zs.c revision 1.7 1 1.7 cgd /* $NetBSD: zs.c,v 1.7 1995/06/28 04:30:42 cgd Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 1.1 leo * Copyright (c) 1992, 1993
6 1.1 leo * The Regents of the University of California. All rights reserved.
7 1.1 leo *
8 1.1 leo * This software was developed by the Computer Systems Engineering group
9 1.1 leo * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 1.1 leo * contributed to Berkeley.
11 1.1 leo *
12 1.1 leo *
13 1.1 leo * All advertising materials mentioning features or use of this software
14 1.1 leo * must display the following acknowledgement:
15 1.1 leo * This product includes software developed by the University of
16 1.1 leo * California, Lawrence Berkeley Laboratory.
17 1.1 leo *
18 1.1 leo * Redistribution and use in source and binary forms, with or without
19 1.1 leo * modification, are permitted provided that the following conditions
20 1.1 leo * are met:
21 1.1 leo * 1. Redistributions of source code must retain the above copyright
22 1.1 leo * notice, this list of conditions and the following disclaimer.
23 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
24 1.1 leo * notice, this list of conditions and the following disclaimer in the
25 1.1 leo * documentation and/or other materials provided with the distribution.
26 1.1 leo * 3. All advertising materials mentioning features or use of this software
27 1.1 leo * must display the following acknowledgement:
28 1.1 leo * This product includes software developed by the University of
29 1.1 leo * California, Berkeley and its contributors.
30 1.1 leo * 4. Neither the name of the University nor the names of its contributors
31 1.1 leo * may be used to endorse or promote products derived from this software
32 1.1 leo * without specific prior written permission.
33 1.1 leo *
34 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 1.1 leo * SUCH DAMAGE.
45 1.1 leo *
46 1.1 leo * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 1.1 leo */
48 1.1 leo
49 1.1 leo /*
50 1.1 leo * Zilog Z8530 (ZSCC) driver.
51 1.1 leo *
52 1.1 leo * Runs two tty ports (modem2 and serial2) on zs0.
53 1.1 leo *
54 1.1 leo * This driver knows far too much about chip to usage mappings.
55 1.1 leo */
56 1.1 leo #include <sys/param.h>
57 1.1 leo #include <sys/proc.h>
58 1.1 leo #include <sys/device.h>
59 1.1 leo #include <sys/conf.h>
60 1.1 leo #include <sys/file.h>
61 1.1 leo #include <sys/ioctl.h>
62 1.1 leo #include <sys/tty.h>
63 1.1 leo #include <sys/time.h>
64 1.1 leo #include <sys/kernel.h>
65 1.1 leo #include <sys/syslog.h>
66 1.1 leo
67 1.1 leo #include <machine/cpu.h>
68 1.1 leo #include <machine/iomap.h>
69 1.1 leo #include <machine/scu.h>
70 1.1 leo #include <machine/mfp.h>
71 1.1 leo
72 1.7 cgd #include <dev/ic/z8530reg.h>
73 1.1 leo #include <atari/dev/zsvar.h>
74 1.1 leo #include "zs.h"
75 1.1 leo #if NZS > 1
76 1.1 leo #error "This driver supports only 1 85C30!"
77 1.1 leo #endif
78 1.1 leo
79 1.1 leo #if NZS > 0
80 1.1 leo
81 1.1 leo #define PCLK (8000000) /* PCLK pin input clock rate */
82 1.1 leo
83 1.1 leo #define splzs spl5
84 1.1 leo
85 1.1 leo /*
86 1.1 leo * Software state per found chip.
87 1.1 leo */
88 1.1 leo struct zs_softc {
89 1.1 leo struct device zi_dev; /* base device */
90 1.1 leo volatile struct zsdevice *zi_zs; /* chip registers */
91 1.1 leo struct zs_chanstate zi_cs[2]; /* chan A and B software state */
92 1.1 leo };
93 1.1 leo
94 1.1 leo /*
95 1.1 leo * Define the registers for a closed port
96 1.1 leo */
97 1.6 leo static u_char zs_init_regs[16] = {
98 1.1 leo /* 0 */ 0,
99 1.1 leo /* 1 */ 0,
100 1.1 leo /* 2 */ 0x60,
101 1.1 leo /* 3 */ 0,
102 1.1 leo /* 4 */ 0,
103 1.1 leo /* 5 */ 0,
104 1.1 leo /* 6 */ 0,
105 1.1 leo /* 7 */ 0,
106 1.1 leo /* 8 */ 0,
107 1.1 leo /* 9 */ ZSWR9_VECTOR_INCL_STAT,
108 1.1 leo /* 10 */ ZSWR10_NRZ,
109 1.1 leo /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
110 1.1 leo /* 12 */ 0,
111 1.1 leo /* 13 */ 0,
112 1.1 leo /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
113 1.1 leo /* 15 */ 0
114 1.1 leo };
115 1.1 leo
116 1.6 leo /*
117 1.6 leo * Define the machine dependant clock frequencies
118 1.6 leo * If BRgen feeds sender/receiver we always use a
119 1.6 leo * divisor 16, therefor the division by 16 can as
120 1.6 leo * well be done here.
121 1.6 leo */
122 1.6 leo static u_long zs_freqs_tt[] = {
123 1.6 leo /*
124 1.6 leo * Atari TT, RTxCB is generated by TT-MFP timer C,
125 1.6 leo * which is set to 307.2KHz during initialisation
126 1.6 leo * and never changed afterwards.
127 1.6 leo */
128 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
129 1.6 leo 229500, /* BRgen, RTxCA, divisor 16 */
130 1.6 leo 3672000, /* RTxCA, from PCLK4 */
131 1.6 leo 0, /* TRxCA, external */
132 1.6 leo
133 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
134 1.6 leo 19200, /* BRgen, RTxCB, divisor 16 */
135 1.6 leo 307200, /* RTxCB, from TT-MFP TCO */
136 1.6 leo 2457600 /* TRxCB, from BCLK */
137 1.6 leo };
138 1.6 leo static u_long zs_freqs_falcon[] = {
139 1.6 leo /*
140 1.6 leo * Atari Falcon, XXX no specs available, this might be wrong
141 1.6 leo */
142 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
143 1.6 leo 229500, /* BRgen, RTxCA, divisor 16 */
144 1.6 leo 3672000, /* RTxCA, ??? */
145 1.6 leo 0, /* TRxCA, external */
146 1.6 leo
147 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
148 1.6 leo 229500, /* BRgen, RTxCB, divisor 16 */
149 1.6 leo 3672000, /* RTxCB, ??? */
150 1.6 leo 2457600 /* TRxCB, ??? */
151 1.6 leo };
152 1.6 leo static u_long zs_freqs_generic[] = {
153 1.6 leo /*
154 1.6 leo * other machines, assume only PCLK is available
155 1.6 leo */
156 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
157 1.6 leo 0, /* BRgen, RTxCA, divisor 16 */
158 1.6 leo 0, /* RTxCA, unknown */
159 1.6 leo 0, /* TRxCA, unknown */
160 1.6 leo
161 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
162 1.6 leo 0, /* BRgen, RTxCB, divisor 16 */
163 1.6 leo 0, /* RTxCB, unknown */
164 1.6 leo 0 /* TRxCB, unknown */
165 1.6 leo };
166 1.6 leo static u_long *zs_frequencies;
167 1.6 leo
168 1.1 leo /* Definition of the driver for autoconfig. */
169 1.1 leo static int zsmatch __P((struct device *, struct cfdata *, void *));
170 1.1 leo static void zsattach __P((struct device *, struct device *, void *));
171 1.1 leo struct cfdriver zscd = {
172 1.1 leo NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
173 1.1 leo sizeof(struct zs_softc), NULL, 0 };
174 1.1 leo
175 1.1 leo /* Interrupt handlers. */
176 1.1 leo int zshard __P((long));
177 1.1 leo static int zssoft __P((long));
178 1.1 leo static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
179 1.1 leo static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
180 1.1 leo static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
181 1.1 leo
182 1.6 leo static struct zs_chanstate *zslist;
183 1.1 leo
184 1.1 leo /* Routines called from other code. */
185 1.1 leo static void zsstart __P((struct tty *));
186 1.1 leo void zsstop __P((struct tty *, int));
187 1.1 leo static int zsparam __P((struct tty *, struct termios *));
188 1.6 leo static int zsbaudrate __P((int, int, int *, int *, int *, int *));
189 1.1 leo
190 1.1 leo /* Routines purely local to this driver. */
191 1.1 leo static void zs_reset __P((volatile struct zschan *, int, int));
192 1.1 leo static int zs_modem __P((struct zs_chanstate *, int, int));
193 1.1 leo static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
194 1.1 leo
195 1.6 leo static int zsshortcuts; /* number of "shortcut" software interrupts */
196 1.1 leo
197 1.4 leo static int
198 1.4 leo zsmatch(pdp, cfp, auxp)
199 1.1 leo struct device *pdp;
200 1.1 leo struct cfdata *cfp;
201 1.1 leo void *auxp;
202 1.1 leo {
203 1.1 leo if(strcmp("zs", auxp) || cfp->cf_unit != 0)
204 1.1 leo return(0);
205 1.1 leo return(1);
206 1.1 leo }
207 1.1 leo
208 1.1 leo /*
209 1.1 leo * Attach a found zs.
210 1.1 leo */
211 1.1 leo static void
212 1.1 leo zsattach(parent, dev, aux)
213 1.1 leo struct device *parent;
214 1.1 leo struct device *dev;
215 1.1 leo void *aux;
216 1.1 leo {
217 1.1 leo register struct zs_softc *zi;
218 1.1 leo register struct zs_chanstate *cs;
219 1.1 leo register volatile struct zsdevice *addr;
220 1.1 leo register struct tty *tp;
221 1.1 leo char tmp;
222 1.1 leo
223 1.1 leo addr = (struct zsdevice *)AD_SCC;
224 1.1 leo zi = (struct zs_softc *)dev;
225 1.1 leo zi->zi_zs = addr;
226 1.1 leo cs = zi->zi_cs;
227 1.1 leo
228 1.1 leo /*
229 1.1 leo * Get the command register into a known state.
230 1.1 leo */
231 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
232 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
233 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
234 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
235 1.1 leo
236 1.1 leo /*
237 1.1 leo * Do a hardware reset.
238 1.1 leo */
239 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
240 1.1 leo delay(50000); /*enough ? */
241 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
242 1.1 leo
243 1.1 leo /*
244 1.1 leo * Initialize both channels
245 1.1 leo */
246 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
247 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
248 1.1 leo
249 1.5 leo if(machineid & ATARI_TT) {
250 1.5 leo /*
251 1.6 leo * ininitialise TT-MFP timer C: 307200Hz
252 1.6 leo * timer C and D share one control register:
253 1.6 leo * bits 0-2 control timer D
254 1.6 leo * bits 4-6 control timer C
255 1.6 leo */
256 1.6 leo int cr = MFP2->mf_tcdcr & 7;
257 1.6 leo MFP2->mf_tcdcr = cr; /* stop timer C */
258 1.6 leo MFP2->mf_tcdr = 1; /* counter 1 */
259 1.6 leo cr |= T_Q004 << 4; /* divisor 4 */
260 1.6 leo MFP2->mf_tcdcr = cr; /* start timer C */
261 1.6 leo /*
262 1.5 leo * enable scc related interrupts
263 1.5 leo */
264 1.5 leo SCU->sys_mask |= SCU_SCC;
265 1.6 leo
266 1.6 leo zs_frequencies = zs_freqs_tt;
267 1.6 leo } else if (machineid & ATARI_FALCON) {
268 1.6 leo zs_frequencies = zs_freqs_falcon;
269 1.6 leo } else {
270 1.6 leo zs_frequencies = zs_freqs_generic;
271 1.5 leo }
272 1.1 leo
273 1.1 leo /* link into interrupt list with order (A,B) (B=A+1) */
274 1.1 leo cs[0].cs_next = &cs[1];
275 1.1 leo cs[1].cs_next = zslist;
276 1.1 leo zslist = cs;
277 1.1 leo
278 1.1 leo cs->cs_unit = 0;
279 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
280 1.1 leo cs++;
281 1.1 leo cs->cs_unit = 1;
282 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
283 1.1 leo
284 1.1 leo printf(": serial2 on channel a and modem2 on channel b\n");
285 1.1 leo }
286 1.1 leo
287 1.1 leo /*
288 1.1 leo * Open a zs serial port.
289 1.1 leo */
290 1.1 leo int
291 1.1 leo zsopen(dev, flags, mode, p)
292 1.1 leo dev_t dev;
293 1.1 leo int flags;
294 1.1 leo int mode;
295 1.1 leo struct proc *p;
296 1.1 leo {
297 1.1 leo register struct tty *tp;
298 1.1 leo register struct zs_chanstate *cs;
299 1.1 leo struct zs_softc *zi;
300 1.1 leo int unit = ZS_UNIT(dev);
301 1.1 leo int zs = unit >> 1;
302 1.1 leo int error, s;
303 1.1 leo
304 1.1 leo if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
305 1.1 leo return (ENXIO);
306 1.1 leo cs = &zi->zi_cs[unit & 1];
307 1.1 leo tp = cs->cs_ttyp;
308 1.1 leo if(tp == NULL) {
309 1.4 leo cs->cs_ttyp = tp = ttymalloc();
310 1.1 leo tp->t_dev = dev;
311 1.1 leo tp->t_oproc = zsstart;
312 1.1 leo tp->t_param = zsparam;
313 1.1 leo }
314 1.1 leo
315 1.1 leo s = spltty();
316 1.1 leo if((tp->t_state & TS_ISOPEN) == 0) {
317 1.1 leo ttychars(tp);
318 1.1 leo if(tp->t_ispeed == 0) {
319 1.1 leo tp->t_iflag = TTYDEF_IFLAG;
320 1.1 leo tp->t_oflag = TTYDEF_OFLAG;
321 1.1 leo tp->t_cflag = TTYDEF_CFLAG;
322 1.1 leo tp->t_lflag = TTYDEF_LFLAG;
323 1.1 leo tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
324 1.1 leo }
325 1.1 leo (void)zsparam(tp, &tp->t_termios);
326 1.1 leo ttsetwater(tp);
327 1.1 leo }
328 1.1 leo else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
329 1.1 leo splx(s);
330 1.1 leo return (EBUSY);
331 1.1 leo }
332 1.1 leo error = 0;
333 1.1 leo for(;;) {
334 1.1 leo /* loop, turning on the device, until carrier present */
335 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
336 1.1 leo if(cs->cs_softcar)
337 1.1 leo tp->t_state |= TS_CARR_ON;
338 1.1 leo if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
339 1.1 leo tp->t_state & TS_CARR_ON)
340 1.1 leo break;
341 1.1 leo tp->t_state |= TS_WOPEN;
342 1.1 leo if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
343 1.1 leo ttopen, 0)) {
344 1.1 leo if(!(tp->t_state & TS_ISOPEN)) {
345 1.1 leo zs_modem(cs, 0, DMSET);
346 1.1 leo tp->t_state &= ~TS_WOPEN;
347 1.1 leo ttwakeup(tp);
348 1.1 leo }
349 1.1 leo splx(s);
350 1.1 leo return error;
351 1.1 leo }
352 1.1 leo }
353 1.1 leo splx(s);
354 1.1 leo if(error == 0)
355 1.1 leo error = linesw[tp->t_line].l_open(dev, tp);
356 1.1 leo if(error)
357 1.1 leo zs_modem(cs, 0, DMSET);
358 1.1 leo return(error);
359 1.1 leo }
360 1.1 leo
361 1.1 leo /*
362 1.1 leo * Close a zs serial port.
363 1.1 leo */
364 1.1 leo int
365 1.1 leo zsclose(dev, flags, mode, p)
366 1.1 leo dev_t dev;
367 1.1 leo int flags;
368 1.1 leo int mode;
369 1.1 leo struct proc *p;
370 1.1 leo {
371 1.1 leo register struct zs_chanstate *cs;
372 1.1 leo register struct tty *tp;
373 1.1 leo struct zs_softc *zi;
374 1.1 leo int unit = ZS_UNIT(dev);
375 1.1 leo int s;
376 1.1 leo
377 1.1 leo zi = zscd.cd_devs[unit >> 1];
378 1.1 leo cs = &zi->zi_cs[unit & 1];
379 1.1 leo tp = cs->cs_ttyp;
380 1.1 leo linesw[tp->t_line].l_close(tp, flags);
381 1.1 leo if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
382 1.1 leo (tp->t_state & TS_ISOPEN) == 0) {
383 1.1 leo zs_modem(cs, 0, DMSET);
384 1.1 leo /* hold low for 1 second */
385 1.1 leo (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
386 1.1 leo }
387 1.1 leo if(cs->cs_creg[5] & ZSWR5_BREAK) {
388 1.1 leo s = splzs();
389 1.1 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
390 1.1 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
391 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
392 1.1 leo splx(s);
393 1.1 leo }
394 1.1 leo ttyclose(tp);
395 1.1 leo
396 1.1 leo /*
397 1.1 leo * Drop all lines and cancel interrupts
398 1.1 leo */
399 1.1 leo zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
400 1.1 leo return (0);
401 1.1 leo }
402 1.1 leo
403 1.1 leo /*
404 1.1 leo * Read/write zs serial port.
405 1.1 leo */
406 1.1 leo int
407 1.1 leo zsread(dev, uio, flags)
408 1.1 leo dev_t dev;
409 1.1 leo struct uio *uio;
410 1.1 leo int flags;
411 1.1 leo {
412 1.4 leo register struct zs_chanstate *cs;
413 1.4 leo register struct zs_softc *zi;
414 1.4 leo register struct tty *tp;
415 1.4 leo int unit;
416 1.4 leo
417 1.4 leo unit = ZS_UNIT(dev);
418 1.4 leo zi = zscd.cd_devs[unit >> 1];
419 1.4 leo cs = &zi->zi_cs[unit & 1];
420 1.4 leo tp = cs->cs_ttyp;
421 1.1 leo
422 1.1 leo return(linesw[tp->t_line].l_read(tp, uio, flags));
423 1.1 leo }
424 1.1 leo
425 1.4 leo int
426 1.4 leo zswrite(dev, uio, flags)
427 1.1 leo dev_t dev;
428 1.1 leo struct uio *uio;
429 1.1 leo int flags;
430 1.1 leo {
431 1.4 leo register struct zs_chanstate *cs;
432 1.4 leo register struct zs_softc *zi;
433 1.4 leo register struct tty *tp;
434 1.4 leo int unit;
435 1.4 leo
436 1.4 leo unit = ZS_UNIT(dev);
437 1.4 leo zi = zscd.cd_devs[unit >> 1];
438 1.4 leo cs = &zi->zi_cs[unit & 1];
439 1.4 leo tp = cs->cs_ttyp;
440 1.1 leo
441 1.1 leo return(linesw[tp->t_line].l_write(tp, uio, flags));
442 1.4 leo }
443 1.4 leo
444 1.4 leo struct tty *
445 1.4 leo zstty(dev)
446 1.4 leo dev_t dev;
447 1.4 leo {
448 1.4 leo register struct zs_chanstate *cs;
449 1.4 leo register struct zs_softc *zi;
450 1.4 leo int unit;
451 1.4 leo
452 1.4 leo unit = ZS_UNIT(dev);
453 1.4 leo zi = zscd.cd_devs[unit >> 1];
454 1.4 leo cs = &zi->zi_cs[unit & 1];
455 1.4 leo return(cs->cs_ttyp);
456 1.1 leo }
457 1.1 leo
458 1.1 leo /*
459 1.1 leo * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
460 1.1 leo * channels are kept in (A,B) pairs.
461 1.1 leo *
462 1.1 leo * Do just a little, then get out; set a software interrupt if more
463 1.1 leo * work is needed.
464 1.1 leo *
465 1.1 leo * We deliberately ignore the vectoring Zilog gives us, and match up
466 1.1 leo * only the number of `reset interrupt under service' operations, not
467 1.1 leo * the order.
468 1.1 leo */
469 1.1 leo int
470 1.1 leo zshard(sr)
471 1.1 leo long sr;
472 1.1 leo {
473 1.1 leo register struct zs_chanstate *a;
474 1.1 leo #define b (a + 1)
475 1.1 leo register volatile struct zschan *zc;
476 1.1 leo register int rr3, intflags = 0, v, i;
477 1.1 leo
478 1.1 leo for(a = zslist; a != NULL; a = b->cs_next) {
479 1.1 leo rr3 = ZS_READ(a->cs_zc, 3);
480 1.1 leo if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
481 1.1 leo intflags |= 2;
482 1.1 leo zc = a->cs_zc;
483 1.1 leo i = a->cs_rbput;
484 1.1 leo if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
485 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
486 1.1 leo intflags |= 1;
487 1.1 leo }
488 1.1 leo if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
489 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
490 1.1 leo intflags |= 1;
491 1.1 leo }
492 1.1 leo if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
493 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
494 1.1 leo intflags |= 1;
495 1.1 leo }
496 1.1 leo a->cs_rbput = i;
497 1.1 leo }
498 1.1 leo if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
499 1.1 leo intflags |= 2;
500 1.1 leo zc = b->cs_zc;
501 1.1 leo i = b->cs_rbput;
502 1.1 leo if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
503 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
504 1.1 leo intflags |= 1;
505 1.1 leo }
506 1.1 leo if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
507 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
508 1.1 leo intflags |= 1;
509 1.1 leo }
510 1.1 leo if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
511 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
512 1.1 leo intflags |= 1;
513 1.1 leo }
514 1.1 leo b->cs_rbput = i;
515 1.1 leo }
516 1.1 leo }
517 1.1 leo #undef b
518 1.1 leo
519 1.1 leo if(intflags & 1) {
520 1.1 leo if(BASEPRI(sr)) {
521 1.1 leo spl1();
522 1.1 leo zsshortcuts++;
523 1.1 leo return(zssoft(sr));
524 1.1 leo }
525 1.1 leo else add_sicallback(zssoft, 0, 0);
526 1.1 leo }
527 1.1 leo return(intflags & 2);
528 1.1 leo }
529 1.1 leo
530 1.1 leo static int
531 1.1 leo zsrint(cs, zc)
532 1.1 leo register struct zs_chanstate *cs;
533 1.1 leo register volatile struct zschan *zc;
534 1.1 leo {
535 1.1 leo register int c = zc->zc_data;
536 1.1 leo
537 1.1 leo /* compose receive character and status */
538 1.1 leo c <<= 8;
539 1.1 leo c |= ZS_READ(zc, 1);
540 1.1 leo
541 1.1 leo /* clear receive error & interrupt condition */
542 1.1 leo zc->zc_csr = ZSWR0_RESET_ERRORS;
543 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
544 1.1 leo
545 1.1 leo return(ZRING_MAKE(ZRING_RINT, c));
546 1.1 leo }
547 1.1 leo
548 1.1 leo static int
549 1.1 leo zsxint(cs, zc)
550 1.1 leo register struct zs_chanstate *cs;
551 1.1 leo register volatile struct zschan *zc;
552 1.1 leo {
553 1.1 leo register int i = cs->cs_tbc;
554 1.1 leo
555 1.1 leo if(i == 0) {
556 1.1 leo zc->zc_csr = ZSWR0_RESET_TXINT;
557 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
558 1.1 leo return(ZRING_MAKE(ZRING_XINT, 0));
559 1.1 leo }
560 1.1 leo cs->cs_tbc = i - 1;
561 1.1 leo zc->zc_data = *cs->cs_tba++;
562 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
563 1.1 leo return (0);
564 1.1 leo }
565 1.1 leo
566 1.1 leo static int
567 1.1 leo zssint(cs, zc)
568 1.1 leo register struct zs_chanstate *cs;
569 1.1 leo register volatile struct zschan *zc;
570 1.1 leo {
571 1.1 leo register int rr0;
572 1.1 leo
573 1.1 leo rr0 = zc->zc_csr;
574 1.1 leo zc->zc_csr = ZSWR0_RESET_STATUS;
575 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
576 1.1 leo /*
577 1.1 leo * The chip's hardware flow control is, as noted in zsreg.h,
578 1.1 leo * busted---if the DCD line goes low the chip shuts off the
579 1.1 leo * receiver (!). If we want hardware CTS flow control but do
580 1.1 leo * not have it, and carrier is now on, turn HFC on; if we have
581 1.1 leo * HFC now but carrier has gone low, turn it off.
582 1.1 leo */
583 1.1 leo if(rr0 & ZSRR0_DCD) {
584 1.1 leo if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
585 1.1 leo (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
586 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
587 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
588 1.1 leo }
589 1.1 leo }
590 1.1 leo else {
591 1.1 leo if (cs->cs_creg[3] & ZSWR3_HFC) {
592 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
593 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
594 1.1 leo }
595 1.1 leo }
596 1.1 leo return(ZRING_MAKE(ZRING_SINT, rr0));
597 1.1 leo }
598 1.1 leo
599 1.1 leo /*
600 1.1 leo * Print out a ring or fifo overrun error message.
601 1.1 leo */
602 1.1 leo static void
603 1.1 leo zsoverrun(unit, ptime, what)
604 1.1 leo int unit;
605 1.1 leo long *ptime;
606 1.1 leo char *what;
607 1.1 leo {
608 1.1 leo
609 1.1 leo if(*ptime != time.tv_sec) {
610 1.1 leo *ptime = time.tv_sec;
611 1.1 leo log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
612 1.1 leo (unit & 1) + 'a', what);
613 1.1 leo }
614 1.1 leo }
615 1.1 leo
616 1.1 leo /*
617 1.1 leo * ZS software interrupt. Scan all channels for deferred interrupts.
618 1.1 leo */
619 1.1 leo int
620 1.1 leo zssoft(sr)
621 1.1 leo long sr;
622 1.1 leo {
623 1.1 leo register struct zs_chanstate *cs;
624 1.1 leo register volatile struct zschan *zc;
625 1.1 leo register struct linesw *line;
626 1.1 leo register struct tty *tp;
627 1.1 leo register int get, n, c, cc, unit, s;
628 1.1 leo int retval = 0;
629 1.1 leo
630 1.1 leo s = spltty();
631 1.1 leo for(cs = zslist; cs != NULL; cs = cs->cs_next) {
632 1.1 leo get = cs->cs_rbget;
633 1.1 leo again:
634 1.1 leo n = cs->cs_rbput; /* atomic */
635 1.1 leo if(get == n) /* nothing more on this line */
636 1.1 leo continue;
637 1.1 leo retval = 1;
638 1.1 leo unit = cs->cs_unit; /* set up to handle interrupts */
639 1.1 leo zc = cs->cs_zc;
640 1.1 leo tp = cs->cs_ttyp;
641 1.1 leo line = &linesw[tp->t_line];
642 1.1 leo /*
643 1.1 leo * Compute the number of interrupts in the receive ring.
644 1.1 leo * If the count is overlarge, we lost some events, and
645 1.1 leo * must advance to the first valid one. It may get
646 1.1 leo * overwritten if more data are arriving, but this is
647 1.1 leo * too expensive to check and gains nothing (we already
648 1.1 leo * lost out; all we can do at this point is trade one
649 1.1 leo * kind of loss for another).
650 1.1 leo */
651 1.1 leo n -= get;
652 1.1 leo if(n > ZLRB_RING_SIZE) {
653 1.1 leo zsoverrun(unit, &cs->cs_rotime, "ring");
654 1.1 leo get += n - ZLRB_RING_SIZE;
655 1.1 leo n = ZLRB_RING_SIZE;
656 1.1 leo }
657 1.1 leo while(--n >= 0) {
658 1.1 leo /* race to keep ahead of incoming interrupts */
659 1.1 leo c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
660 1.1 leo switch (ZRING_TYPE(c)) {
661 1.1 leo
662 1.1 leo case ZRING_RINT:
663 1.1 leo c = ZRING_VALUE(c);
664 1.1 leo if(c & ZSRR1_DO)
665 1.1 leo zsoverrun(unit, &cs->cs_fotime, "fifo");
666 1.1 leo cc = c >> 8;
667 1.1 leo if(c & ZSRR1_FE)
668 1.1 leo cc |= TTY_FE;
669 1.1 leo if(c & ZSRR1_PE)
670 1.1 leo cc |= TTY_PE;
671 1.1 leo line->l_rint(cc, tp);
672 1.1 leo break;
673 1.1 leo
674 1.1 leo case ZRING_XINT:
675 1.1 leo /*
676 1.1 leo * Transmit done: change registers and resume,
677 1.1 leo * or clear BUSY.
678 1.1 leo */
679 1.1 leo if(cs->cs_heldchange) {
680 1.1 leo int sps;
681 1.1 leo
682 1.1 leo sps = splzs();
683 1.1 leo c = zc->zc_csr;
684 1.1 leo if((c & ZSRR0_DCD) == 0)
685 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
686 1.1 leo bcopy((caddr_t)cs->cs_preg,
687 1.1 leo (caddr_t)cs->cs_creg, 16);
688 1.1 leo zs_loadchannelregs(zc, cs->cs_creg);
689 1.1 leo splx(sps);
690 1.1 leo cs->cs_heldchange = 0;
691 1.1 leo if(cs->cs_heldtbc
692 1.1 leo && (tp->t_state & TS_TTSTOP) == 0) {
693 1.1 leo cs->cs_tbc = cs->cs_heldtbc - 1;
694 1.1 leo zc->zc_data = *cs->cs_tba++;
695 1.1 leo goto again;
696 1.1 leo }
697 1.1 leo }
698 1.1 leo tp->t_state &= ~TS_BUSY;
699 1.1 leo if(tp->t_state & TS_FLUSH)
700 1.1 leo tp->t_state &= ~TS_FLUSH;
701 1.1 leo else ndflush(&tp->t_outq,cs->cs_tba
702 1.1 leo - (caddr_t)tp->t_outq.c_cf);
703 1.1 leo line->l_start(tp);
704 1.1 leo break;
705 1.1 leo
706 1.1 leo case ZRING_SINT:
707 1.1 leo /*
708 1.1 leo * Status line change. HFC bit is run in
709 1.1 leo * hardware interrupt, to avoid locking
710 1.1 leo * at splzs here.
711 1.1 leo */
712 1.1 leo c = ZRING_VALUE(c);
713 1.1 leo if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
714 1.1 leo cc = (c & ZSRR0_DCD) != 0;
715 1.1 leo if(line->l_modem(tp, cc) == 0)
716 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
717 1.1 leo cc ? DMBIS : DMBIC);
718 1.1 leo }
719 1.1 leo cs->cs_rr0 = c;
720 1.1 leo break;
721 1.1 leo
722 1.1 leo default:
723 1.1 leo log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
724 1.1 leo unit >> 1, (unit & 1) + 'a', c);
725 1.1 leo break;
726 1.1 leo }
727 1.1 leo }
728 1.1 leo cs->cs_rbget = get;
729 1.1 leo goto again;
730 1.1 leo }
731 1.1 leo splx(s);
732 1.1 leo return (retval);
733 1.1 leo }
734 1.1 leo
735 1.1 leo int
736 1.1 leo zsioctl(dev, cmd, data, flag, p)
737 1.1 leo dev_t dev;
738 1.1 leo u_long cmd;
739 1.1 leo caddr_t data;
740 1.1 leo int flag;
741 1.1 leo struct proc *p;
742 1.1 leo {
743 1.1 leo int unit = ZS_UNIT(dev);
744 1.1 leo struct zs_softc *zi = zscd.cd_devs[unit >> 1];
745 1.1 leo register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
746 1.1 leo register int error, s;
747 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
748 1.1 leo
749 1.1 leo error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
750 1.1 leo if(error >= 0)
751 1.1 leo return(error);
752 1.1 leo error = ttioctl(tp, cmd, data, flag, p);
753 1.1 leo if(error >= 0)
754 1.1 leo return (error);
755 1.1 leo
756 1.1 leo switch (cmd) {
757 1.1 leo case TIOCSBRK:
758 1.1 leo s = splzs();
759 1.1 leo cs->cs_preg[5] |= ZSWR5_BREAK;
760 1.1 leo cs->cs_creg[5] |= ZSWR5_BREAK;
761 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
762 1.1 leo splx(s);
763 1.1 leo break;
764 1.1 leo case TIOCCBRK:
765 1.1 leo s = splzs();
766 1.1 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
767 1.1 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
768 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
769 1.1 leo splx(s);
770 1.1 leo break;
771 1.1 leo case TIOCGFLAGS: {
772 1.1 leo int bits = 0;
773 1.1 leo
774 1.1 leo if(cs->cs_softcar)
775 1.1 leo bits |= TIOCFLAG_SOFTCAR;
776 1.1 leo if(cs->cs_creg[15] & ZSWR15_DCD_IE)
777 1.1 leo bits |= TIOCFLAG_CLOCAL;
778 1.1 leo if(cs->cs_creg[3] & ZSWR3_HFC)
779 1.1 leo bits |= TIOCFLAG_CRTSCTS;
780 1.1 leo *(int *)data = bits;
781 1.1 leo break;
782 1.1 leo }
783 1.1 leo case TIOCSFLAGS: {
784 1.1 leo int userbits, driverbits = 0;
785 1.1 leo
786 1.3 mycroft error = suser(p->p_ucred, &p->p_acflag);
787 1.1 leo if(error != 0)
788 1.1 leo return (EPERM);
789 1.1 leo
790 1.1 leo userbits = *(int *)data;
791 1.1 leo
792 1.1 leo /*
793 1.1 leo * can have `local' or `softcar', and `rtscts' or `mdmbuf'
794 1.1 leo # defaulting to software flow control.
795 1.1 leo */
796 1.1 leo if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
797 1.1 leo return(EINVAL);
798 1.1 leo if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
799 1.1 leo return(ENXIO);
800 1.1 leo
801 1.1 leo s = splzs();
802 1.1 leo if((userbits & TIOCFLAG_SOFTCAR)) {
803 1.1 leo cs->cs_softcar = 1; /* turn on softcar */
804 1.1 leo cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
805 1.1 leo cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
806 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
807 1.1 leo }
808 1.1 leo else if(userbits & TIOCFLAG_CLOCAL) {
809 1.1 leo cs->cs_softcar = 0; /* turn off softcar */
810 1.1 leo cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
811 1.1 leo cs->cs_creg[15] |= ZSWR15_DCD_IE;
812 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
813 1.1 leo tp->t_termios.c_cflag |= CLOCAL;
814 1.1 leo }
815 1.1 leo if(userbits & TIOCFLAG_CRTSCTS) {
816 1.1 leo cs->cs_preg[15] |= ZSWR15_CTS_IE;
817 1.1 leo cs->cs_creg[15] |= ZSWR15_CTS_IE;
818 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
819 1.1 leo cs->cs_preg[3] |= ZSWR3_HFC;
820 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
821 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
822 1.1 leo tp->t_termios.c_cflag |= CRTSCTS;
823 1.1 leo }
824 1.1 leo else {
825 1.1 leo /* no mdmbuf, so we must want software flow control */
826 1.1 leo cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
827 1.1 leo cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
828 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
829 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
830 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
831 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
832 1.1 leo tp->t_termios.c_cflag &= ~CRTSCTS;
833 1.1 leo }
834 1.1 leo splx(s);
835 1.1 leo break;
836 1.1 leo }
837 1.1 leo case TIOCSDTR:
838 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIS);
839 1.1 leo break;
840 1.1 leo case TIOCCDTR:
841 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIC);
842 1.1 leo break;
843 1.1 leo case TIOCMGET:
844 1.1 leo zs_modem(cs, 0, DMGET);
845 1.1 leo break;
846 1.1 leo case TIOCMSET:
847 1.1 leo case TIOCMBIS:
848 1.1 leo case TIOCMBIC:
849 1.1 leo default:
850 1.1 leo return (ENOTTY);
851 1.1 leo }
852 1.1 leo return (0);
853 1.1 leo }
854 1.1 leo
855 1.1 leo /*
856 1.1 leo * Start or restart transmission.
857 1.1 leo */
858 1.1 leo static void
859 1.1 leo zsstart(tp)
860 1.1 leo register struct tty *tp;
861 1.1 leo {
862 1.1 leo register struct zs_chanstate *cs;
863 1.1 leo register int s, nch;
864 1.1 leo int unit = ZS_UNIT(tp->t_dev);
865 1.1 leo struct zs_softc *zi = zscd.cd_devs[unit >> 1];
866 1.1 leo
867 1.1 leo cs = &zi->zi_cs[unit & 1];
868 1.1 leo s = spltty();
869 1.1 leo
870 1.1 leo /*
871 1.1 leo * If currently active or delaying, no need to do anything.
872 1.1 leo */
873 1.1 leo if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
874 1.1 leo goto out;
875 1.1 leo
876 1.1 leo /*
877 1.1 leo * If there are sleepers, and output has drained below low
878 1.1 leo * water mark, awaken.
879 1.1 leo */
880 1.1 leo if(tp->t_outq.c_cc <= tp->t_lowat) {
881 1.1 leo if(tp->t_state & TS_ASLEEP) {
882 1.1 leo tp->t_state &= ~TS_ASLEEP;
883 1.1 leo wakeup((caddr_t)&tp->t_outq);
884 1.1 leo }
885 1.1 leo selwakeup(&tp->t_wsel);
886 1.1 leo }
887 1.1 leo
888 1.1 leo nch = ndqb(&tp->t_outq, 0); /* XXX */
889 1.1 leo if(nch) {
890 1.1 leo register char *p = tp->t_outq.c_cf;
891 1.1 leo
892 1.1 leo /* mark busy, enable tx done interrupts, & send first byte */
893 1.1 leo tp->t_state |= TS_BUSY;
894 1.1 leo (void) splzs();
895 1.1 leo cs->cs_preg[1] |= ZSWR1_TIE;
896 1.1 leo cs->cs_creg[1] |= ZSWR1_TIE;
897 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
898 1.1 leo cs->cs_zc->zc_data = *p;
899 1.1 leo cs->cs_tba = p + 1;
900 1.1 leo cs->cs_tbc = nch - 1;
901 1.1 leo } else {
902 1.1 leo /*
903 1.1 leo * Nothing to send, turn off transmit done interrupts.
904 1.1 leo * This is useful if something is doing polled output.
905 1.1 leo */
906 1.1 leo (void) splzs();
907 1.1 leo cs->cs_preg[1] &= ~ZSWR1_TIE;
908 1.1 leo cs->cs_creg[1] &= ~ZSWR1_TIE;
909 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
910 1.1 leo }
911 1.1 leo out:
912 1.1 leo splx(s);
913 1.1 leo }
914 1.1 leo
915 1.1 leo /*
916 1.1 leo * Stop output, e.g., for ^S or output flush.
917 1.1 leo */
918 1.1 leo void
919 1.1 leo zsstop(tp, flag)
920 1.1 leo register struct tty *tp;
921 1.1 leo int flag;
922 1.1 leo {
923 1.1 leo register struct zs_chanstate *cs;
924 1.1 leo register int s, unit = ZS_UNIT(tp->t_dev);
925 1.1 leo struct zs_softc *zi = zscd.cd_devs[unit >> 1];
926 1.1 leo
927 1.1 leo cs = &zi->zi_cs[unit & 1];
928 1.1 leo s = splzs();
929 1.1 leo if(tp->t_state & TS_BUSY) {
930 1.1 leo /*
931 1.1 leo * Device is transmitting; must stop it.
932 1.1 leo */
933 1.1 leo cs->cs_tbc = 0;
934 1.1 leo if ((tp->t_state & TS_TTSTOP) == 0)
935 1.1 leo tp->t_state |= TS_FLUSH;
936 1.1 leo }
937 1.1 leo splx(s);
938 1.1 leo }
939 1.1 leo
940 1.1 leo /*
941 1.1 leo * Set ZS tty parameters from termios.
942 1.1 leo *
943 1.1 leo * This routine makes use of the fact that only registers
944 1.1 leo * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
945 1.1 leo */
946 1.1 leo static int
947 1.1 leo zsparam(tp, t)
948 1.1 leo register struct tty *tp;
949 1.1 leo register struct termios *t;
950 1.1 leo {
951 1.1 leo int unit = ZS_UNIT(tp->t_dev);
952 1.1 leo struct zs_softc *zi = zscd.cd_devs[unit >> 1];
953 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
954 1.6 leo int cdiv, clkm, brgm, tcon;
955 1.1 leo register int tmp, tmp5, cflag, s;
956 1.1 leo
957 1.6 leo tmp = t->c_ospeed;
958 1.6 leo tmp5 = t->c_ispeed;
959 1.6 leo if(tmp < 0 || (tmp5 && tmp5 != tmp))
960 1.1 leo return(EINVAL);
961 1.1 leo if(tmp == 0) {
962 1.1 leo /* stty 0 => drop DTR and RTS */
963 1.1 leo zs_modem(cs, 0, DMSET);
964 1.1 leo return(0);
965 1.1 leo }
966 1.6 leo tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
967 1.6 leo if (tmp < 0)
968 1.1 leo return(EINVAL);
969 1.6 leo tp->t_ispeed = tp->t_ospeed = tmp;
970 1.1 leo
971 1.6 leo cflag = tp->t_cflag = t->c_cflag;
972 1.6 leo if (cflag & CSTOPB)
973 1.6 leo cdiv |= ZSWR4_TWOSB;
974 1.6 leo else
975 1.6 leo cdiv |= ZSWR4_ONESB;
976 1.6 leo if (!(cflag & PARODD))
977 1.6 leo cdiv |= ZSWR4_EVENP;
978 1.6 leo if (cflag & PARENB)
979 1.6 leo cdiv |= ZSWR4_PARENB;
980 1.1 leo
981 1.1 leo switch(cflag & CSIZE) {
982 1.1 leo case CS5:
983 1.1 leo tmp = ZSWR3_RX_5;
984 1.1 leo tmp5 = ZSWR5_TX_5;
985 1.1 leo break;
986 1.1 leo case CS6:
987 1.1 leo tmp = ZSWR3_RX_6;
988 1.1 leo tmp5 = ZSWR5_TX_6;
989 1.1 leo break;
990 1.1 leo case CS7:
991 1.1 leo tmp = ZSWR3_RX_7;
992 1.1 leo tmp5 = ZSWR5_TX_7;
993 1.1 leo break;
994 1.1 leo case CS8:
995 1.1 leo default:
996 1.1 leo tmp = ZSWR3_RX_8;
997 1.1 leo tmp5 = ZSWR5_TX_8;
998 1.1 leo break;
999 1.1 leo }
1000 1.6 leo tmp |= ZSWR3_RX_ENABLE;
1001 1.6 leo tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1002 1.6 leo
1003 1.6 leo /*
1004 1.6 leo * Block interrupts so that state will not
1005 1.6 leo * be altered until we are done setting it up.
1006 1.6 leo */
1007 1.6 leo s = splzs();
1008 1.6 leo cs->cs_preg[4] = cdiv;
1009 1.6 leo cs->cs_preg[11] = clkm;
1010 1.6 leo cs->cs_preg[12] = tcon;
1011 1.6 leo cs->cs_preg[13] = tcon >> 8;
1012 1.6 leo cs->cs_preg[14] = brgm;
1013 1.6 leo cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1014 1.6 leo cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1015 1.6 leo cs->cs_preg[10] = ZSWR10_NRZ;
1016 1.6 leo cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1017 1.1 leo
1018 1.1 leo /*
1019 1.1 leo * Output hardware flow control on the chip is horrendous: if
1020 1.1 leo * carrier detect drops, the receiver is disabled. Hence we
1021 1.1 leo * can only do this when the carrier is on.
1022 1.1 leo */
1023 1.1 leo if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1024 1.6 leo tmp |= ZSWR3_HFC;
1025 1.1 leo cs->cs_preg[3] = tmp;
1026 1.6 leo cs->cs_preg[5] = tmp5;
1027 1.1 leo
1028 1.1 leo /*
1029 1.1 leo * If nothing is being transmitted, set up new current values,
1030 1.1 leo * else mark them as pending.
1031 1.1 leo */
1032 1.1 leo if(cs->cs_heldchange == 0) {
1033 1.1 leo if (cs->cs_ttyp->t_state & TS_BUSY) {
1034 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1035 1.1 leo cs->cs_tbc = 0;
1036 1.1 leo cs->cs_heldchange = 1;
1037 1.6 leo } else {
1038 1.1 leo bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1039 1.1 leo zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1040 1.1 leo }
1041 1.1 leo }
1042 1.1 leo splx(s);
1043 1.1 leo return (0);
1044 1.6 leo }
1045 1.6 leo
1046 1.6 leo /*
1047 1.6 leo * search for the best matching baudrate
1048 1.6 leo */
1049 1.6 leo static int
1050 1.6 leo zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1051 1.6 leo int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1052 1.6 leo {
1053 1.6 leo int bestdiff, bestbps, source;
1054 1.6 leo
1055 1.6 leo unit = (unit & 1) << 2;
1056 1.6 leo for (source = 0; source < 4; ++source) {
1057 1.6 leo long freq = zs_frequencies[unit + source];
1058 1.6 leo int diff, bps, div, clkm, brgm, tcon;
1059 1.6 leo switch (source) {
1060 1.6 leo case 0: /* BRgen, PCLK */
1061 1.6 leo brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1062 1.6 leo break;
1063 1.6 leo case 1: /* BRgen, RTxC */
1064 1.6 leo brgm = ZSWR14_BAUD_ENA;
1065 1.6 leo break;
1066 1.6 leo case 2: /* RTxC */
1067 1.6 leo clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1068 1.6 leo break;
1069 1.6 leo case 3: /* TRxC */
1070 1.6 leo clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1071 1.6 leo break;
1072 1.6 leo }
1073 1.6 leo switch (source) {
1074 1.6 leo case 0:
1075 1.6 leo case 1:
1076 1.6 leo div = ZSWR4_CLK_X16;
1077 1.6 leo clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1078 1.6 leo tcon = BPS_TO_TCONST(freq, wanted);
1079 1.6 leo if (tcon < 0)
1080 1.6 leo tcon = 0;
1081 1.6 leo bps = TCONST_TO_BPS(freq, tcon);
1082 1.6 leo break;
1083 1.6 leo case 2:
1084 1.6 leo case 3:
1085 1.6 leo { int b1 = freq / 16, d1 = abs(b1 - wanted);
1086 1.6 leo int b2 = freq / 32, d2 = abs(b2 - wanted);
1087 1.6 leo int b3 = freq / 64, d3 = abs(b3 - wanted);
1088 1.6 leo
1089 1.6 leo if (d1 < d2 && d1 < d3) {
1090 1.6 leo div = ZSWR4_CLK_X16;
1091 1.6 leo bps = b1;
1092 1.6 leo } else if (d2 < d3 && d2 < d1) {
1093 1.6 leo div = ZSWR4_CLK_X32;
1094 1.6 leo bps = b2;
1095 1.6 leo } else {
1096 1.6 leo div = ZSWR4_CLK_X64;
1097 1.6 leo bps = b3;
1098 1.6 leo }
1099 1.6 leo brgm = tcon = 0;
1100 1.6 leo break;
1101 1.6 leo }
1102 1.6 leo }
1103 1.6 leo diff = abs(bps - wanted);
1104 1.6 leo if (!source || diff < bestdiff) {
1105 1.6 leo *divisor = div;
1106 1.6 leo *clockmode = clkm;
1107 1.6 leo *brgenmode = brgm;
1108 1.6 leo *timeconst = tcon;
1109 1.6 leo bestbps = bps;
1110 1.6 leo bestdiff = diff;
1111 1.6 leo if (diff == 0)
1112 1.6 leo break;
1113 1.6 leo }
1114 1.6 leo }
1115 1.6 leo /* Allow deviations upto 5% */
1116 1.6 leo if (20 * bestdiff > wanted)
1117 1.6 leo return -1;
1118 1.6 leo return bestbps;
1119 1.1 leo }
1120 1.1 leo
1121 1.1 leo /*
1122 1.1 leo * Raise or lower modem control (DTR/RTS) signals. If a character is
1123 1.1 leo * in transmission, the change is deferred.
1124 1.1 leo */
1125 1.1 leo static int
1126 1.1 leo zs_modem(cs, bits, how)
1127 1.1 leo struct zs_chanstate *cs;
1128 1.1 leo int bits, how;
1129 1.1 leo {
1130 1.1 leo int s, mbits;
1131 1.1 leo
1132 1.1 leo bits &= ZSWR5_DTR | ZSWR5_RTS;
1133 1.1 leo
1134 1.1 leo s = splzs();
1135 1.1 leo mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1136 1.1 leo
1137 1.1 leo switch(how) {
1138 1.1 leo case DMSET:
1139 1.1 leo mbits = bits;
1140 1.1 leo break;
1141 1.1 leo case DMBIS:
1142 1.1 leo mbits |= bits;
1143 1.1 leo break;
1144 1.1 leo case DMBIC:
1145 1.1 leo mbits &= ~bits;
1146 1.1 leo break;
1147 1.1 leo case DMGET:
1148 1.1 leo splx(s);
1149 1.1 leo return(mbits);
1150 1.1 leo }
1151 1.1 leo
1152 1.1 leo cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1153 1.1 leo if(cs->cs_heldchange == 0) {
1154 1.1 leo if(cs->cs_ttyp->t_state & TS_BUSY) {
1155 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1156 1.1 leo cs->cs_tbc = 0;
1157 1.1 leo cs->cs_heldchange = 1;
1158 1.1 leo }
1159 1.1 leo else {
1160 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1161 1.1 leo }
1162 1.1 leo }
1163 1.1 leo splx(s);
1164 1.1 leo return(0);
1165 1.1 leo }
1166 1.1 leo
1167 1.1 leo /*
1168 1.1 leo * Write the given register set to the given zs channel in the proper order.
1169 1.1 leo * The channel must not be transmitting at the time. The receiver will
1170 1.1 leo * be disabled for the time it takes to write all the registers.
1171 1.1 leo */
1172 1.1 leo static void
1173 1.1 leo zs_loadchannelregs(zc, reg)
1174 1.1 leo volatile struct zschan *zc;
1175 1.1 leo u_char *reg;
1176 1.1 leo {
1177 1.1 leo int i;
1178 1.1 leo
1179 1.1 leo zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1180 1.1 leo i = zc->zc_data; /* drain fifo */
1181 1.1 leo i = zc->zc_data;
1182 1.1 leo i = zc->zc_data;
1183 1.1 leo ZS_WRITE(zc, 4, reg[4]);
1184 1.1 leo ZS_WRITE(zc, 10, reg[10]);
1185 1.1 leo ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1186 1.1 leo ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1187 1.1 leo ZS_WRITE(zc, 1, reg[1]);
1188 1.1 leo ZS_WRITE(zc, 9, reg[9]);
1189 1.1 leo ZS_WRITE(zc, 11, reg[11]);
1190 1.1 leo ZS_WRITE(zc, 12, reg[12]);
1191 1.1 leo ZS_WRITE(zc, 13, reg[13]);
1192 1.1 leo ZS_WRITE(zc, 14, reg[14]);
1193 1.1 leo ZS_WRITE(zc, 15, reg[15]);
1194 1.1 leo ZS_WRITE(zc, 3, reg[3]);
1195 1.1 leo ZS_WRITE(zc, 5, reg[5]);
1196 1.1 leo }
1197 1.1 leo #endif /* NZS > 1 */
1198