys/kernel.h>
98 1.1 leo #include <sys/syslog.h>
99 1.43.2.1 yamt #include <sys/kauth.h>
100 1.1 leo
101 1.1 leo #include <machine/cpu.h>
102 1.1 leo #include <machine/iomap.h>
103 1.1 leo #include <machine/scu.h>
104 1.1 leo #include <machine/mfp.h>
105 1.18 leo #include <atari/dev/ym2149reg.h>
106 1.1 leo
107 1.7 cgd #include <dev/ic/z8530reg.h>
108 1.1 leo #include <atari/dev/zsvar.h>
109 1.1 leo #include "zs.h"
110 1.1 leo #if NZS > 1
111 1.1 leo #error "This driver supports only 1 85C30!"
112 1.1 leo #endif
113 1.1 leo
114 1.1 leo #if NZS > 0
115 1.1 leo
116 1.12 leo #define PCLK (8053976) /* PCLK pin input clock rate */
117 1.30 mycroft #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
118 1.1 leo
119 1.1 leo #define splzs spl5
120 1.1 leo
121 1.1 leo /*
122 1.1 leo * Software state per found chip.
123 1.1 leo */
124 1.1 leo struct zs_softc {
125 1.1 leo struct device zi_dev; /* base device */
126 1.1 leo volatile struct zsdevice *zi_zs; /* chip registers */
127 1.1 leo struct zs_chanstate zi_cs[2]; /* chan A and B software state */
128 1.1 leo };
129 1.1 leo
130 1.8 leo static u_char cb_scheduled = 0; /* Already asked for callback? */
131 1.1 leo /*
132 1.1 leo * Define the registers for a closed port
133 1.1 leo */
134 1.6 leo static u_char zs_init_regs[16] = {
135 1.1 leo /* 0 */ 0,
136 1.1 leo /* 1 */ 0,
137 1.1 leo /* 2 */ 0x60,
138 1.1 leo /* 3 */ 0,
139 1.1 leo /* 4 */ 0,
140 1.1 leo /* 5 */ 0,
141 1.1 leo /* 6 */ 0,
142 1.1 leo /* 7 */ 0,
143 1.1 leo /* 8 */ 0,
144 1.13 leo /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
145 1.1 leo /* 10 */ ZSWR10_NRZ,
146 1.1 leo /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
147 1.1 leo /* 12 */ 0,
148 1.1 leo /* 13 */ 0,
149 1.1 leo /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
150 1.1 leo /* 15 */ 0
151 1.1 leo };
152 1.1 leo
153 1.6 leo /*
154 1.6 leo * Define the machine dependant clock frequencies
155 1.6 leo * If BRgen feeds sender/receiver we always use a
156 1.6 leo * divisor 16, therefor the division by 16 can as
157 1.6 leo * well be done here.
158 1.6 leo */
159 1.6 leo static u_long zs_freqs_tt[] = {
160 1.6 leo /*
161 1.6 leo * Atari TT, RTxCB is generated by TT-MFP timer C,
162 1.43.2.1 yamt * which is set to 307.2 kHz during initialisation
163 1.6 leo * and never changed afterwards.
164 1.6 leo */
165 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
166 1.6 leo 229500, /* BRgen, RTxCA, divisor 16 */
167 1.6 leo 3672000, /* RTxCA, from PCLK4 */
168 1.6 leo 0, /* TRxCA, external */
169 1.6 leo
170 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
171 1.6 leo 19200, /* BRgen, RTxCB, divisor 16 */
172 1.6 leo 307200, /* RTxCB, from TT-MFP TCO */
173 1.6 leo 2457600 /* TRxCB, from BCLK */
174 1.6 leo };
175 1.24 leo
176 1.6 leo static u_long zs_freqs_falcon[] = {
177 1.6 leo /*
178 1.6 leo * Atari Falcon, XXX no specs available, this might be wrong
179 1.6 leo */
180 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
181 1.6 leo 229500, /* BRgen, RTxCA, divisor 16 */
182 1.6 leo 3672000, /* RTxCA, ??? */
183 1.6 leo 0, /* TRxCA, external */
184 1.6 leo
185 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
186 1.6 leo 229500, /* BRgen, RTxCB, divisor 16 */
187 1.6 leo 3672000, /* RTxCB, ??? */
188 1.6 leo 2457600 /* TRxCB, ??? */
189 1.6 leo };
190 1.24 leo
191 1.24 leo static u_long zs_freqs_hades[] = {
192 1.24 leo /*
193 1.24 leo * XXX: Channel-A unchecked!!!!!
194 1.24 leo */
195 1.24 leo PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
196 1.24 leo 229500, /* BRgen, RTxCA, divisor 16 */
197 1.24 leo 3672000, /* RTxCA, from PCLK4 */
198 1.24 leo 0, /* TRxCA, external */
199 1.24 leo
200 1.24 leo PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
201 1.24 leo 235550, /* BRgen, RTxCB, divisor 16 */
202 1.24 leo 3768800, /* RTxCB, 3.7688MHz */
203 1.24 leo 3768800 /* TRxCB, 3.7688MHz */
204 1.24 leo };
205 1.24 leo
206 1.6 leo static u_long zs_freqs_generic[] = {
207 1.6 leo /*
208 1.6 leo * other machines, assume only PCLK is available
209 1.6 leo */
210 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
211 1.6 leo 0, /* BRgen, RTxCA, divisor 16 */
212 1.6 leo 0, /* RTxCA, unknown */
213 1.6 leo 0, /* TRxCA, unknown */
214 1.6 leo
215 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
216 1.6 leo 0, /* BRgen, RTxCB, divisor 16 */
217 1.6 leo 0, /* RTxCB, unknown */
218 1.6 leo 0 /* TRxCB, unknown */
219 1.6 leo };
220 1.6 leo static u_long *zs_frequencies;
221 1.6 leo
222 1.1 leo /* Definition of the driver for autoconfig. */
223 1.25 leo static int zsmatch __P((struct device *, struct cfdata *, void *));
224 1.1 leo static void zsattach __P((struct device *, struct device *, void *));
225 1.17 thorpej
226 1.38 thorpej CFATTACH_DECL(zs, sizeof(struct zs_softc),
227 1.38 thorpej zsmatch, zsattach, NULL, NULL);
228 1.17 thorpej
229 1.28 thorpej extern struct cfdriver zs_cd;
230 1.1 leo
231 1.15 leo /* {b,c}devsw[] function prototypes */
232 1.15 leo dev_type_open(zsopen);
233 1.15 leo dev_type_close(zsclose);
234 1.15 leo dev_type_read(zsread);
235 1.15 leo dev_type_write(zswrite);
236 1.15 leo dev_type_ioctl(zsioctl);
237 1.36 gehenna dev_type_stop(zsstop);
238 1.16 leo dev_type_tty(zstty);
239 1.36 gehenna dev_type_poll(zspoll);
240 1.36 gehenna
241 1.36 gehenna const struct cdevsw zs_cdevsw = {
242 1.36 gehenna zsopen, zsclose, zsread, zswrite, zsioctl,
243 1.39 jdolecek zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
244 1.36 gehenna };
245 1.15 leo
246 1.1 leo /* Interrupt handlers. */
247 1.1 leo int zshard __P((long));
248 1.1 leo static int zssoft __P((long));
249 1.1 leo static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
250 1.1 leo static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
251 1.1 leo static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
252 1.1 leo
253 1.6 leo static struct zs_chanstate *zslist;
254 1.1 leo
255 1.1 leo /* Routines called from other code. */
256 1.1 leo static void zsstart __P((struct tty *));
257 1.16 leo
258 1.16 leo /* Routines purely local to this driver. */
259 1.43 he static void zsoverrun __P((int, long *, const char *));
260 1.1 leo static int zsparam __P((struct tty *, struct termios *));
261 1.6 leo static int zsbaudrate __P((int, int, int *, int *, int *, int *));
262 1.1 leo static int zs_modem __P((struct zs_chanstate *, int, int));
263 1.1 leo static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
264 1.29 leo static void zs_shutdown __P((struct zs_chanstate *));
265 1.1 leo
266 1.6 leo static int zsshortcuts; /* number of "shortcut" software interrupts */
267 1.1 leo
268 1.4 leo static int
269 1.25 leo zsmatch(pdp, cfp, auxp)
270 1.1 leo struct device *pdp;
271 1.25 leo struct cfdata *cfp;
272 1.25 leo void *auxp;
273 1.1 leo {
274 1.31 leo static int zs_matched = 0;
275 1.31 leo
276 1.31 leo if(strcmp("zs", auxp) || zs_matched)
277 1.1 leo return(0);
278 1.31 leo zs_matched = 1;
279 1.1 leo return(1);
280 1.1 leo }
281 1.1 leo
282 1.1 leo /*
283 1.1 leo * Attach a found zs.
284 1.1 leo */
285 1.1 leo static void
286 1.1 leo zsattach(parent, dev, aux)
287 1.1 leo struct device *parent;
288 1.1 leo struct device *dev;
289 1.1 leo void *aux;
290 1.1 leo {
291 1.1 leo register struct zs_softc *zi;
292 1.1 leo register struct zs_chanstate *cs;
293 1.1 leo register volatile struct zsdevice *addr;
294 1.1 leo char tmp;
295 1.1 leo
296 1.1 leo addr = (struct zsdevice *)AD_SCC;
297 1.1 leo zi = (struct zs_softc *)dev;
298 1.1 leo zi->zi_zs = addr;
299 1.1 leo cs = zi->zi_cs;
300 1.1 leo
301 1.1 leo /*
302 1.1 leo * Get the command register into a known state.
303 1.1 leo */
304 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
305 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
306 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
307 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
308 1.1 leo
309 1.1 leo /*
310 1.1 leo * Do a hardware reset.
311 1.1 leo */
312 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
313 1.1 leo delay(50000); /*enough ? */
314 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
315 1.1 leo
316 1.1 leo /*
317 1.1 leo * Initialize both channels
318 1.1 leo */
319 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
320 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
321 1.1 leo
322 1.5 leo if(machineid & ATARI_TT) {
323 1.5 leo /*
324 1.6 leo * ininitialise TT-MFP timer C: 307200Hz
325 1.6 leo * timer C and D share one control register:
326 1.6 leo * bits 0-2 control timer D
327 1.6 leo * bits 4-6 control timer C
328 1.6 leo */
329 1.6 leo int cr = MFP2->mf_tcdcr & 7;
330 1.6 leo MFP2->mf_tcdcr = cr; /* stop timer C */
331 1.6 leo MFP2->mf_tcdr = 1; /* counter 1 */
332 1.6 leo cr |= T_Q004 << 4; /* divisor 4 */
333 1.6 leo MFP2->mf_tcdcr = cr; /* start timer C */
334 1.6 leo /*
335 1.5 leo * enable scc related interrupts
336 1.5 leo */
337 1.27 leo SCU->vme_mask |= SCU_SCC;
338 1.6 leo
339 1.6 leo zs_frequencies = zs_freqs_tt;
340 1.6 leo } else if (machineid & ATARI_FALCON) {
341 1.6 leo zs_frequencies = zs_freqs_falcon;
342 1.24 leo } else if (machineid & ATARI_HADES) {
343 1.24 leo zs_frequencies = zs_freqs_hades;
344 1.6 leo } else {
345 1.6 leo zs_frequencies = zs_freqs_generic;
346 1.5 leo }
347 1.1 leo
348 1.1 leo /* link into interrupt list with order (A,B) (B=A+1) */
349 1.1 leo cs[0].cs_next = &cs[1];
350 1.1 leo cs[1].cs_next = zslist;
351 1.1 leo zslist = cs;
352 1.1 leo
353 1.1 leo cs->cs_unit = 0;
354 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
355 1.1 leo cs++;
356 1.1 leo cs->cs_unit = 1;
357 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
358 1.1 leo
359 1.23 christos printf(": serial2 on channel a and modem2 on channel b\n");
360 1.1 leo }
361 1.1 leo
362 1.1 leo /*
363 1.1 leo * Open a zs serial port.
364 1.1 leo */
365 1.1 leo int
366 1.43.2.1 yamt zsopen(dev, flags, mode, l)
367 1.1 leo dev_t dev;
368 1.1 leo int flags;
369 1.1 leo int mode;
370 1.43.2.1 yamt struct lwp *l;
371 1.1 leo {
372 1.1 leo register struct tty *tp;
373 1.1 leo register struct zs_chanstate *cs;
374 1.1 leo struct zs_softc *zi;
375 1.1 leo int unit = ZS_UNIT(dev);
376 1.1 leo int zs = unit >> 1;
377 1.1 leo int error, s;
378 1.1 leo
379 1.17 thorpej if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
380 1.1 leo return (ENXIO);
381 1.1 leo cs = &zi->zi_cs[unit & 1];
382 1.10 jtc
383 1.10 jtc /*
384 1.10 jtc * When port A (ser02) is selected on the TT, make sure
385 1.10 jtc * the port is enabled.
386 1.10 jtc */
387 1.18 leo if((machineid & ATARI_TT) && !(unit & 1))
388 1.26 leo ym2149_ser2(1);
389 1.13 leo
390 1.13 leo if (cs->cs_rbuf == NULL) {
391 1.13 leo cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
392 1.13 leo M_WAITOK);
393 1.10 jtc }
394 1.10 jtc
395 1.1 leo tp = cs->cs_ttyp;
396 1.1 leo if(tp == NULL) {
397 1.21 leo cs->cs_ttyp = tp = ttymalloc();
398 1.21 leo tty_attach(tp);
399 1.21 leo tp->t_dev = dev;
400 1.21 leo tp->t_oproc = zsstart;
401 1.21 leo tp->t_param = zsparam;
402 1.1 leo }
403 1.1 leo
404 1.43.2.2 yamt if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
405 1.29 leo return (EBUSY);
406 1.29 leo
407 1.1 leo s = spltty();
408 1.29 leo
409 1.29 leo /*
410 1.29 leo * Do the following iff this is a first open.
411 1.29 leo */
412 1.29 leo if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
413 1.1 leo if(tp->t_ispeed == 0) {
414 1.1 leo tp->t_iflag = TTYDEF_IFLAG;
415 1.1 leo tp->t_oflag = TTYDEF_OFLAG;
416 1.1 leo tp->t_cflag = TTYDEF_CFLAG;
417 1.1 leo tp->t_lflag = TTYDEF_LFLAG;
418 1.1 leo tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
419 1.1 leo }
420 1.29 leo ttychars(tp);
421 1.29 leo ttsetwater(tp);
422 1.29 leo
423 1.1 leo (void)zsparam(tp, &tp->t_termios);
424 1.29 leo
425 1.29 leo /*
426 1.29 leo * Turn on DTR. We must always do this, even if carrier is not
427 1.29 leo * present, because otherwise we'd have to use TIOCSDTR
428 1.29 leo * immediately after setting CLOCAL, which applications do not
429 1.29 leo * expect. We always assert DTR while the device is open
430 1.29 leo * unless explicitly requested to deassert it.
431 1.29 leo */
432 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
433 1.8 leo /* May never get a status intr. if DCD already on. -gwr */
434 1.16 leo if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
435 1.8 leo tp->t_state |= TS_CARR_ON;
436 1.1 leo if(cs->cs_softcar)
437 1.1 leo tp->t_state |= TS_CARR_ON;
438 1.1 leo }
439 1.29 leo
440 1.1 leo splx(s);
441 1.29 leo
442 1.29 leo error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
443 1.29 leo if (error)
444 1.29 leo goto bad;
445 1.29 leo
446 1.32 eeh error = tp->t_linesw->l_open(dev, tp);
447 1.1 leo if(error)
448 1.29 leo goto bad;
449 1.29 leo return (0);
450 1.29 leo
451 1.29 leo bad:
452 1.29 leo if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
453 1.29 leo /*
454 1.29 leo * We failed to open the device, and nobody else had it opened.
455 1.29 leo * Clean up the state as appropriate.
456 1.29 leo */
457 1.29 leo zs_shutdown(cs);
458 1.29 leo }
459 1.1 leo return(error);
460 1.1 leo }
461 1.1 leo
462 1.1 leo /*
463 1.1 leo * Close a zs serial port.
464 1.1 leo */
465 1.1 leo int
466 1.43.2.1 yamt zsclose(dev, flags, mode, l)
467 1.1 leo dev_t dev;
468 1.1 leo int flags;
469 1.1 leo int mode;
470 1.43.2.1 yamt struct lwp *l;
471 1.1 leo {
472 1.1 leo register struct zs_chanstate *cs;
473 1.1 leo register struct tty *tp;
474 1.1 leo struct zs_softc *zi;
475 1.1 leo int unit = ZS_UNIT(dev);
476 1.1 leo
477 1.17 thorpej zi = zs_cd.cd_devs[unit >> 1];
478 1.1 leo cs = &zi->zi_cs[unit & 1];
479 1.1 leo tp = cs->cs_ttyp;
480 1.29 leo
481 1.32 eeh tp->t_linesw->l_close(tp, flags);
482 1.1 leo ttyclose(tp);
483 1.1 leo
484 1.29 leo if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
485 1.29 leo /*
486 1.29 leo * Although we got a last close, the device may still be in
487 1.29 leo * use; e.g. if this was the dialout node, and there are still
488 1.29 leo * processes waiting for carrier on the non-dialout node.
489 1.29 leo */
490 1.29 leo zs_shutdown(cs);
491 1.29 leo }
492 1.1 leo return (0);
493 1.1 leo }
494 1.1 leo
495 1.1 leo /*
496 1.1 leo * Read/write zs serial port.
497 1.1 leo */
498 1.1 leo int
499 1.1 leo zsread(dev, uio, flags)
500 1.1 leo dev_t dev;
501 1.1 leo struct uio *uio;
502 1.1 leo int flags;
503 1.1 leo {
504 1.4 leo register struct zs_chanstate *cs;
505 1.4 leo register struct zs_softc *zi;
506 1.4 leo register struct tty *tp;
507 1.4 leo int unit;
508 1.4 leo
509 1.4 leo unit = ZS_UNIT(dev);
510 1.17 thorpej zi = zs_cd.cd_devs[unit >> 1];
511 1.4 leo cs = &zi->zi_cs[unit & 1];
512 1.4 leo tp = cs->cs_ttyp;
513 1.1 leo
514 1.32 eeh return(tp->t_linesw->l_read(tp, uio, flags));
515 1.1 leo }
516 1.1 leo
517 1.4 leo int
518 1.4 leo zswrite(dev, uio, flags)
519 1.1 leo dev_t dev;
520 1.1 leo struct uio *uio;
521 1.1 leo int flags;
522 1.1 leo {
523 1.4 leo register struct zs_chanstate *cs;
524 1.4 leo register struct zs_softc *zi;
525 1.4 leo register struct tty *tp;
526 1.4 leo int unit;
527 1.4 leo
528 1.4 leo unit = ZS_UNIT(dev);
529 1.17 thorpej zi = zs_cd.cd_devs[unit >> 1];
530 1.4 leo cs = &zi->zi_cs[unit & 1];
531 1.4 leo tp = cs->cs_ttyp;
532 1.1 leo
533 1.32 eeh return(tp->t_linesw->l_write(tp, uio, flags));
534 1.34 scw }
535 1.34 scw
536 1.34 scw int
537 1.43.2.1 yamt zspoll(dev, events, l)
538 1.34 scw dev_t dev;
539 1.34 scw int events;
540 1.43.2.1 yamt struct lwp *l;
541 1.34 scw {
542 1.34 scw register struct zs_chanstate *cs;
543 1.34 scw register struct zs_softc *zi;
544 1.34 scw register struct tty *tp;
545 1.34 scw int unit;
546 1.34 scw
547 1.34 scw unit = ZS_UNIT(dev);
548 1.34 scw zi = zs_cd.cd_devs[unit >> 1];
549 1.34 scw cs = &zi->zi_cs[unit & 1];
550 1.34 scw tp = cs->cs_ttyp;
551 1.34 scw
552 1.43.2.1 yamt return ((*tp->t_linesw->l_poll)(tp, events, l));
553 1.4 leo }
554 1.4 leo
555 1.4 leo struct tty *
556 1.4 leo zstty(dev)
557 1.4 leo dev_t dev;
558 1.4 leo {
559 1.4 leo register struct zs_chanstate *cs;
560 1.4 leo register struct zs_softc *zi;
561 1.4 leo int unit;
562 1.4 leo
563 1.4 leo unit = ZS_UNIT(dev);
564 1.17 thorpej zi = zs_cd.cd_devs[unit >> 1];
565 1.4 leo cs = &zi->zi_cs[unit & 1];
566 1.4 leo return(cs->cs_ttyp);
567 1.1 leo }
568 1.1 leo
569 1.1 leo /*
570 1.1 leo * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
571 1.1 leo * channels are kept in (A,B) pairs.
572 1.1 leo *
573 1.1 leo * Do just a little, then get out; set a software interrupt if more
574 1.1 leo * work is needed.
575 1.1 leo *
576 1.1 leo * We deliberately ignore the vectoring Zilog gives us, and match up
577 1.1 leo * only the number of `reset interrupt under service' operations, not
578 1.1 leo * the order.
579 1.1 leo */
580 1.8 leo
581 1.1 leo int
582 1.1 leo zshard(sr)
583 1.1 leo long sr;
584 1.1 leo {
585 1.1 leo register struct zs_chanstate *a;
586 1.1 leo #define b (a + 1)
587 1.1 leo register volatile struct zschan *zc;
588 1.1 leo register int rr3, intflags = 0, v, i;
589 1.1 leo
590 1.8 leo do {
591 1.8 leo intflags &= ~4;
592 1.8 leo for(a = zslist; a != NULL; a = b->cs_next) {
593 1.1 leo rr3 = ZS_READ(a->cs_zc, 3);
594 1.1 leo if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
595 1.8 leo intflags |= 4|2;
596 1.1 leo zc = a->cs_zc;
597 1.1 leo i = a->cs_rbput;
598 1.1 leo if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
599 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
600 1.1 leo intflags |= 1;
601 1.1 leo }
602 1.1 leo if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
603 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
604 1.1 leo intflags |= 1;
605 1.1 leo }
606 1.1 leo if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
607 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
608 1.1 leo intflags |= 1;
609 1.1 leo }
610 1.1 leo a->cs_rbput = i;
611 1.1 leo }
612 1.1 leo if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
613 1.8 leo intflags |= 4|2;
614 1.1 leo zc = b->cs_zc;
615 1.1 leo i = b->cs_rbput;
616 1.1 leo if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
617 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
618 1.1 leo intflags |= 1;
619 1.1 leo }
620 1.1 leo if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
621 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
622 1.1 leo intflags |= 1;
623 1.1 leo }
624 1.1 leo if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
625 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
626 1.1 leo intflags |= 1;
627 1.1 leo }
628 1.1 leo b->cs_rbput = i;
629 1.1 leo }
630 1.8 leo }
631 1.8 leo } while(intflags & 4);
632 1.1 leo #undef b
633 1.1 leo
634 1.1 leo if(intflags & 1) {
635 1.1 leo if(BASEPRI(sr)) {
636 1.1 leo spl1();
637 1.1 leo zsshortcuts++;
638 1.1 leo return(zssoft(sr));
639 1.1 leo }
640 1.8 leo else if(!cb_scheduled) {
641 1.8 leo cb_scheduled++;
642 1.19 leo add_sicallback((si_farg)zssoft, 0, 0);
643 1.8 leo }
644 1.1 leo }
645 1.1 leo return(intflags & 2);
646 1.1 leo }
647 1.1 leo
648 1.1 leo static int
649 1.1 leo zsrint(cs, zc)
650 1.1 leo register struct zs_chanstate *cs;
651 1.1 leo register volatile struct zschan *zc;
652 1.1 leo {
653 1.8 leo register int c;
654 1.1 leo
655 1.8 leo /*
656 1.8 leo * First read the status, because read of the received char
657 1.8 leo * destroy the status of this char.
658 1.8 leo */
659 1.8 leo c = ZS_READ(zc, 1);
660 1.8 leo c |= (zc->zc_data << 8);
661 1.1 leo
662 1.1 leo /* clear receive error & interrupt condition */
663 1.1 leo zc->zc_csr = ZSWR0_RESET_ERRORS;
664 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
665 1.1 leo
666 1.1 leo return(ZRING_MAKE(ZRING_RINT, c));
667 1.1 leo }
668 1.1 leo
669 1.1 leo static int
670 1.1 leo zsxint(cs, zc)
671 1.1 leo register struct zs_chanstate *cs;
672 1.1 leo register volatile struct zschan *zc;
673 1.1 leo {
674 1.1 leo register int i = cs->cs_tbc;
675 1.1 leo
676 1.1 leo if(i == 0) {
677 1.1 leo zc->zc_csr = ZSWR0_RESET_TXINT;
678 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
679 1.1 leo return(ZRING_MAKE(ZRING_XINT, 0));
680 1.1 leo }
681 1.1 leo cs->cs_tbc = i - 1;
682 1.1 leo zc->zc_data = *cs->cs_tba++;
683 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
684 1.1 leo return (0);
685 1.1 leo }
686 1.1 leo
687 1.1 leo static int
688 1.1 leo zssint(cs, zc)
689 1.1 leo register struct zs_chanstate *cs;
690 1.1 leo register volatile struct zschan *zc;
691 1.1 leo {
692 1.1 leo register int rr0;
693 1.1 leo
694 1.1 leo rr0 = zc->zc_csr;
695 1.1 leo zc->zc_csr = ZSWR0_RESET_STATUS;
696 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
697 1.1 leo /*
698 1.1 leo * The chip's hardware flow control is, as noted in zsreg.h,
699 1.1 leo * busted---if the DCD line goes low the chip shuts off the
700 1.1 leo * receiver (!). If we want hardware CTS flow control but do
701 1.1 leo * not have it, and carrier is now on, turn HFC on; if we have
702 1.1 leo * HFC now but carrier has gone low, turn it off.
703 1.1 leo */
704 1.1 leo if(rr0 & ZSRR0_DCD) {
705 1.1 leo if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
706 1.1 leo (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
707 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
708 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
709 1.1 leo }
710 1.1 leo }
711 1.1 leo else {
712 1.1 leo if (cs->cs_creg[3] & ZSWR3_HFC) {
713 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
714 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
715 1.1 leo }
716 1.1 leo }
717 1.1 leo return(ZRING_MAKE(ZRING_SINT, rr0));
718 1.1 leo }
719 1.1 leo
720 1.1 leo /*
721 1.1 leo * Print out a ring or fifo overrun error message.
722 1.1 leo */
723 1.1 leo static void
724 1.1 leo zsoverrun(unit, ptime, what)
725 1.1 leo int unit;
726 1.1 leo long *ptime;
727 1.43 he const char *what;
728 1.1 leo {
729 1.1 leo
730 1.1 leo if(*ptime != time.tv_sec) {
731 1.1 leo *ptime = time.tv_sec;
732 1.1 leo log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
733 1.1 leo (unit & 1) + 'a', what);
734 1.1 leo }
735 1.1 leo }
736 1.1 leo
737 1.1 leo /*
738 1.1 leo * ZS software interrupt. Scan all channels for deferred interrupts.
739 1.1 leo */
740 1.1 leo int
741 1.1 leo zssoft(sr)
742 1.1 leo long sr;
743 1.1 leo {
744 1.1 leo register struct zs_chanstate *cs;
745 1.1 leo register volatile struct zschan *zc;
746 1.1 leo register struct linesw *line;
747 1.1 leo register struct tty *tp;
748 1.1 leo register int get, n, c, cc, unit, s;
749 1.1 leo int retval = 0;
750 1.1 leo
751 1.8 leo cb_scheduled = 0;
752 1.1 leo s = spltty();
753 1.1 leo for(cs = zslist; cs != NULL; cs = cs->cs_next) {
754 1.1 leo get = cs->cs_rbget;
755 1.1 leo again:
756 1.1 leo n = cs->cs_rbput; /* atomic */
757 1.1 leo if(get == n) /* nothing more on this line */
758 1.1 leo continue;
759 1.1 leo retval = 1;
760 1.1 leo unit = cs->cs_unit; /* set up to handle interrupts */
761 1.1 leo zc = cs->cs_zc;
762 1.1 leo tp = cs->cs_ttyp;
763 1.33 leo line = tp->t_linesw;
764 1.1 leo /*
765 1.1 leo * Compute the number of interrupts in the receive ring.
766 1.1 leo * If the count is overlarge, we lost some events, and
767 1.1 leo * must advance to the first valid one. It may get
768 1.1 leo * overwritten if more data are arriving, but this is
769 1.1 leo * too expensive to check and gains nothing (we already
770 1.1 leo * lost out; all we can do at this point is trade one
771 1.1 leo * kind of loss for another).
772 1.1 leo */
773 1.1 leo n -= get;
774 1.1 leo if(n > ZLRB_RING_SIZE) {
775 1.1 leo zsoverrun(unit, &cs->cs_rotime, "ring");
776 1.1 leo get += n - ZLRB_RING_SIZE;
777 1.1 leo n = ZLRB_RING_SIZE;
778 1.1 leo }
779 1.1 leo while(--n >= 0) {
780 1.1 leo /* race to keep ahead of incoming interrupts */
781 1.1 leo c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
782 1.1 leo switch (ZRING_TYPE(c)) {
783 1.1 leo
784 1.1 leo case ZRING_RINT:
785 1.1 leo c = ZRING_VALUE(c);
786 1.1 leo if(c & ZSRR1_DO)
787 1.1 leo zsoverrun(unit, &cs->cs_fotime, "fifo");
788 1.1 leo cc = c >> 8;
789 1.1 leo if(c & ZSRR1_FE)
790 1.1 leo cc |= TTY_FE;
791 1.1 leo if(c & ZSRR1_PE)
792 1.1 leo cc |= TTY_PE;
793 1.1 leo line->l_rint(cc, tp);
794 1.1 leo break;
795 1.1 leo
796 1.1 leo case ZRING_XINT:
797 1.1 leo /*
798 1.1 leo * Transmit done: change registers and resume,
799 1.1 leo * or clear BUSY.
800 1.1 leo */
801 1.1 leo if(cs->cs_heldchange) {
802 1.1 leo int sps;
803 1.1 leo
804 1.1 leo sps = splzs();
805 1.1 leo c = zc->zc_csr;
806 1.1 leo if((c & ZSRR0_DCD) == 0)
807 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
808 1.1 leo bcopy((caddr_t)cs->cs_preg,
809 1.1 leo (caddr_t)cs->cs_creg, 16);
810 1.1 leo zs_loadchannelregs(zc, cs->cs_creg);
811 1.1 leo splx(sps);
812 1.1 leo cs->cs_heldchange = 0;
813 1.1 leo if(cs->cs_heldtbc
814 1.1 leo && (tp->t_state & TS_TTSTOP) == 0) {
815 1.1 leo cs->cs_tbc = cs->cs_heldtbc - 1;
816 1.1 leo zc->zc_data = *cs->cs_tba++;
817 1.1 leo goto again;
818 1.1 leo }
819 1.1 leo }
820 1.1 leo tp->t_state &= ~TS_BUSY;
821 1.1 leo if(tp->t_state & TS_FLUSH)
822 1.1 leo tp->t_state &= ~TS_FLUSH;
823 1.1 leo else ndflush(&tp->t_outq,cs->cs_tba
824 1.1 leo - (caddr_t)tp->t_outq.c_cf);
825 1.1 leo line->l_start(tp);
826 1.1 leo break;
827 1.1 leo
828 1.1 leo case ZRING_SINT:
829 1.1 leo /*
830 1.1 leo * Status line change. HFC bit is run in
831 1.1 leo * hardware interrupt, to avoid locking
832 1.1 leo * at splzs here.
833 1.1 leo */
834 1.1 leo c = ZRING_VALUE(c);
835 1.1 leo if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
836 1.1 leo cc = (c & ZSRR0_DCD) != 0;
837 1.1 leo if(line->l_modem(tp, cc) == 0)
838 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
839 1.1 leo cc ? DMBIS : DMBIC);
840 1.1 leo }
841 1.1 leo cs->cs_rr0 = c;
842 1.1 leo break;
843 1.1 leo
844 1.1 leo default:
845 1.1 leo log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
846 1.1 leo unit >> 1, (unit & 1) + 'a', c);
847 1.1 leo break;
848 1.1 leo }
849 1.1 leo }
850 1.1 leo cs->cs_rbget = get;
851 1.1 leo goto again;
852 1.1 leo }
853 1.1 leo splx(s);
854 1.1 leo return (retval);
855 1.1 leo }
856 1.1 leo
857 1.1 leo int
858 1.43.2.1 yamt zsioctl(dev, cmd, data, flag, l)
859 1.1 leo dev_t dev;
860 1.1 leo u_long cmd;
861 1.1 leo caddr_t data;
862 1.1 leo int flag;
863 1.43.2.1 yamt struct lwp *l;
864 1.1 leo {
865 1.1 leo int unit = ZS_UNIT(dev);
866 1.17 thorpej struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
867 1.1 leo register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
868 1.1 leo register int error, s;
869 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
870 1.1 leo
871 1.43.2.1 yamt error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
872 1.35 atatat if(error != EPASSTHROUGH)
873 1.1 leo return(error);
874 1.35 atatat
875 1.43.2.1 yamt error = ttioctl(tp, cmd, data, flag, l);
876 1.35 atatat if(error !=EPASSTHROUGH)
877 1.1 leo return (error);
878 1.1 leo
879 1.1 leo switch (cmd) {
880 1.1 leo case TIOCSBRK:
881 1.1 leo s = splzs();
882 1.1 leo cs->cs_preg[5] |= ZSWR5_BREAK;
883 1.1 leo cs->cs_creg[5] |= ZSWR5_BREAK;
884 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
885 1.1 leo splx(s);
886 1.1 leo break;
887 1.1 leo case TIOCCBRK:
888 1.1 leo s = splzs();
889 1.1 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
890 1.1 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
891 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
892 1.1 leo splx(s);
893 1.1 leo break;
894 1.1 leo case TIOCGFLAGS: {
895 1.1 leo int bits = 0;
896 1.1 leo
897 1.1 leo if(cs->cs_softcar)
898 1.1 leo bits |= TIOCFLAG_SOFTCAR;
899 1.1 leo if(cs->cs_creg[15] & ZSWR15_DCD_IE)
900 1.1 leo bits |= TIOCFLAG_CLOCAL;
901 1.1 leo if(cs->cs_creg[3] & ZSWR3_HFC)
902 1.1 leo bits |= TIOCFLAG_CRTSCTS;
903 1.1 leo *(int *)data = bits;
904 1.1 leo break;
905 1.1 leo }
906 1.1 leo case TIOCSFLAGS: {
907 1.15 leo int userbits = 0;
908 1.1 leo
909 1.43.2.2 yamt error = kauth_authorize_device_tty(l->l_cred,
910 1.43.2.2 yamt KAUTH_DEVICE_TTY_PRIVSET, tp);
911 1.1 leo if(error != 0)
912 1.1 leo return (EPERM);
913 1.1 leo
914 1.1 leo userbits = *(int *)data;
915 1.1 leo
916 1.1 leo /*
917 1.1 leo * can have `local' or `softcar', and `rtscts' or `mdmbuf'
918 1.1 leo # defaulting to software flow control.
919 1.1 leo */
920 1.1 leo if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
921 1.1 leo return(EINVAL);
922 1.1 leo if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
923 1.11 leo return(ENODEV);
924 1.1 leo
925 1.1 leo s = splzs();
926 1.1 leo if((userbits & TIOCFLAG_SOFTCAR)) {
927 1.1 leo cs->cs_softcar = 1; /* turn on softcar */
928 1.1 leo cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
929 1.1 leo cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
930 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
931 1.1 leo }
932 1.1 leo else if(userbits & TIOCFLAG_CLOCAL) {
933 1.1 leo cs->cs_softcar = 0; /* turn off softcar */
934 1.1 leo cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
935 1.1 leo cs->cs_creg[15] |= ZSWR15_DCD_IE;
936 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
937 1.1 leo tp->t_termios.c_cflag |= CLOCAL;
938 1.1 leo }
939 1.1 leo if(userbits & TIOCFLAG_CRTSCTS) {
940 1.1 leo cs->cs_preg[15] |= ZSWR15_CTS_IE;
941 1.1 leo cs->cs_creg[15] |= ZSWR15_CTS_IE;
942 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
943 1.1 leo cs->cs_preg[3] |= ZSWR3_HFC;
944 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
945 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
946 1.1 leo tp->t_termios.c_cflag |= CRTSCTS;
947 1.1 leo }
948 1.1 leo else {
949 1.1 leo /* no mdmbuf, so we must want software flow control */
950 1.1 leo cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
951 1.1 leo cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
952 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
953 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
954 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
955 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
956 1.1 leo tp->t_termios.c_cflag &= ~CRTSCTS;
957 1.1 leo }
958 1.1 leo splx(s);
959 1.1 leo break;
960 1.1 leo }
961 1.1 leo case TIOCSDTR:
962 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIS);
963 1.1 leo break;
964 1.1 leo case TIOCCDTR:
965 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIC);
966 1.1 leo break;
967 1.1 leo case TIOCMGET:
968 1.1 leo zs_modem(cs, 0, DMGET);
969 1.1 leo break;
970 1.1 leo case TIOCMSET:
971 1.1 leo case TIOCMBIS:
972 1.1 leo case TIOCMBIC:
973 1.1 leo default:
974 1.35 atatat return (EPASSTHROUGH);
975 1.1 leo }
976 1.1 leo return (0);
977 1.1 leo }
978 1.1 leo
979 1.1 leo /*
980 1.1 leo * Start or restart transmission.
981 1.1 leo */
982 1.1 leo static void
983 1.1 leo zsstart(tp)
984 1.1 leo register struct tty *tp;
985 1.1 leo {
986 1.1 leo register struct zs_chanstate *cs;
987 1.1 leo register int s, nch;
988 1.1 leo int unit = ZS_UNIT(tp->t_dev);
989 1.17 thorpej struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
990 1.1 leo
991 1.1 leo cs = &zi->zi_cs[unit & 1];
992 1.1 leo s = spltty();
993 1.1 leo
994 1.1 leo /*
995 1.1 leo * If currently active or delaying, no need to do anything.
996 1.1 leo */
997 1.1 leo if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
998 1.1 leo goto out;
999 1.1 leo
1000 1.1 leo /*
1001 1.1 leo * If there are sleepers, and output has drained below low
1002 1.1 leo * water mark, awaken.
1003 1.1 leo */
1004 1.1 leo if(tp->t_outq.c_cc <= tp->t_lowat) {
1005 1.1 leo if(tp->t_state & TS_ASLEEP) {
1006 1.1 leo tp->t_state &= ~TS_ASLEEP;
1007 1.1 leo wakeup((caddr_t)&tp->t_outq);
1008 1.1 leo }
1009 1.1 leo selwakeup(&tp->t_wsel);
1010 1.1 leo }
1011 1.1 leo
1012 1.1 leo nch = ndqb(&tp->t_outq, 0); /* XXX */
1013 1.1 leo if(nch) {
1014 1.1 leo register char *p = tp->t_outq.c_cf;
1015 1.1 leo
1016 1.1 leo /* mark busy, enable tx done interrupts, & send first byte */
1017 1.1 leo tp->t_state |= TS_BUSY;
1018 1.1 leo (void) splzs();
1019 1.1 leo cs->cs_preg[1] |= ZSWR1_TIE;
1020 1.1 leo cs->cs_creg[1] |= ZSWR1_TIE;
1021 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1022 1.1 leo cs->cs_zc->zc_data = *p;
1023 1.1 leo cs->cs_tba = p + 1;
1024 1.1 leo cs->cs_tbc = nch - 1;
1025 1.1 leo } else {
1026 1.1 leo /*
1027 1.1 leo * Nothing to send, turn off transmit done interrupts.
1028 1.1 leo * This is useful if something is doing polled output.
1029 1.1 leo */
1030 1.1 leo (void) splzs();
1031 1.1 leo cs->cs_preg[1] &= ~ZSWR1_TIE;
1032 1.1 leo cs->cs_creg[1] &= ~ZSWR1_TIE;
1033 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1034 1.1 leo }
1035 1.1 leo out:
1036 1.1 leo splx(s);
1037 1.1 leo }
1038 1.1 leo
1039 1.1 leo /*
1040 1.1 leo * Stop output, e.g., for ^S or output flush.
1041 1.1 leo */
1042 1.1 leo void
1043 1.1 leo zsstop(tp, flag)
1044 1.1 leo register struct tty *tp;
1045 1.1 leo int flag;
1046 1.1 leo {
1047 1.1 leo register struct zs_chanstate *cs;
1048 1.1 leo register int s, unit = ZS_UNIT(tp->t_dev);
1049 1.17 thorpej struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1050 1.1 leo
1051 1.1 leo cs = &zi->zi_cs[unit & 1];
1052 1.1 leo s = splzs();
1053 1.1 leo if(tp->t_state & TS_BUSY) {
1054 1.1 leo /*
1055 1.1 leo * Device is transmitting; must stop it.
1056 1.1 leo */
1057 1.1 leo cs->cs_tbc = 0;
1058 1.1 leo if ((tp->t_state & TS_TTSTOP) == 0)
1059 1.1 leo tp->t_state |= TS_FLUSH;
1060 1.1 leo }
1061 1.29 leo splx(s);
1062 1.29 leo }
1063 1.29 leo
1064 1.29 leo static void
1065 1.29 leo zs_shutdown(cs)
1066 1.29 leo struct zs_chanstate *cs;
1067 1.29 leo {
1068 1.29 leo struct tty *tp = cs->cs_ttyp;
1069 1.29 leo int s;
1070 1.29 leo
1071 1.29 leo s = splzs();
1072 1.29 leo
1073 1.29 leo /*
1074 1.29 leo * Hang up if necessary. Wait a bit, so the other side has time to
1075 1.29 leo * notice even if we immediately open the port again.
1076 1.29 leo */
1077 1.29 leo if(tp->t_cflag & HUPCL) {
1078 1.29 leo zs_modem(cs, 0, DMSET);
1079 1.29 leo (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1080 1.29 leo }
1081 1.29 leo
1082 1.29 leo /* Clear any break condition set with TIOCSBRK. */
1083 1.29 leo if(cs->cs_creg[5] & ZSWR5_BREAK) {
1084 1.29 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
1085 1.29 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
1086 1.29 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1087 1.29 leo }
1088 1.29 leo
1089 1.29 leo /*
1090 1.29 leo * Drop all lines and cancel interrupts
1091 1.29 leo */
1092 1.29 leo zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1093 1.1 leo splx(s);
1094 1.1 leo }
1095 1.1 leo
1096 1.1 leo /*
1097 1.1 leo * Set ZS tty parameters from termios.
1098 1.1 leo *
1099 1.1 leo * This routine makes use of the fact that only registers
1100 1.1 leo * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1101 1.1 leo */
1102 1.1 leo static int
1103 1.1 leo zsparam(tp, t)
1104 1.1 leo register struct tty *tp;
1105 1.1 leo register struct termios *t;
1106 1.1 leo {
1107 1.1 leo int unit = ZS_UNIT(tp->t_dev);
1108 1.17 thorpej struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1109 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1110 1.43.2.2 yamt int cdiv = 0, /* XXX gcc4 -Wuninitialized */
1111 1.43.2.2 yamt clkm = 0, /* XXX gcc4 -Wuninitialized */
1112 1.43.2.2 yamt brgm = 0, /* XXX gcc4 -Wuninitialized */
1113 1.43.2.2 yamt tcon = 0; /* XXX gcc4 -Wuninitialized */
1114 1.1 leo register int tmp, tmp5, cflag, s;
1115 1.1 leo
1116 1.6 leo tmp = t->c_ospeed;
1117 1.6 leo tmp5 = t->c_ispeed;
1118 1.6 leo if(tmp < 0 || (tmp5 && tmp5 != tmp))
1119 1.1 leo return(EINVAL);
1120 1.1 leo if(tmp == 0) {
1121 1.1 leo /* stty 0 => drop DTR and RTS */
1122 1.1 leo zs_modem(cs, 0, DMSET);
1123 1.1 leo return(0);
1124 1.1 leo }
1125 1.6 leo tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1126 1.6 leo if (tmp < 0)
1127 1.1 leo return(EINVAL);
1128 1.6 leo tp->t_ispeed = tp->t_ospeed = tmp;
1129 1.1 leo
1130 1.6 leo cflag = tp->t_cflag = t->c_cflag;
1131 1.6 leo if (cflag & CSTOPB)
1132 1.6 leo cdiv |= ZSWR4_TWOSB;
1133 1.6 leo else
1134 1.6 leo cdiv |= ZSWR4_ONESB;
1135 1.6 leo if (!(cflag & PARODD))
1136 1.6 leo cdiv |= ZSWR4_EVENP;
1137 1.6 leo if (cflag & PARENB)
1138 1.6 leo cdiv |= ZSWR4_PARENB;
1139 1.1 leo
1140 1.1 leo switch(cflag & CSIZE) {
1141 1.1 leo case CS5:
1142 1.1 leo tmp = ZSWR3_RX_5;
1143 1.1 leo tmp5 = ZSWR5_TX_5;
1144 1.1 leo break;
1145 1.1 leo case CS6:
1146 1.1 leo tmp = ZSWR3_RX_6;
1147 1.1 leo tmp5 = ZSWR5_TX_6;
1148 1.1 leo break;
1149 1.1 leo case CS7:
1150 1.1 leo tmp = ZSWR3_RX_7;
1151 1.1 leo tmp5 = ZSWR5_TX_7;
1152 1.1 leo break;
1153 1.1 leo case CS8:
1154 1.1 leo default:
1155 1.1 leo tmp = ZSWR3_RX_8;
1156 1.1 leo tmp5 = ZSWR5_TX_8;
1157 1.1 leo break;
1158 1.1 leo }
1159 1.6 leo tmp |= ZSWR3_RX_ENABLE;
1160 1.6 leo tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1161 1.6 leo
1162 1.6 leo /*
1163 1.6 leo * Block interrupts so that state will not
1164 1.6 leo * be altered until we are done setting it up.
1165 1.6 leo */
1166 1.6 leo s = splzs();
1167 1.6 leo cs->cs_preg[4] = cdiv;
1168 1.6 leo cs->cs_preg[11] = clkm;
1169 1.6 leo cs->cs_preg[12] = tcon;
1170 1.6 leo cs->cs_preg[13] = tcon >> 8;
1171 1.6 leo cs->cs_preg[14] = brgm;
1172 1.6 leo cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1173 1.6 leo cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1174 1.6 leo cs->cs_preg[10] = ZSWR10_NRZ;
1175 1.6 leo cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1176 1.1 leo
1177 1.1 leo /*
1178 1.1 leo * Output hardware flow control on the chip is horrendous: if
1179 1.1 leo * carrier detect drops, the receiver is disabled. Hence we
1180 1.1 leo * can only do this when the carrier is on.
1181 1.1 leo */
1182 1.1 leo if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1183 1.6 leo tmp |= ZSWR3_HFC;
1184 1.1 leo cs->cs_preg[3] = tmp;
1185 1.6 leo cs->cs_preg[5] = tmp5;
1186 1.1 leo
1187 1.1 leo /*
1188 1.1 leo * If nothing is being transmitted, set up new current values,
1189 1.1 leo * else mark them as pending.
1190 1.1 leo */
1191 1.1 leo if(cs->cs_heldchange == 0) {
1192 1.1 leo if (cs->cs_ttyp->t_state & TS_BUSY) {
1193 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1194 1.1 leo cs->cs_tbc = 0;
1195 1.1 leo cs->cs_heldchange = 1;
1196 1.6 leo } else {
1197 1.1 leo bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1198 1.1 leo zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1199 1.1 leo }
1200 1.1 leo }
1201 1.1 leo splx(s);
1202 1.1 leo return (0);
1203 1.6 leo }
1204 1.6 leo
1205 1.6 leo /*
1206 1.6 leo * search for the best matching baudrate
1207 1.6 leo */
1208 1.6 leo static int
1209 1.6 leo zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1210 1.6 leo int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1211 1.6 leo {
1212 1.6 leo int bestdiff, bestbps, source;
1213 1.6 leo
1214 1.20 leo bestdiff = bestbps = 0;
1215 1.6 leo unit = (unit & 1) << 2;
1216 1.6 leo for (source = 0; source < 4; ++source) {
1217 1.6 leo long freq = zs_frequencies[unit + source];
1218 1.6 leo int diff, bps, div, clkm, brgm, tcon;
1219 1.20 leo
1220 1.20 leo bps = div = clkm = brgm = tcon = 0;
1221 1.6 leo switch (source) {
1222 1.6 leo case 0: /* BRgen, PCLK */
1223 1.6 leo brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1224 1.6 leo break;
1225 1.6 leo case 1: /* BRgen, RTxC */
1226 1.6 leo brgm = ZSWR14_BAUD_ENA;
1227 1.6 leo break;
1228 1.6 leo case 2: /* RTxC */
1229 1.6 leo clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1230 1.6 leo break;
1231 1.6 leo case 3: /* TRxC */
1232 1.6 leo clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1233 1.6 leo break;
1234 1.6 leo }
1235 1.6 leo switch (source) {
1236 1.6 leo case 0:
1237 1.6 leo case 1:
1238 1.6 leo div = ZSWR4_CLK_X16;
1239 1.6 leo clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1240 1.6 leo tcon = BPS_TO_TCONST(freq, wanted);
1241 1.6 leo if (tcon < 0)
1242 1.6 leo tcon = 0;
1243 1.6 leo bps = TCONST_TO_BPS(freq, tcon);
1244 1.6 leo break;
1245 1.6 leo case 2:
1246 1.6 leo case 3:
1247 1.6 leo { int b1 = freq / 16, d1 = abs(b1 - wanted);
1248 1.6 leo int b2 = freq / 32, d2 = abs(b2 - wanted);
1249 1.6 leo int b3 = freq / 64, d3 = abs(b3 - wanted);
1250 1.6 leo
1251 1.6 leo if (d1 < d2 && d1 < d3) {
1252 1.6 leo div = ZSWR4_CLK_X16;
1253 1.6 leo bps = b1;
1254 1.6 leo } else if (d2 < d3 && d2 < d1) {
1255 1.6 leo div = ZSWR4_CLK_X32;
1256 1.6 leo bps = b2;
1257 1.6 leo } else {
1258 1.6 leo div = ZSWR4_CLK_X64;
1259 1.6 leo bps = b3;
1260 1.6 leo }
1261 1.6 leo brgm = tcon = 0;
1262 1.6 leo break;
1263 1.6 leo }
1264 1.6 leo }
1265 1.6 leo diff = abs(bps - wanted);
1266 1.6 leo if (!source || diff < bestdiff) {
1267 1.6 leo *divisor = div;
1268 1.6 leo *clockmode = clkm;
1269 1.6 leo *brgenmode = brgm;
1270 1.6 leo *timeconst = tcon;
1271 1.6 leo bestbps = bps;
1272 1.6 leo bestdiff = diff;
1273 1.6 leo if (diff == 0)
1274 1.6 leo break;
1275 1.6 leo }
1276 1.6 leo }
1277 1.6 leo /* Allow deviations upto 5% */
1278 1.6 leo if (20 * bestdiff > wanted)
1279 1.6 leo return -1;
1280 1.6 leo return bestbps;
1281 1.1 leo }
1282 1.1 leo
1283 1.1 leo /*
1284 1.1 leo * Raise or lower modem control (DTR/RTS) signals. If a character is
1285 1.1 leo * in transmission, the change is deferred.
1286 1.1 leo */
1287 1.1 leo static int
1288 1.1 leo zs_modem(cs, bits, how)
1289 1.1 leo struct zs_chanstate *cs;
1290 1.1 leo int bits, how;
1291 1.1 leo {
1292 1.1 leo int s, mbits;
1293 1.1 leo
1294 1.1 leo bits &= ZSWR5_DTR | ZSWR5_RTS;
1295 1.1 leo
1296 1.1 leo s = splzs();
1297 1.1 leo mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1298 1.1 leo
1299 1.1 leo switch(how) {
1300 1.1 leo case DMSET:
1301 1.1 leo mbits = bits;
1302 1.1 leo break;
1303 1.1 leo case DMBIS:
1304 1.1 leo mbits |= bits;
1305 1.1 leo break;
1306 1.1 leo case DMBIC:
1307 1.1 leo mbits &= ~bits;
1308 1.1 leo break;
1309 1.1 leo case DMGET:
1310 1.1 leo splx(s);
1311 1.1 leo return(mbits);
1312 1.1 leo }
1313 1.1 leo
1314 1.1 leo cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1315 1.1 leo if(cs->cs_heldchange == 0) {
1316 1.1 leo if(cs->cs_ttyp->t_state & TS_BUSY) {
1317 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1318 1.1 leo cs->cs_tbc = 0;
1319 1.1 leo cs->cs_heldchange = 1;
1320 1.1 leo }
1321 1.1 leo else {
1322 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1323 1.1 leo }
1324 1.1 leo }
1325 1.1 leo splx(s);
1326 1.1 leo return(0);
1327 1.1 leo }
1328 1.1 leo
1329 1.1 leo /*
1330 1.1 leo * Write the given register set to the given zs channel in the proper order.
1331 1.1 leo * The channel must not be transmitting at the time. The receiver will
1332 1.1 leo * be disabled for the time it takes to write all the registers.
1333 1.1 leo */
1334 1.1 leo static void
1335 1.1 leo zs_loadchannelregs(zc, reg)
1336 1.1 leo volatile struct zschan *zc;
1337 1.1 leo u_char *reg;
1338 1.1 leo {
1339 1.1 leo int i;
1340 1.1 leo
1341 1.1 leo zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1342 1.1 leo i = zc->zc_data; /* drain fifo */
1343 1.1 leo i = zc->zc_data;
1344 1.1 leo i = zc->zc_data;
1345 1.1 leo ZS_WRITE(zc, 4, reg[4]);
1346 1.1 leo ZS_WRITE(zc, 10, reg[10]);
1347 1.1 leo ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1348 1.1 leo ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1349 1.1 leo ZS_WRITE(zc, 1, reg[1]);
1350 1.1 leo ZS_WRITE(zc, 9, reg[9]);
1351 1.1 leo ZS_WRITE(zc, 11, reg[11]);
1352 1.1 leo ZS_WRITE(zc, 12, reg[12]);
1353 1.1 leo ZS_WRITE(zc, 13, reg[13]);
1354 1.1 leo ZS_WRITE(zc, 14, reg[14]);
1355 1.1 leo ZS_WRITE(zc, 15, reg[15]);
1356 1.1 leo ZS_WRITE(zc, 3, reg[3]);
1357 1.1 leo ZS_WRITE(zc, 5, reg[5]);
1358 1.1 leo }
1359 1.1 leo #endif /* NZS > 1 */
1360