zs.c revision 1.61 1 1.61 dsl /* $NetBSD: zs.c,v 1.61 2009/03/14 21:04:06 dsl Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1992, 1993
5 1.1 leo * The Regents of the University of California. All rights reserved.
6 1.1 leo *
7 1.1 leo * This software was developed by the Computer Systems Engineering group
8 1.1 leo * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 leo * contributed to Berkeley.
10 1.1 leo *
11 1.1 leo *
12 1.1 leo * All advertising materials mentioning features or use of this software
13 1.1 leo * must display the following acknowledgement:
14 1.1 leo * This product includes software developed by the University of
15 1.1 leo * California, Lawrence Berkeley Laboratory.
16 1.1 leo *
17 1.1 leo * Redistribution and use in source and binary forms, with or without
18 1.1 leo * modification, are permitted provided that the following conditions
19 1.1 leo * are met:
20 1.1 leo * 1. Redistributions of source code must retain the above copyright
21 1.1 leo * notice, this list of conditions and the following disclaimer.
22 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
23 1.1 leo * notice, this list of conditions and the following disclaimer in the
24 1.1 leo * documentation and/or other materials provided with the distribution.
25 1.41 agc * 3. Neither the name of the University nor the names of its contributors
26 1.41 agc * may be used to endorse or promote products derived from this software
27 1.41 agc * without specific prior written permission.
28 1.41 agc *
29 1.41 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.41 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.41 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.41 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.41 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.41 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.41 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.41 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.41 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.41 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.41 agc * SUCH DAMAGE.
40 1.41 agc *
41 1.41 agc * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 1.41 agc */
43 1.41 agc
44 1.42 leo /*-
45 1.42 leo * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 1.42 leo * All rights reserved.
47 1.41 agc *
48 1.42 leo * This code is derived from software contributed to The NetBSD Foundation
49 1.42 leo * by Leo Weppelman.
50 1.41 agc *
51 1.41 agc * Redistribution and use in source and binary forms, with or without
52 1.41 agc * modification, are permitted provided that the following conditions
53 1.41 agc * are met:
54 1.41 agc * 1. Redistributions of source code must retain the above copyright
55 1.41 agc * notice, this list of conditions and the following disclaimer.
56 1.41 agc * 2. Redistributions in binary form must reproduce the above copyright
57 1.41 agc * notice, this list of conditions and the following disclaimer in the
58 1.41 agc * documentation and/or other materials provided with the distribution.
59 1.1 leo *
60 1.42 leo * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
61 1.42 leo * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 1.42 leo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 1.42 leo * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
64 1.42 leo * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 1.42 leo * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 1.42 leo * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 1.42 leo * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 1.42 leo * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 1.42 leo * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 1.42 leo * POSSIBILITY OF SUCH DAMAGE.
71 1.1 leo */
72 1.1 leo
73 1.1 leo /*
74 1.1 leo * Zilog Z8530 (ZSCC) driver.
75 1.1 leo *
76 1.1 leo * Runs two tty ports (modem2 and serial2) on zs0.
77 1.1 leo *
78 1.1 leo * This driver knows far too much about chip to usage mappings.
79 1.1 leo */
80 1.40 lukem
81 1.40 lukem #include <sys/cdefs.h>
82 1.61 dsl __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.61 2009/03/14 21:04:06 dsl Exp $");
83 1.40 lukem
84 1.1 leo #include <sys/param.h>
85 1.9 leo #include <sys/systm.h>
86 1.1 leo #include <sys/proc.h>
87 1.1 leo #include <sys/device.h>
88 1.1 leo #include <sys/conf.h>
89 1.1 leo #include <sys/file.h>
90 1.1 leo #include <sys/ioctl.h>
91 1.13 leo #include <sys/malloc.h>
92 1.1 leo #include <sys/tty.h>
93 1.1 leo #include <sys/time.h>
94 1.1 leo #include <sys/kernel.h>
95 1.1 leo #include <sys/syslog.h>
96 1.47 elad #include <sys/kauth.h>
97 1.1 leo
98 1.1 leo #include <machine/cpu.h>
99 1.1 leo #include <machine/iomap.h>
100 1.1 leo #include <machine/scu.h>
101 1.1 leo #include <machine/mfp.h>
102 1.18 leo #include <atari/dev/ym2149reg.h>
103 1.1 leo
104 1.7 cgd #include <dev/ic/z8530reg.h>
105 1.1 leo #include <atari/dev/zsvar.h>
106 1.1 leo #include "zs.h"
107 1.1 leo #if NZS > 1
108 1.1 leo #error "This driver supports only 1 85C30!"
109 1.1 leo #endif
110 1.1 leo
111 1.1 leo #if NZS > 0
112 1.1 leo
113 1.12 leo #define PCLK (8053976) /* PCLK pin input clock rate */
114 1.30 mycroft #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
115 1.1 leo
116 1.1 leo #define splzs spl5
117 1.1 leo
118 1.1 leo /*
119 1.1 leo * Software state per found chip.
120 1.1 leo */
121 1.1 leo struct zs_softc {
122 1.1 leo struct device zi_dev; /* base device */
123 1.1 leo volatile struct zsdevice *zi_zs; /* chip registers */
124 1.1 leo struct zs_chanstate zi_cs[2]; /* chan A and B software state */
125 1.1 leo };
126 1.1 leo
127 1.58 tjam static void *zs_softint_cookie; /* for callback */
128 1.1 leo /*
129 1.1 leo * Define the registers for a closed port
130 1.1 leo */
131 1.6 leo static u_char zs_init_regs[16] = {
132 1.1 leo /* 0 */ 0,
133 1.1 leo /* 1 */ 0,
134 1.1 leo /* 2 */ 0x60,
135 1.1 leo /* 3 */ 0,
136 1.1 leo /* 4 */ 0,
137 1.1 leo /* 5 */ 0,
138 1.1 leo /* 6 */ 0,
139 1.1 leo /* 7 */ 0,
140 1.1 leo /* 8 */ 0,
141 1.13 leo /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
142 1.1 leo /* 10 */ ZSWR10_NRZ,
143 1.1 leo /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
144 1.1 leo /* 12 */ 0,
145 1.1 leo /* 13 */ 0,
146 1.1 leo /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
147 1.1 leo /* 15 */ 0
148 1.1 leo };
149 1.1 leo
150 1.6 leo /*
151 1.6 leo * Define the machine dependant clock frequencies
152 1.6 leo * If BRgen feeds sender/receiver we always use a
153 1.6 leo * divisor 16, therefor the division by 16 can as
154 1.6 leo * well be done here.
155 1.6 leo */
156 1.6 leo static u_long zs_freqs_tt[] = {
157 1.6 leo /*
158 1.6 leo * Atari TT, RTxCB is generated by TT-MFP timer C,
159 1.46 lukem * which is set to 307.2 kHz during initialisation
160 1.6 leo * and never changed afterwards.
161 1.6 leo */
162 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
163 1.6 leo 229500, /* BRgen, RTxCA, divisor 16 */
164 1.6 leo 3672000, /* RTxCA, from PCLK4 */
165 1.6 leo 0, /* TRxCA, external */
166 1.6 leo
167 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
168 1.6 leo 19200, /* BRgen, RTxCB, divisor 16 */
169 1.6 leo 307200, /* RTxCB, from TT-MFP TCO */
170 1.6 leo 2457600 /* TRxCB, from BCLK */
171 1.6 leo };
172 1.24 leo
173 1.6 leo static u_long zs_freqs_falcon[] = {
174 1.6 leo /*
175 1.6 leo * Atari Falcon, XXX no specs available, this might be wrong
176 1.6 leo */
177 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
178 1.6 leo 229500, /* BRgen, RTxCA, divisor 16 */
179 1.6 leo 3672000, /* RTxCA, ??? */
180 1.6 leo 0, /* TRxCA, external */
181 1.6 leo
182 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
183 1.6 leo 229500, /* BRgen, RTxCB, divisor 16 */
184 1.6 leo 3672000, /* RTxCB, ??? */
185 1.6 leo 2457600 /* TRxCB, ??? */
186 1.6 leo };
187 1.24 leo
188 1.24 leo static u_long zs_freqs_hades[] = {
189 1.24 leo /*
190 1.24 leo * XXX: Channel-A unchecked!!!!!
191 1.24 leo */
192 1.24 leo PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
193 1.24 leo 229500, /* BRgen, RTxCA, divisor 16 */
194 1.24 leo 3672000, /* RTxCA, from PCLK4 */
195 1.24 leo 0, /* TRxCA, external */
196 1.24 leo
197 1.24 leo PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
198 1.24 leo 235550, /* BRgen, RTxCB, divisor 16 */
199 1.24 leo 3768800, /* RTxCB, 3.7688MHz */
200 1.24 leo 3768800 /* TRxCB, 3.7688MHz */
201 1.24 leo };
202 1.24 leo
203 1.6 leo static u_long zs_freqs_generic[] = {
204 1.6 leo /*
205 1.6 leo * other machines, assume only PCLK is available
206 1.6 leo */
207 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
208 1.6 leo 0, /* BRgen, RTxCA, divisor 16 */
209 1.6 leo 0, /* RTxCA, unknown */
210 1.6 leo 0, /* TRxCA, unknown */
211 1.6 leo
212 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
213 1.6 leo 0, /* BRgen, RTxCB, divisor 16 */
214 1.6 leo 0, /* RTxCB, unknown */
215 1.6 leo 0 /* TRxCB, unknown */
216 1.6 leo };
217 1.6 leo static u_long *zs_frequencies;
218 1.6 leo
219 1.1 leo /* Definition of the driver for autoconfig. */
220 1.59 dsl static int zsmatch(struct device *, struct cfdata *, void *);
221 1.59 dsl static void zsattach(struct device *, struct device *, void *);
222 1.17 thorpej
223 1.38 thorpej CFATTACH_DECL(zs, sizeof(struct zs_softc),
224 1.38 thorpej zsmatch, zsattach, NULL, NULL);
225 1.17 thorpej
226 1.28 thorpej extern struct cfdriver zs_cd;
227 1.1 leo
228 1.15 leo /* {b,c}devsw[] function prototypes */
229 1.15 leo dev_type_open(zsopen);
230 1.15 leo dev_type_close(zsclose);
231 1.15 leo dev_type_read(zsread);
232 1.15 leo dev_type_write(zswrite);
233 1.15 leo dev_type_ioctl(zsioctl);
234 1.36 gehenna dev_type_stop(zsstop);
235 1.16 leo dev_type_tty(zstty);
236 1.36 gehenna dev_type_poll(zspoll);
237 1.36 gehenna
238 1.36 gehenna const struct cdevsw zs_cdevsw = {
239 1.36 gehenna zsopen, zsclose, zsread, zswrite, zsioctl,
240 1.39 jdolecek zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
241 1.36 gehenna };
242 1.15 leo
243 1.1 leo /* Interrupt handlers. */
244 1.59 dsl int zshard(long);
245 1.59 dsl static int zssoft(long);
246 1.59 dsl static int zsrint(struct zs_chanstate *, volatile struct zschan *);
247 1.59 dsl static int zsxint(struct zs_chanstate *, volatile struct zschan *);
248 1.59 dsl static int zssint(struct zs_chanstate *, volatile struct zschan *);
249 1.1 leo
250 1.6 leo static struct zs_chanstate *zslist;
251 1.1 leo
252 1.1 leo /* Routines called from other code. */
253 1.59 dsl static void zsstart(struct tty *);
254 1.16 leo
255 1.16 leo /* Routines purely local to this driver. */
256 1.59 dsl static void zsoverrun(int, long *, const char *);
257 1.59 dsl static int zsparam(struct tty *, struct termios *);
258 1.59 dsl static int zsbaudrate(int, int, int *, int *, int *, int *);
259 1.59 dsl static int zs_modem(struct zs_chanstate *, int, int);
260 1.59 dsl static void zs_loadchannelregs(volatile struct zschan *, u_char *);
261 1.59 dsl static void zs_shutdown(struct zs_chanstate *);
262 1.1 leo
263 1.4 leo static int
264 1.60 dsl zsmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
265 1.1 leo {
266 1.31 leo static int zs_matched = 0;
267 1.31 leo
268 1.31 leo if(strcmp("zs", auxp) || zs_matched)
269 1.1 leo return(0);
270 1.31 leo zs_matched = 1;
271 1.1 leo return(1);
272 1.1 leo }
273 1.1 leo
274 1.1 leo /*
275 1.1 leo * Attach a found zs.
276 1.1 leo */
277 1.1 leo static void
278 1.60 dsl zsattach(struct device *parent, struct device *dev, void *aux)
279 1.1 leo {
280 1.1 leo register struct zs_softc *zi;
281 1.1 leo register struct zs_chanstate *cs;
282 1.1 leo register volatile struct zsdevice *addr;
283 1.1 leo char tmp;
284 1.1 leo
285 1.1 leo addr = (struct zsdevice *)AD_SCC;
286 1.1 leo zi = (struct zs_softc *)dev;
287 1.1 leo zi->zi_zs = addr;
288 1.1 leo cs = zi->zi_cs;
289 1.1 leo
290 1.1 leo /*
291 1.1 leo * Get the command register into a known state.
292 1.1 leo */
293 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
294 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
295 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
296 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
297 1.1 leo
298 1.1 leo /*
299 1.1 leo * Do a hardware reset.
300 1.1 leo */
301 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
302 1.1 leo delay(50000); /*enough ? */
303 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
304 1.1 leo
305 1.1 leo /*
306 1.1 leo * Initialize both channels
307 1.1 leo */
308 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
309 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
310 1.1 leo
311 1.5 leo if(machineid & ATARI_TT) {
312 1.5 leo /*
313 1.6 leo * ininitialise TT-MFP timer C: 307200Hz
314 1.6 leo * timer C and D share one control register:
315 1.6 leo * bits 0-2 control timer D
316 1.6 leo * bits 4-6 control timer C
317 1.6 leo */
318 1.6 leo int cr = MFP2->mf_tcdcr & 7;
319 1.6 leo MFP2->mf_tcdcr = cr; /* stop timer C */
320 1.6 leo MFP2->mf_tcdr = 1; /* counter 1 */
321 1.6 leo cr |= T_Q004 << 4; /* divisor 4 */
322 1.6 leo MFP2->mf_tcdcr = cr; /* start timer C */
323 1.6 leo /*
324 1.5 leo * enable scc related interrupts
325 1.5 leo */
326 1.27 leo SCU->vme_mask |= SCU_SCC;
327 1.6 leo
328 1.6 leo zs_frequencies = zs_freqs_tt;
329 1.6 leo } else if (machineid & ATARI_FALCON) {
330 1.6 leo zs_frequencies = zs_freqs_falcon;
331 1.24 leo } else if (machineid & ATARI_HADES) {
332 1.24 leo zs_frequencies = zs_freqs_hades;
333 1.6 leo } else {
334 1.6 leo zs_frequencies = zs_freqs_generic;
335 1.5 leo }
336 1.1 leo
337 1.1 leo /* link into interrupt list with order (A,B) (B=A+1) */
338 1.1 leo cs[0].cs_next = &cs[1];
339 1.1 leo cs[1].cs_next = zslist;
340 1.1 leo zslist = cs;
341 1.1 leo
342 1.1 leo cs->cs_unit = 0;
343 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
344 1.1 leo cs++;
345 1.1 leo cs->cs_unit = 1;
346 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
347 1.1 leo
348 1.58 tjam zs_softint_cookie = softint_establish(SOFTINT_SERIAL,
349 1.58 tjam (void (*)(void *))zssoft, 0);
350 1.58 tjam
351 1.23 christos printf(": serial2 on channel a and modem2 on channel b\n");
352 1.1 leo }
353 1.1 leo
354 1.1 leo /*
355 1.1 leo * Open a zs serial port.
356 1.1 leo */
357 1.1 leo int
358 1.60 dsl zsopen(dev_t dev, int flags, int mode, struct lwp *l)
359 1.1 leo {
360 1.1 leo register struct tty *tp;
361 1.1 leo register struct zs_chanstate *cs;
362 1.1 leo struct zs_softc *zi;
363 1.1 leo int unit = ZS_UNIT(dev);
364 1.1 leo int zs = unit >> 1;
365 1.1 leo int error, s;
366 1.1 leo
367 1.57 tsutsui zi = device_lookup_private(&zs_cd, zs);
368 1.57 tsutsui if (zi == NULL)
369 1.1 leo return (ENXIO);
370 1.1 leo cs = &zi->zi_cs[unit & 1];
371 1.10 jtc
372 1.10 jtc /*
373 1.10 jtc * When port A (ser02) is selected on the TT, make sure
374 1.10 jtc * the port is enabled.
375 1.10 jtc */
376 1.18 leo if((machineid & ATARI_TT) && !(unit & 1))
377 1.26 leo ym2149_ser2(1);
378 1.13 leo
379 1.13 leo if (cs->cs_rbuf == NULL) {
380 1.13 leo cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
381 1.13 leo M_WAITOK);
382 1.10 jtc }
383 1.10 jtc
384 1.1 leo tp = cs->cs_ttyp;
385 1.1 leo if(tp == NULL) {
386 1.21 leo cs->cs_ttyp = tp = ttymalloc();
387 1.21 leo tty_attach(tp);
388 1.21 leo tp->t_dev = dev;
389 1.21 leo tp->t_oproc = zsstart;
390 1.21 leo tp->t_param = zsparam;
391 1.1 leo }
392 1.1 leo
393 1.50 elad if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
394 1.29 leo return (EBUSY);
395 1.29 leo
396 1.1 leo s = spltty();
397 1.29 leo
398 1.29 leo /*
399 1.29 leo * Do the following iff this is a first open.
400 1.29 leo */
401 1.29 leo if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
402 1.1 leo if(tp->t_ispeed == 0) {
403 1.1 leo tp->t_iflag = TTYDEF_IFLAG;
404 1.1 leo tp->t_oflag = TTYDEF_OFLAG;
405 1.1 leo tp->t_cflag = TTYDEF_CFLAG;
406 1.1 leo tp->t_lflag = TTYDEF_LFLAG;
407 1.1 leo tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
408 1.1 leo }
409 1.29 leo ttychars(tp);
410 1.29 leo ttsetwater(tp);
411 1.29 leo
412 1.1 leo (void)zsparam(tp, &tp->t_termios);
413 1.29 leo
414 1.29 leo /*
415 1.29 leo * Turn on DTR. We must always do this, even if carrier is not
416 1.29 leo * present, because otherwise we'd have to use TIOCSDTR
417 1.29 leo * immediately after setting CLOCAL, which applications do not
418 1.29 leo * expect. We always assert DTR while the device is open
419 1.29 leo * unless explicitly requested to deassert it.
420 1.29 leo */
421 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
422 1.8 leo /* May never get a status intr. if DCD already on. -gwr */
423 1.16 leo if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
424 1.8 leo tp->t_state |= TS_CARR_ON;
425 1.1 leo if(cs->cs_softcar)
426 1.1 leo tp->t_state |= TS_CARR_ON;
427 1.1 leo }
428 1.29 leo
429 1.1 leo splx(s);
430 1.29 leo
431 1.29 leo error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
432 1.29 leo if (error)
433 1.29 leo goto bad;
434 1.29 leo
435 1.32 eeh error = tp->t_linesw->l_open(dev, tp);
436 1.1 leo if(error)
437 1.29 leo goto bad;
438 1.29 leo return (0);
439 1.29 leo
440 1.29 leo bad:
441 1.29 leo if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
442 1.29 leo /*
443 1.29 leo * We failed to open the device, and nobody else had it opened.
444 1.29 leo * Clean up the state as appropriate.
445 1.29 leo */
446 1.29 leo zs_shutdown(cs);
447 1.29 leo }
448 1.1 leo return(error);
449 1.1 leo }
450 1.1 leo
451 1.1 leo /*
452 1.1 leo * Close a zs serial port.
453 1.1 leo */
454 1.1 leo int
455 1.60 dsl zsclose(dev_t dev, int flags, int mode, struct lwp *l)
456 1.1 leo {
457 1.1 leo register struct zs_chanstate *cs;
458 1.1 leo register struct tty *tp;
459 1.1 leo struct zs_softc *zi;
460 1.1 leo int unit = ZS_UNIT(dev);
461 1.1 leo
462 1.57 tsutsui zi = device_lookup_private(&zs_cd, unit >> 1);
463 1.1 leo cs = &zi->zi_cs[unit & 1];
464 1.1 leo tp = cs->cs_ttyp;
465 1.29 leo
466 1.32 eeh tp->t_linesw->l_close(tp, flags);
467 1.1 leo ttyclose(tp);
468 1.1 leo
469 1.29 leo if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
470 1.29 leo /*
471 1.29 leo * Although we got a last close, the device may still be in
472 1.29 leo * use; e.g. if this was the dialout node, and there are still
473 1.29 leo * processes waiting for carrier on the non-dialout node.
474 1.29 leo */
475 1.29 leo zs_shutdown(cs);
476 1.29 leo }
477 1.1 leo return (0);
478 1.1 leo }
479 1.1 leo
480 1.1 leo /*
481 1.1 leo * Read/write zs serial port.
482 1.1 leo */
483 1.1 leo int
484 1.60 dsl zsread(dev_t dev, struct uio *uio, int flags)
485 1.1 leo {
486 1.4 leo register struct zs_chanstate *cs;
487 1.4 leo register struct zs_softc *zi;
488 1.4 leo register struct tty *tp;
489 1.4 leo int unit;
490 1.4 leo
491 1.4 leo unit = ZS_UNIT(dev);
492 1.57 tsutsui zi = device_lookup_private(&zs_cd, unit >> 1);
493 1.4 leo cs = &zi->zi_cs[unit & 1];
494 1.4 leo tp = cs->cs_ttyp;
495 1.1 leo
496 1.32 eeh return(tp->t_linesw->l_read(tp, uio, flags));
497 1.1 leo }
498 1.1 leo
499 1.4 leo int
500 1.60 dsl zswrite(dev_t dev, struct uio *uio, int flags)
501 1.1 leo {
502 1.4 leo register struct zs_chanstate *cs;
503 1.4 leo register struct zs_softc *zi;
504 1.4 leo register struct tty *tp;
505 1.4 leo int unit;
506 1.4 leo
507 1.4 leo unit = ZS_UNIT(dev);
508 1.57 tsutsui zi = device_lookup_private(&zs_cd, unit >> 1);
509 1.4 leo cs = &zi->zi_cs[unit & 1];
510 1.4 leo tp = cs->cs_ttyp;
511 1.1 leo
512 1.32 eeh return(tp->t_linesw->l_write(tp, uio, flags));
513 1.34 scw }
514 1.34 scw
515 1.34 scw int
516 1.60 dsl zspoll(dev_t dev, int events, struct lwp *l)
517 1.34 scw {
518 1.34 scw register struct zs_chanstate *cs;
519 1.34 scw register struct zs_softc *zi;
520 1.34 scw register struct tty *tp;
521 1.34 scw int unit;
522 1.34 scw
523 1.34 scw unit = ZS_UNIT(dev);
524 1.57 tsutsui zi = device_lookup_private(&zs_cd, unit >> 1);
525 1.34 scw cs = &zi->zi_cs[unit & 1];
526 1.34 scw tp = cs->cs_ttyp;
527 1.34 scw
528 1.45 christos return ((*tp->t_linesw->l_poll)(tp, events, l));
529 1.4 leo }
530 1.4 leo
531 1.4 leo struct tty *
532 1.60 dsl zstty(dev_t dev)
533 1.4 leo {
534 1.4 leo register struct zs_chanstate *cs;
535 1.4 leo register struct zs_softc *zi;
536 1.4 leo int unit;
537 1.4 leo
538 1.4 leo unit = ZS_UNIT(dev);
539 1.57 tsutsui zi = device_lookup_private(&zs_cd, unit >> 1);
540 1.4 leo cs = &zi->zi_cs[unit & 1];
541 1.4 leo return(cs->cs_ttyp);
542 1.1 leo }
543 1.1 leo
544 1.1 leo /*
545 1.1 leo * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
546 1.1 leo * channels are kept in (A,B) pairs.
547 1.1 leo *
548 1.1 leo * Do just a little, then get out; set a software interrupt if more
549 1.1 leo * work is needed.
550 1.1 leo *
551 1.1 leo * We deliberately ignore the vectoring Zilog gives us, and match up
552 1.1 leo * only the number of `reset interrupt under service' operations, not
553 1.1 leo * the order.
554 1.1 leo */
555 1.8 leo
556 1.1 leo int
557 1.60 dsl zshard(long sr)
558 1.1 leo {
559 1.1 leo register struct zs_chanstate *a;
560 1.1 leo #define b (a + 1)
561 1.1 leo register volatile struct zschan *zc;
562 1.1 leo register int rr3, intflags = 0, v, i;
563 1.1 leo
564 1.8 leo do {
565 1.8 leo intflags &= ~4;
566 1.8 leo for(a = zslist; a != NULL; a = b->cs_next) {
567 1.1 leo rr3 = ZS_READ(a->cs_zc, 3);
568 1.1 leo if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
569 1.8 leo intflags |= 4|2;
570 1.1 leo zc = a->cs_zc;
571 1.1 leo i = a->cs_rbput;
572 1.1 leo if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
573 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
574 1.1 leo intflags |= 1;
575 1.1 leo }
576 1.1 leo if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
577 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
578 1.1 leo intflags |= 1;
579 1.1 leo }
580 1.1 leo if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
581 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
582 1.1 leo intflags |= 1;
583 1.1 leo }
584 1.1 leo a->cs_rbput = i;
585 1.1 leo }
586 1.1 leo if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
587 1.8 leo intflags |= 4|2;
588 1.1 leo zc = b->cs_zc;
589 1.1 leo i = b->cs_rbput;
590 1.1 leo if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
591 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
592 1.1 leo intflags |= 1;
593 1.1 leo }
594 1.1 leo if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
595 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
596 1.1 leo intflags |= 1;
597 1.1 leo }
598 1.1 leo if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
599 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
600 1.1 leo intflags |= 1;
601 1.1 leo }
602 1.1 leo b->cs_rbput = i;
603 1.1 leo }
604 1.8 leo }
605 1.8 leo } while(intflags & 4);
606 1.1 leo #undef b
607 1.1 leo
608 1.58 tjam if(intflags & 1)
609 1.58 tjam softint_schedule(zs_softint_cookie);
610 1.58 tjam
611 1.1 leo return(intflags & 2);
612 1.1 leo }
613 1.1 leo
614 1.1 leo static int
615 1.60 dsl zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
616 1.1 leo {
617 1.8 leo register int c;
618 1.1 leo
619 1.8 leo /*
620 1.8 leo * First read the status, because read of the received char
621 1.8 leo * destroy the status of this char.
622 1.8 leo */
623 1.8 leo c = ZS_READ(zc, 1);
624 1.8 leo c |= (zc->zc_data << 8);
625 1.1 leo
626 1.1 leo /* clear receive error & interrupt condition */
627 1.1 leo zc->zc_csr = ZSWR0_RESET_ERRORS;
628 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
629 1.1 leo
630 1.1 leo return(ZRING_MAKE(ZRING_RINT, c));
631 1.1 leo }
632 1.1 leo
633 1.1 leo static int
634 1.60 dsl zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
635 1.1 leo {
636 1.1 leo register int i = cs->cs_tbc;
637 1.1 leo
638 1.1 leo if(i == 0) {
639 1.1 leo zc->zc_csr = ZSWR0_RESET_TXINT;
640 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
641 1.1 leo return(ZRING_MAKE(ZRING_XINT, 0));
642 1.1 leo }
643 1.1 leo cs->cs_tbc = i - 1;
644 1.1 leo zc->zc_data = *cs->cs_tba++;
645 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
646 1.1 leo return (0);
647 1.1 leo }
648 1.1 leo
649 1.1 leo static int
650 1.60 dsl zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
651 1.1 leo {
652 1.1 leo register int rr0;
653 1.1 leo
654 1.1 leo rr0 = zc->zc_csr;
655 1.1 leo zc->zc_csr = ZSWR0_RESET_STATUS;
656 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
657 1.1 leo /*
658 1.1 leo * The chip's hardware flow control is, as noted in zsreg.h,
659 1.1 leo * busted---if the DCD line goes low the chip shuts off the
660 1.1 leo * receiver (!). If we want hardware CTS flow control but do
661 1.1 leo * not have it, and carrier is now on, turn HFC on; if we have
662 1.1 leo * HFC now but carrier has gone low, turn it off.
663 1.1 leo */
664 1.1 leo if(rr0 & ZSRR0_DCD) {
665 1.1 leo if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
666 1.1 leo (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
667 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
668 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
669 1.1 leo }
670 1.1 leo }
671 1.1 leo else {
672 1.1 leo if (cs->cs_creg[3] & ZSWR3_HFC) {
673 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
674 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
675 1.1 leo }
676 1.1 leo }
677 1.1 leo return(ZRING_MAKE(ZRING_SINT, rr0));
678 1.1 leo }
679 1.1 leo
680 1.1 leo /*
681 1.1 leo * Print out a ring or fifo overrun error message.
682 1.1 leo */
683 1.1 leo static void
684 1.60 dsl zsoverrun(int unit, long *ptime, const char *what)
685 1.1 leo {
686 1.55 joerg time_t cur_sec = time_second;
687 1.1 leo
688 1.55 joerg if(*ptime != cur_sec) {
689 1.55 joerg *ptime = cur_sec;
690 1.1 leo log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
691 1.1 leo (unit & 1) + 'a', what);
692 1.1 leo }
693 1.1 leo }
694 1.1 leo
695 1.1 leo /*
696 1.1 leo * ZS software interrupt. Scan all channels for deferred interrupts.
697 1.1 leo */
698 1.1 leo int
699 1.60 dsl zssoft(long sr)
700 1.1 leo {
701 1.1 leo register struct zs_chanstate *cs;
702 1.1 leo register volatile struct zschan *zc;
703 1.1 leo register struct linesw *line;
704 1.1 leo register struct tty *tp;
705 1.1 leo register int get, n, c, cc, unit, s;
706 1.1 leo int retval = 0;
707 1.1 leo
708 1.1 leo s = spltty();
709 1.1 leo for(cs = zslist; cs != NULL; cs = cs->cs_next) {
710 1.1 leo get = cs->cs_rbget;
711 1.1 leo again:
712 1.1 leo n = cs->cs_rbput; /* atomic */
713 1.1 leo if(get == n) /* nothing more on this line */
714 1.1 leo continue;
715 1.1 leo retval = 1;
716 1.1 leo unit = cs->cs_unit; /* set up to handle interrupts */
717 1.1 leo zc = cs->cs_zc;
718 1.1 leo tp = cs->cs_ttyp;
719 1.33 leo line = tp->t_linesw;
720 1.1 leo /*
721 1.1 leo * Compute the number of interrupts in the receive ring.
722 1.1 leo * If the count is overlarge, we lost some events, and
723 1.1 leo * must advance to the first valid one. It may get
724 1.1 leo * overwritten if more data are arriving, but this is
725 1.1 leo * too expensive to check and gains nothing (we already
726 1.1 leo * lost out; all we can do at this point is trade one
727 1.1 leo * kind of loss for another).
728 1.1 leo */
729 1.1 leo n -= get;
730 1.1 leo if(n > ZLRB_RING_SIZE) {
731 1.1 leo zsoverrun(unit, &cs->cs_rotime, "ring");
732 1.1 leo get += n - ZLRB_RING_SIZE;
733 1.1 leo n = ZLRB_RING_SIZE;
734 1.1 leo }
735 1.1 leo while(--n >= 0) {
736 1.1 leo /* race to keep ahead of incoming interrupts */
737 1.1 leo c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
738 1.1 leo switch (ZRING_TYPE(c)) {
739 1.1 leo
740 1.1 leo case ZRING_RINT:
741 1.1 leo c = ZRING_VALUE(c);
742 1.1 leo if(c & ZSRR1_DO)
743 1.1 leo zsoverrun(unit, &cs->cs_fotime, "fifo");
744 1.1 leo cc = c >> 8;
745 1.1 leo if(c & ZSRR1_FE)
746 1.1 leo cc |= TTY_FE;
747 1.1 leo if(c & ZSRR1_PE)
748 1.1 leo cc |= TTY_PE;
749 1.1 leo line->l_rint(cc, tp);
750 1.1 leo break;
751 1.1 leo
752 1.1 leo case ZRING_XINT:
753 1.1 leo /*
754 1.1 leo * Transmit done: change registers and resume,
755 1.1 leo * or clear BUSY.
756 1.1 leo */
757 1.1 leo if(cs->cs_heldchange) {
758 1.1 leo int sps;
759 1.1 leo
760 1.1 leo sps = splzs();
761 1.1 leo c = zc->zc_csr;
762 1.1 leo if((c & ZSRR0_DCD) == 0)
763 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
764 1.52 christos bcopy((void *)cs->cs_preg,
765 1.52 christos (void *)cs->cs_creg, 16);
766 1.1 leo zs_loadchannelregs(zc, cs->cs_creg);
767 1.1 leo splx(sps);
768 1.1 leo cs->cs_heldchange = 0;
769 1.1 leo if(cs->cs_heldtbc
770 1.1 leo && (tp->t_state & TS_TTSTOP) == 0) {
771 1.1 leo cs->cs_tbc = cs->cs_heldtbc - 1;
772 1.1 leo zc->zc_data = *cs->cs_tba++;
773 1.1 leo goto again;
774 1.1 leo }
775 1.1 leo }
776 1.1 leo tp->t_state &= ~TS_BUSY;
777 1.1 leo if(tp->t_state & TS_FLUSH)
778 1.1 leo tp->t_state &= ~TS_FLUSH;
779 1.1 leo else ndflush(&tp->t_outq,cs->cs_tba
780 1.53 tsutsui - tp->t_outq.c_cf);
781 1.1 leo line->l_start(tp);
782 1.1 leo break;
783 1.1 leo
784 1.1 leo case ZRING_SINT:
785 1.1 leo /*
786 1.1 leo * Status line change. HFC bit is run in
787 1.1 leo * hardware interrupt, to avoid locking
788 1.1 leo * at splzs here.
789 1.1 leo */
790 1.1 leo c = ZRING_VALUE(c);
791 1.1 leo if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
792 1.1 leo cc = (c & ZSRR0_DCD) != 0;
793 1.1 leo if(line->l_modem(tp, cc) == 0)
794 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
795 1.1 leo cc ? DMBIS : DMBIC);
796 1.1 leo }
797 1.1 leo cs->cs_rr0 = c;
798 1.1 leo break;
799 1.1 leo
800 1.1 leo default:
801 1.1 leo log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
802 1.1 leo unit >> 1, (unit & 1) + 'a', c);
803 1.1 leo break;
804 1.1 leo }
805 1.1 leo }
806 1.1 leo cs->cs_rbget = get;
807 1.1 leo goto again;
808 1.1 leo }
809 1.1 leo splx(s);
810 1.1 leo return (retval);
811 1.1 leo }
812 1.1 leo
813 1.1 leo int
814 1.60 dsl zsioctl(dev_t dev, u_long cmd, void * data, int flag, struct lwp *l)
815 1.1 leo {
816 1.1 leo int unit = ZS_UNIT(dev);
817 1.57 tsutsui struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
818 1.1 leo register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
819 1.1 leo register int error, s;
820 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
821 1.1 leo
822 1.45 christos error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
823 1.35 atatat if(error != EPASSTHROUGH)
824 1.1 leo return(error);
825 1.35 atatat
826 1.45 christos error = ttioctl(tp, cmd, data, flag, l);
827 1.35 atatat if(error !=EPASSTHROUGH)
828 1.1 leo return (error);
829 1.1 leo
830 1.1 leo switch (cmd) {
831 1.1 leo case TIOCSBRK:
832 1.1 leo s = splzs();
833 1.1 leo cs->cs_preg[5] |= ZSWR5_BREAK;
834 1.1 leo cs->cs_creg[5] |= ZSWR5_BREAK;
835 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
836 1.1 leo splx(s);
837 1.1 leo break;
838 1.1 leo case TIOCCBRK:
839 1.1 leo s = splzs();
840 1.1 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
841 1.1 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
842 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
843 1.1 leo splx(s);
844 1.1 leo break;
845 1.1 leo case TIOCGFLAGS: {
846 1.1 leo int bits = 0;
847 1.1 leo
848 1.1 leo if(cs->cs_softcar)
849 1.1 leo bits |= TIOCFLAG_SOFTCAR;
850 1.1 leo if(cs->cs_creg[15] & ZSWR15_DCD_IE)
851 1.1 leo bits |= TIOCFLAG_CLOCAL;
852 1.1 leo if(cs->cs_creg[3] & ZSWR3_HFC)
853 1.1 leo bits |= TIOCFLAG_CRTSCTS;
854 1.1 leo *(int *)data = bits;
855 1.1 leo break;
856 1.1 leo }
857 1.1 leo case TIOCSFLAGS: {
858 1.15 leo int userbits = 0;
859 1.1 leo
860 1.51 elad error = kauth_authorize_device_tty(l->l_cred,
861 1.51 elad KAUTH_DEVICE_TTY_PRIVSET, tp);
862 1.1 leo if(error != 0)
863 1.1 leo return (EPERM);
864 1.1 leo
865 1.1 leo userbits = *(int *)data;
866 1.1 leo
867 1.1 leo /*
868 1.1 leo * can have `local' or `softcar', and `rtscts' or `mdmbuf'
869 1.1 leo # defaulting to software flow control.
870 1.1 leo */
871 1.1 leo if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
872 1.1 leo return(EINVAL);
873 1.1 leo if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
874 1.11 leo return(ENODEV);
875 1.1 leo
876 1.1 leo s = splzs();
877 1.1 leo if((userbits & TIOCFLAG_SOFTCAR)) {
878 1.1 leo cs->cs_softcar = 1; /* turn on softcar */
879 1.1 leo cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
880 1.1 leo cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
881 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
882 1.1 leo }
883 1.1 leo else if(userbits & TIOCFLAG_CLOCAL) {
884 1.1 leo cs->cs_softcar = 0; /* turn off softcar */
885 1.1 leo cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
886 1.1 leo cs->cs_creg[15] |= ZSWR15_DCD_IE;
887 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
888 1.1 leo tp->t_termios.c_cflag |= CLOCAL;
889 1.1 leo }
890 1.1 leo if(userbits & TIOCFLAG_CRTSCTS) {
891 1.1 leo cs->cs_preg[15] |= ZSWR15_CTS_IE;
892 1.1 leo cs->cs_creg[15] |= ZSWR15_CTS_IE;
893 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
894 1.1 leo cs->cs_preg[3] |= ZSWR3_HFC;
895 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
896 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
897 1.1 leo tp->t_termios.c_cflag |= CRTSCTS;
898 1.1 leo }
899 1.1 leo else {
900 1.1 leo /* no mdmbuf, so we must want software flow control */
901 1.1 leo cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
902 1.1 leo cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
903 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
904 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
905 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
906 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
907 1.1 leo tp->t_termios.c_cflag &= ~CRTSCTS;
908 1.1 leo }
909 1.1 leo splx(s);
910 1.1 leo break;
911 1.1 leo }
912 1.1 leo case TIOCSDTR:
913 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIS);
914 1.1 leo break;
915 1.1 leo case TIOCCDTR:
916 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIC);
917 1.1 leo break;
918 1.1 leo case TIOCMGET:
919 1.1 leo zs_modem(cs, 0, DMGET);
920 1.1 leo break;
921 1.1 leo case TIOCMSET:
922 1.1 leo case TIOCMBIS:
923 1.1 leo case TIOCMBIC:
924 1.1 leo default:
925 1.35 atatat return (EPASSTHROUGH);
926 1.1 leo }
927 1.1 leo return (0);
928 1.1 leo }
929 1.1 leo
930 1.1 leo /*
931 1.1 leo * Start or restart transmission.
932 1.1 leo */
933 1.1 leo static void
934 1.60 dsl zsstart(register struct tty *tp)
935 1.1 leo {
936 1.1 leo register struct zs_chanstate *cs;
937 1.1 leo register int s, nch;
938 1.1 leo int unit = ZS_UNIT(tp->t_dev);
939 1.57 tsutsui struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
940 1.1 leo
941 1.1 leo cs = &zi->zi_cs[unit & 1];
942 1.1 leo s = spltty();
943 1.1 leo
944 1.1 leo /*
945 1.1 leo * If currently active or delaying, no need to do anything.
946 1.1 leo */
947 1.1 leo if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
948 1.1 leo goto out;
949 1.1 leo
950 1.1 leo /*
951 1.1 leo * If there are sleepers, and output has drained below low
952 1.1 leo * water mark, awaken.
953 1.1 leo */
954 1.54 ad ttypull(tp);
955 1.1 leo
956 1.1 leo nch = ndqb(&tp->t_outq, 0); /* XXX */
957 1.1 leo if(nch) {
958 1.1 leo register char *p = tp->t_outq.c_cf;
959 1.1 leo
960 1.1 leo /* mark busy, enable tx done interrupts, & send first byte */
961 1.1 leo tp->t_state |= TS_BUSY;
962 1.1 leo (void) splzs();
963 1.1 leo cs->cs_preg[1] |= ZSWR1_TIE;
964 1.1 leo cs->cs_creg[1] |= ZSWR1_TIE;
965 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
966 1.1 leo cs->cs_zc->zc_data = *p;
967 1.1 leo cs->cs_tba = p + 1;
968 1.1 leo cs->cs_tbc = nch - 1;
969 1.1 leo } else {
970 1.1 leo /*
971 1.1 leo * Nothing to send, turn off transmit done interrupts.
972 1.1 leo * This is useful if something is doing polled output.
973 1.1 leo */
974 1.1 leo (void) splzs();
975 1.1 leo cs->cs_preg[1] &= ~ZSWR1_TIE;
976 1.1 leo cs->cs_creg[1] &= ~ZSWR1_TIE;
977 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
978 1.1 leo }
979 1.1 leo out:
980 1.1 leo splx(s);
981 1.1 leo }
982 1.1 leo
983 1.1 leo /*
984 1.1 leo * Stop output, e.g., for ^S or output flush.
985 1.1 leo */
986 1.1 leo void
987 1.60 dsl zsstop(register struct tty *tp, int flag)
988 1.1 leo {
989 1.1 leo register struct zs_chanstate *cs;
990 1.1 leo register int s, unit = ZS_UNIT(tp->t_dev);
991 1.57 tsutsui struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
992 1.1 leo
993 1.1 leo cs = &zi->zi_cs[unit & 1];
994 1.1 leo s = splzs();
995 1.1 leo if(tp->t_state & TS_BUSY) {
996 1.1 leo /*
997 1.1 leo * Device is transmitting; must stop it.
998 1.1 leo */
999 1.1 leo cs->cs_tbc = 0;
1000 1.1 leo if ((tp->t_state & TS_TTSTOP) == 0)
1001 1.1 leo tp->t_state |= TS_FLUSH;
1002 1.1 leo }
1003 1.29 leo splx(s);
1004 1.29 leo }
1005 1.29 leo
1006 1.29 leo static void
1007 1.60 dsl zs_shutdown(struct zs_chanstate *cs)
1008 1.29 leo {
1009 1.29 leo struct tty *tp = cs->cs_ttyp;
1010 1.29 leo int s;
1011 1.29 leo
1012 1.29 leo s = splzs();
1013 1.29 leo
1014 1.29 leo /*
1015 1.29 leo * Hang up if necessary. Wait a bit, so the other side has time to
1016 1.29 leo * notice even if we immediately open the port again.
1017 1.29 leo */
1018 1.29 leo if(tp->t_cflag & HUPCL) {
1019 1.29 leo zs_modem(cs, 0, DMSET);
1020 1.52 christos (void)tsleep((void *)cs, TTIPRI, ttclos, hz);
1021 1.29 leo }
1022 1.29 leo
1023 1.29 leo /* Clear any break condition set with TIOCSBRK. */
1024 1.29 leo if(cs->cs_creg[5] & ZSWR5_BREAK) {
1025 1.29 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
1026 1.29 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
1027 1.29 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1028 1.29 leo }
1029 1.29 leo
1030 1.29 leo /*
1031 1.29 leo * Drop all lines and cancel interrupts
1032 1.29 leo */
1033 1.29 leo zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1034 1.1 leo splx(s);
1035 1.1 leo }
1036 1.1 leo
1037 1.1 leo /*
1038 1.1 leo * Set ZS tty parameters from termios.
1039 1.1 leo *
1040 1.1 leo * This routine makes use of the fact that only registers
1041 1.1 leo * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1042 1.1 leo */
1043 1.1 leo static int
1044 1.60 dsl zsparam(register struct tty *tp, register struct termios *t)
1045 1.1 leo {
1046 1.1 leo int unit = ZS_UNIT(tp->t_dev);
1047 1.57 tsutsui struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
1048 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1049 1.49 mhitch int cdiv = 0, /* XXX gcc4 -Wuninitialized */
1050 1.49 mhitch clkm = 0, /* XXX gcc4 -Wuninitialized */
1051 1.49 mhitch brgm = 0, /* XXX gcc4 -Wuninitialized */
1052 1.49 mhitch tcon = 0; /* XXX gcc4 -Wuninitialized */
1053 1.1 leo register int tmp, tmp5, cflag, s;
1054 1.1 leo
1055 1.6 leo tmp = t->c_ospeed;
1056 1.6 leo tmp5 = t->c_ispeed;
1057 1.6 leo if(tmp < 0 || (tmp5 && tmp5 != tmp))
1058 1.1 leo return(EINVAL);
1059 1.1 leo if(tmp == 0) {
1060 1.1 leo /* stty 0 => drop DTR and RTS */
1061 1.1 leo zs_modem(cs, 0, DMSET);
1062 1.1 leo return(0);
1063 1.1 leo }
1064 1.6 leo tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1065 1.6 leo if (tmp < 0)
1066 1.1 leo return(EINVAL);
1067 1.6 leo tp->t_ispeed = tp->t_ospeed = tmp;
1068 1.1 leo
1069 1.6 leo cflag = tp->t_cflag = t->c_cflag;
1070 1.6 leo if (cflag & CSTOPB)
1071 1.6 leo cdiv |= ZSWR4_TWOSB;
1072 1.6 leo else
1073 1.6 leo cdiv |= ZSWR4_ONESB;
1074 1.6 leo if (!(cflag & PARODD))
1075 1.6 leo cdiv |= ZSWR4_EVENP;
1076 1.6 leo if (cflag & PARENB)
1077 1.6 leo cdiv |= ZSWR4_PARENB;
1078 1.1 leo
1079 1.1 leo switch(cflag & CSIZE) {
1080 1.1 leo case CS5:
1081 1.1 leo tmp = ZSWR3_RX_5;
1082 1.1 leo tmp5 = ZSWR5_TX_5;
1083 1.1 leo break;
1084 1.1 leo case CS6:
1085 1.1 leo tmp = ZSWR3_RX_6;
1086 1.1 leo tmp5 = ZSWR5_TX_6;
1087 1.1 leo break;
1088 1.1 leo case CS7:
1089 1.1 leo tmp = ZSWR3_RX_7;
1090 1.1 leo tmp5 = ZSWR5_TX_7;
1091 1.1 leo break;
1092 1.1 leo case CS8:
1093 1.1 leo default:
1094 1.1 leo tmp = ZSWR3_RX_8;
1095 1.1 leo tmp5 = ZSWR5_TX_8;
1096 1.1 leo break;
1097 1.1 leo }
1098 1.6 leo tmp |= ZSWR3_RX_ENABLE;
1099 1.6 leo tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1100 1.6 leo
1101 1.6 leo /*
1102 1.6 leo * Block interrupts so that state will not
1103 1.6 leo * be altered until we are done setting it up.
1104 1.6 leo */
1105 1.6 leo s = splzs();
1106 1.6 leo cs->cs_preg[4] = cdiv;
1107 1.6 leo cs->cs_preg[11] = clkm;
1108 1.6 leo cs->cs_preg[12] = tcon;
1109 1.6 leo cs->cs_preg[13] = tcon >> 8;
1110 1.6 leo cs->cs_preg[14] = brgm;
1111 1.6 leo cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1112 1.6 leo cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1113 1.6 leo cs->cs_preg[10] = ZSWR10_NRZ;
1114 1.6 leo cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1115 1.1 leo
1116 1.1 leo /*
1117 1.1 leo * Output hardware flow control on the chip is horrendous: if
1118 1.1 leo * carrier detect drops, the receiver is disabled. Hence we
1119 1.1 leo * can only do this when the carrier is on.
1120 1.1 leo */
1121 1.1 leo if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1122 1.6 leo tmp |= ZSWR3_HFC;
1123 1.1 leo cs->cs_preg[3] = tmp;
1124 1.6 leo cs->cs_preg[5] = tmp5;
1125 1.1 leo
1126 1.1 leo /*
1127 1.1 leo * If nothing is being transmitted, set up new current values,
1128 1.1 leo * else mark them as pending.
1129 1.1 leo */
1130 1.1 leo if(cs->cs_heldchange == 0) {
1131 1.1 leo if (cs->cs_ttyp->t_state & TS_BUSY) {
1132 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1133 1.1 leo cs->cs_tbc = 0;
1134 1.1 leo cs->cs_heldchange = 1;
1135 1.6 leo } else {
1136 1.52 christos bcopy((void *)cs->cs_preg, (void *)cs->cs_creg, 16);
1137 1.1 leo zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1138 1.1 leo }
1139 1.1 leo }
1140 1.1 leo splx(s);
1141 1.1 leo return (0);
1142 1.6 leo }
1143 1.6 leo
1144 1.6 leo /*
1145 1.6 leo * search for the best matching baudrate
1146 1.6 leo */
1147 1.6 leo static int
1148 1.61 dsl zsbaudrate(int unit, int wanted, int *divisor, int *clockmode, int *brgenmode, int *timeconst)
1149 1.6 leo {
1150 1.6 leo int bestdiff, bestbps, source;
1151 1.6 leo
1152 1.20 leo bestdiff = bestbps = 0;
1153 1.6 leo unit = (unit & 1) << 2;
1154 1.6 leo for (source = 0; source < 4; ++source) {
1155 1.6 leo long freq = zs_frequencies[unit + source];
1156 1.6 leo int diff, bps, div, clkm, brgm, tcon;
1157 1.20 leo
1158 1.20 leo bps = div = clkm = brgm = tcon = 0;
1159 1.6 leo switch (source) {
1160 1.6 leo case 0: /* BRgen, PCLK */
1161 1.6 leo brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1162 1.6 leo break;
1163 1.6 leo case 1: /* BRgen, RTxC */
1164 1.6 leo brgm = ZSWR14_BAUD_ENA;
1165 1.6 leo break;
1166 1.6 leo case 2: /* RTxC */
1167 1.6 leo clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1168 1.6 leo break;
1169 1.6 leo case 3: /* TRxC */
1170 1.6 leo clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1171 1.6 leo break;
1172 1.6 leo }
1173 1.6 leo switch (source) {
1174 1.6 leo case 0:
1175 1.6 leo case 1:
1176 1.6 leo div = ZSWR4_CLK_X16;
1177 1.6 leo clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1178 1.6 leo tcon = BPS_TO_TCONST(freq, wanted);
1179 1.6 leo if (tcon < 0)
1180 1.6 leo tcon = 0;
1181 1.6 leo bps = TCONST_TO_BPS(freq, tcon);
1182 1.6 leo break;
1183 1.6 leo case 2:
1184 1.6 leo case 3:
1185 1.6 leo { int b1 = freq / 16, d1 = abs(b1 - wanted);
1186 1.6 leo int b2 = freq / 32, d2 = abs(b2 - wanted);
1187 1.6 leo int b3 = freq / 64, d3 = abs(b3 - wanted);
1188 1.6 leo
1189 1.6 leo if (d1 < d2 && d1 < d3) {
1190 1.6 leo div = ZSWR4_CLK_X16;
1191 1.6 leo bps = b1;
1192 1.6 leo } else if (d2 < d3 && d2 < d1) {
1193 1.6 leo div = ZSWR4_CLK_X32;
1194 1.6 leo bps = b2;
1195 1.6 leo } else {
1196 1.6 leo div = ZSWR4_CLK_X64;
1197 1.6 leo bps = b3;
1198 1.6 leo }
1199 1.6 leo brgm = tcon = 0;
1200 1.6 leo break;
1201 1.6 leo }
1202 1.6 leo }
1203 1.6 leo diff = abs(bps - wanted);
1204 1.6 leo if (!source || diff < bestdiff) {
1205 1.6 leo *divisor = div;
1206 1.6 leo *clockmode = clkm;
1207 1.6 leo *brgenmode = brgm;
1208 1.6 leo *timeconst = tcon;
1209 1.6 leo bestbps = bps;
1210 1.6 leo bestdiff = diff;
1211 1.6 leo if (diff == 0)
1212 1.6 leo break;
1213 1.6 leo }
1214 1.6 leo }
1215 1.6 leo /* Allow deviations upto 5% */
1216 1.6 leo if (20 * bestdiff > wanted)
1217 1.6 leo return -1;
1218 1.6 leo return bestbps;
1219 1.1 leo }
1220 1.1 leo
1221 1.1 leo /*
1222 1.1 leo * Raise or lower modem control (DTR/RTS) signals. If a character is
1223 1.1 leo * in transmission, the change is deferred.
1224 1.1 leo */
1225 1.1 leo static int
1226 1.61 dsl zs_modem(struct zs_chanstate *cs, int bits, int how)
1227 1.1 leo {
1228 1.1 leo int s, mbits;
1229 1.1 leo
1230 1.1 leo bits &= ZSWR5_DTR | ZSWR5_RTS;
1231 1.1 leo
1232 1.1 leo s = splzs();
1233 1.1 leo mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1234 1.1 leo
1235 1.1 leo switch(how) {
1236 1.1 leo case DMSET:
1237 1.1 leo mbits = bits;
1238 1.1 leo break;
1239 1.1 leo case DMBIS:
1240 1.1 leo mbits |= bits;
1241 1.1 leo break;
1242 1.1 leo case DMBIC:
1243 1.1 leo mbits &= ~bits;
1244 1.1 leo break;
1245 1.1 leo case DMGET:
1246 1.1 leo splx(s);
1247 1.1 leo return(mbits);
1248 1.1 leo }
1249 1.1 leo
1250 1.1 leo cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1251 1.1 leo if(cs->cs_heldchange == 0) {
1252 1.1 leo if(cs->cs_ttyp->t_state & TS_BUSY) {
1253 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1254 1.1 leo cs->cs_tbc = 0;
1255 1.1 leo cs->cs_heldchange = 1;
1256 1.1 leo }
1257 1.1 leo else {
1258 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1259 1.1 leo }
1260 1.1 leo }
1261 1.1 leo splx(s);
1262 1.1 leo return(0);
1263 1.1 leo }
1264 1.1 leo
1265 1.1 leo /*
1266 1.1 leo * Write the given register set to the given zs channel in the proper order.
1267 1.1 leo * The channel must not be transmitting at the time. The receiver will
1268 1.1 leo * be disabled for the time it takes to write all the registers.
1269 1.1 leo */
1270 1.1 leo static void
1271 1.60 dsl zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1272 1.1 leo {
1273 1.1 leo int i;
1274 1.1 leo
1275 1.1 leo zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1276 1.1 leo i = zc->zc_data; /* drain fifo */
1277 1.1 leo i = zc->zc_data;
1278 1.1 leo i = zc->zc_data;
1279 1.1 leo ZS_WRITE(zc, 4, reg[4]);
1280 1.1 leo ZS_WRITE(zc, 10, reg[10]);
1281 1.1 leo ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1282 1.1 leo ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1283 1.1 leo ZS_WRITE(zc, 1, reg[1]);
1284 1.1 leo ZS_WRITE(zc, 9, reg[9]);
1285 1.1 leo ZS_WRITE(zc, 11, reg[11]);
1286 1.1 leo ZS_WRITE(zc, 12, reg[12]);
1287 1.1 leo ZS_WRITE(zc, 13, reg[13]);
1288 1.1 leo ZS_WRITE(zc, 14, reg[14]);
1289 1.1 leo ZS_WRITE(zc, 15, reg[15]);
1290 1.1 leo ZS_WRITE(zc, 3, reg[3]);
1291 1.1 leo ZS_WRITE(zc, 5, reg[5]);
1292 1.1 leo }
1293 1.1 leo #endif /* NZS > 1 */
1294