Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.9.2.1
      1  1.9.2.1      leo /*	$NetBSD: zs.c,v 1.9.2.1 1995/11/15 21:39:45 leo Exp $	*/
      2      1.1      leo 
      3      1.1      leo /*
      4      1.1      leo  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5      1.1      leo  * Copyright (c) 1992, 1993
      6      1.1      leo  *	The Regents of the University of California.  All rights reserved.
      7      1.1      leo  *
      8      1.1      leo  * This software was developed by the Computer Systems Engineering group
      9      1.1      leo  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10      1.1      leo  * contributed to Berkeley.
     11      1.1      leo  *
     12      1.1      leo  *
     13      1.1      leo  * All advertising materials mentioning features or use of this software
     14      1.1      leo  * must display the following acknowledgement:
     15      1.1      leo  *	This product includes software developed by the University of
     16      1.1      leo  *	California, Lawrence Berkeley Laboratory.
     17      1.1      leo  *
     18      1.1      leo  * Redistribution and use in source and binary forms, with or without
     19      1.1      leo  * modification, are permitted provided that the following conditions
     20      1.1      leo  * are met:
     21      1.1      leo  * 1. Redistributions of source code must retain the above copyright
     22      1.1      leo  *    notice, this list of conditions and the following disclaimer.
     23      1.1      leo  * 2. Redistributions in binary form must reproduce the above copyright
     24      1.1      leo  *    notice, this list of conditions and the following disclaimer in the
     25      1.1      leo  *    documentation and/or other materials provided with the distribution.
     26      1.1      leo  * 3. All advertising materials mentioning features or use of this software
     27      1.1      leo  *    must display the following acknowledgement:
     28      1.1      leo  *	This product includes software developed by the University of
     29      1.1      leo  *	California, Berkeley and its contributors.
     30      1.1      leo  * 4. Neither the name of the University nor the names of its contributors
     31      1.1      leo  *    may be used to endorse or promote products derived from this software
     32      1.1      leo  *    without specific prior written permission.
     33      1.1      leo  *
     34      1.1      leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35      1.1      leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36      1.1      leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37      1.1      leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38      1.1      leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39      1.1      leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40      1.1      leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41      1.1      leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42      1.1      leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43      1.1      leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44      1.1      leo  * SUCH DAMAGE.
     45      1.1      leo  *
     46      1.1      leo  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47      1.1      leo  */
     48      1.1      leo 
     49      1.1      leo /*
     50      1.1      leo  * Zilog Z8530 (ZSCC) driver.
     51      1.1      leo  *
     52      1.1      leo  * Runs two tty ports (modem2 and serial2) on zs0.
     53      1.1      leo  *
     54      1.1      leo  * This driver knows far too much about chip to usage mappings.
     55      1.1      leo  */
     56      1.1      leo #include <sys/param.h>
     57      1.9      leo #include <sys/systm.h>
     58      1.1      leo #include <sys/proc.h>
     59      1.1      leo #include <sys/device.h>
     60      1.1      leo #include <sys/conf.h>
     61      1.1      leo #include <sys/file.h>
     62      1.1      leo #include <sys/ioctl.h>
     63      1.1      leo #include <sys/tty.h>
     64      1.1      leo #include <sys/time.h>
     65      1.1      leo #include <sys/kernel.h>
     66      1.1      leo #include <sys/syslog.h>
     67      1.1      leo 
     68      1.1      leo #include <machine/cpu.h>
     69      1.1      leo #include <machine/iomap.h>
     70      1.1      leo #include <machine/scu.h>
     71      1.1      leo #include <machine/mfp.h>
     72  1.9.2.1      leo #include <machine/video.h>
     73      1.1      leo 
     74      1.7      cgd #include <dev/ic/z8530reg.h>
     75      1.1      leo #include <atari/dev/zsvar.h>
     76      1.1      leo #include "zs.h"
     77      1.1      leo #if NZS > 1
     78      1.1      leo #error "This driver supports only 1 85C30!"
     79      1.1      leo #endif
     80      1.1      leo 
     81      1.1      leo #if NZS > 0
     82      1.1      leo 
     83      1.1      leo #define PCLK	(8000000)	/* PCLK pin input clock rate */
     84      1.1      leo 
     85      1.1      leo #define splzs	spl5
     86      1.1      leo 
     87      1.1      leo /*
     88      1.1      leo  * Software state per found chip.
     89      1.1      leo  */
     90      1.1      leo struct zs_softc {
     91      1.1      leo     struct	device		zi_dev;    /* base device		  */
     92      1.1      leo     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     93      1.1      leo     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     94      1.1      leo };
     95      1.1      leo 
     96      1.8      leo static u_char	cb_scheduled = 0;	/* Already asked for callback? */
     97      1.1      leo /*
     98      1.1      leo  * Define the registers for a closed port
     99      1.1      leo  */
    100      1.6      leo static u_char zs_init_regs[16] = {
    101      1.1      leo /*  0 */	0,
    102      1.1      leo /*  1 */	0,
    103      1.1      leo /*  2 */	0x60,
    104      1.1      leo /*  3 */	0,
    105      1.1      leo /*  4 */	0,
    106      1.1      leo /*  5 */	0,
    107      1.1      leo /*  6 */	0,
    108      1.1      leo /*  7 */	0,
    109      1.1      leo /*  8 */	0,
    110      1.1      leo /*  9 */	ZSWR9_VECTOR_INCL_STAT,
    111      1.1      leo /* 10 */	ZSWR10_NRZ,
    112      1.1      leo /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    113      1.1      leo /* 12 */	0,
    114      1.1      leo /* 13 */	0,
    115      1.1      leo /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    116      1.1      leo /* 15 */	0
    117      1.1      leo };
    118      1.1      leo 
    119      1.6      leo /*
    120      1.6      leo  * Define the machine dependant clock frequencies
    121      1.6      leo  * If BRgen feeds sender/receiver we always use a
    122      1.6      leo  * divisor 16, therefor the division by 16 can as
    123      1.6      leo  * well be done here.
    124      1.6      leo  */
    125      1.6      leo static u_long zs_freqs_tt[] = {
    126      1.6      leo 	/*
    127      1.6      leo 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    128      1.6      leo 	 * which is set to 307.2KHz during initialisation
    129      1.6      leo 	 * and never changed afterwards.
    130      1.6      leo 	 */
    131      1.6      leo 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    132      1.6      leo 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    133      1.6      leo 	3672000,	/* RTxCA, from PCLK4		*/
    134      1.6      leo 	      0,	/* TRxCA, external		*/
    135      1.6      leo 
    136      1.6      leo 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    137      1.6      leo 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    138      1.6      leo 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    139      1.6      leo 	2457600		/* TRxCB, from BCLK		*/
    140      1.6      leo };
    141      1.6      leo static u_long zs_freqs_falcon[] = {
    142      1.6      leo 	/*
    143      1.6      leo 	 * Atari Falcon, XXX no specs available, this might be wrong
    144      1.6      leo 	 */
    145      1.6      leo 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    146      1.6      leo 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    147      1.6      leo 	3672000,	/* RTxCA, ???			*/
    148      1.6      leo 	      0,	/* TRxCA, external		*/
    149      1.6      leo 
    150      1.6      leo 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    151      1.6      leo 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    152      1.6      leo 	3672000,	/* RTxCB, ???			*/
    153      1.6      leo 	2457600		/* TRxCB, ???			*/
    154      1.6      leo };
    155      1.6      leo static u_long zs_freqs_generic[] = {
    156      1.6      leo 	/*
    157      1.6      leo 	 * other machines, assume only PCLK is available
    158      1.6      leo 	 */
    159      1.6      leo 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    160      1.6      leo 	      0,	/* BRgen, RTxCA, divisor 16	*/
    161      1.6      leo 	      0,	/* RTxCA, unknown		*/
    162      1.6      leo 	      0,	/* TRxCA, unknown		*/
    163      1.6      leo 
    164      1.6      leo 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    165      1.6      leo 	      0,	/* BRgen, RTxCB, divisor 16	*/
    166      1.6      leo 	      0,	/* RTxCB, unknown		*/
    167      1.6      leo 	      0		/* TRxCB, unknown		*/
    168      1.6      leo };
    169      1.6      leo static u_long *zs_frequencies;
    170      1.6      leo 
    171      1.1      leo /* Definition of the driver for autoconfig. */
    172      1.1      leo static int	zsmatch __P((struct device *, struct cfdata *, void *));
    173      1.1      leo static void	zsattach __P((struct device *, struct device *, void *));
    174      1.1      leo struct cfdriver zscd = {
    175      1.1      leo 	NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
    176      1.1      leo 	sizeof(struct zs_softc), NULL, 0 };
    177      1.1      leo 
    178      1.1      leo /* Interrupt handlers. */
    179      1.1      leo int		zshard __P((long));
    180      1.1      leo static int	zssoft __P((long));
    181      1.1      leo static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    182      1.1      leo static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    183      1.1      leo static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    184      1.1      leo 
    185      1.6      leo static struct zs_chanstate *zslist;
    186      1.1      leo 
    187      1.1      leo /* Routines called from other code. */
    188      1.1      leo static void	zsstart __P((struct tty *));
    189      1.1      leo void		zsstop __P((struct tty *, int));
    190      1.1      leo static int	zsparam __P((struct tty *, struct termios *));
    191      1.6      leo static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    192      1.1      leo 
    193      1.1      leo /* Routines purely local to this driver. */
    194      1.1      leo static void	zs_reset __P((volatile struct zschan *, int, int));
    195      1.1      leo static int	zs_modem __P((struct zs_chanstate *, int, int));
    196      1.1      leo static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    197      1.1      leo 
    198      1.6      leo static int zsshortcuts;	/* number of "shortcut" software interrupts */
    199      1.1      leo 
    200      1.4      leo static int
    201      1.4      leo zsmatch(pdp, cfp, auxp)
    202      1.1      leo struct device	*pdp;
    203      1.1      leo struct cfdata	*cfp;
    204      1.1      leo void		*auxp;
    205      1.1      leo {
    206      1.1      leo 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
    207      1.1      leo 		return(0);
    208      1.1      leo 	return(1);
    209      1.1      leo }
    210      1.1      leo 
    211      1.1      leo /*
    212      1.1      leo  * Attach a found zs.
    213      1.1      leo  */
    214      1.1      leo static void
    215      1.1      leo zsattach(parent, dev, aux)
    216      1.1      leo struct device	*parent;
    217      1.1      leo struct device	*dev;
    218      1.1      leo void		*aux;
    219      1.1      leo {
    220      1.1      leo 	register struct zs_softc		*zi;
    221      1.1      leo 	register struct zs_chanstate		*cs;
    222      1.1      leo 	register volatile struct zsdevice	*addr;
    223      1.1      leo 	register struct tty			*tp;
    224      1.1      leo 		 char				tmp;
    225      1.1      leo 
    226      1.1      leo 	addr      = (struct zsdevice *)AD_SCC;
    227      1.1      leo 	zi        = (struct zs_softc *)dev;
    228      1.1      leo 	zi->zi_zs = addr;
    229      1.1      leo 	cs        = zi->zi_cs;
    230      1.1      leo 
    231      1.1      leo 	/*
    232      1.1      leo 	 * Get the command register into a known state.
    233      1.1      leo 	 */
    234      1.2  mycroft 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    235      1.2  mycroft 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    236      1.2  mycroft 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    237      1.2  mycroft 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    238      1.1      leo 
    239      1.1      leo 	/*
    240      1.1      leo 	 * Do a hardware reset.
    241      1.1      leo 	 */
    242      1.2  mycroft 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    243      1.1      leo 	delay(50000);	/*enough ? */
    244      1.2  mycroft 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    245      1.1      leo 
    246      1.1      leo 	/*
    247      1.1      leo 	 * Initialize both channels
    248      1.1      leo 	 */
    249      1.2  mycroft 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    250      1.2  mycroft 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    251      1.1      leo 
    252      1.5      leo 	if(machineid & ATARI_TT) {
    253      1.5      leo 		/*
    254      1.6      leo 		 * ininitialise TT-MFP timer C: 307200Hz
    255      1.6      leo 		 * timer C and D share one control register:
    256      1.6      leo 		 *	bits 0-2 control timer D
    257      1.6      leo 		 *	bits 4-6 control timer C
    258      1.6      leo 		 */
    259      1.6      leo 		int cr = MFP2->mf_tcdcr & 7;
    260      1.6      leo 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    261      1.6      leo 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    262      1.6      leo 		cr |= T_Q004 << 4;		/* divisor 4     */
    263      1.6      leo 		MFP2->mf_tcdcr = cr;		/* start timer C */
    264      1.6      leo 		/*
    265      1.5      leo 		 * enable scc related interrupts
    266      1.5      leo 		 */
    267      1.5      leo 		SCU->sys_mask |= SCU_SCC;
    268      1.6      leo 
    269      1.6      leo 		zs_frequencies = zs_freqs_tt;
    270      1.6      leo 	} else if (machineid & ATARI_FALCON) {
    271      1.6      leo 		zs_frequencies = zs_freqs_falcon;
    272      1.6      leo 	} else {
    273      1.6      leo 		zs_frequencies = zs_freqs_generic;
    274      1.5      leo 	}
    275      1.1      leo 
    276      1.1      leo 	/* link into interrupt list with order (A,B) (B=A+1) */
    277      1.1      leo 	cs[0].cs_next = &cs[1];
    278      1.1      leo 	cs[1].cs_next = zslist;
    279      1.1      leo 	zslist        = cs;
    280      1.1      leo 
    281      1.1      leo 	cs->cs_unit  = 0;
    282      1.2  mycroft 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    283      1.1      leo 	cs++;
    284      1.1      leo 	cs->cs_unit  = 1;
    285      1.2  mycroft 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    286      1.1      leo 
    287      1.1      leo 	printf(": serial2 on channel a and modem2 on channel b\n");
    288      1.1      leo }
    289      1.1      leo 
    290      1.1      leo /*
    291      1.1      leo  * Open a zs serial port.
    292      1.1      leo  */
    293      1.1      leo int
    294      1.1      leo zsopen(dev, flags, mode, p)
    295      1.1      leo dev_t		dev;
    296      1.1      leo int		flags;
    297      1.1      leo int		mode;
    298      1.1      leo struct proc	*p;
    299      1.1      leo {
    300      1.1      leo 	register struct tty		*tp;
    301      1.1      leo 	register struct zs_chanstate	*cs;
    302      1.1      leo 		 struct zs_softc	*zi;
    303      1.1      leo 		 int			unit = ZS_UNIT(dev);
    304      1.1      leo 		 int			zs = unit >> 1;
    305      1.1      leo 		 int			error, s;
    306      1.1      leo 
    307      1.1      leo 	if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
    308      1.1      leo 		return (ENXIO);
    309      1.1      leo 	cs = &zi->zi_cs[unit & 1];
    310  1.9.2.1      leo 
    311  1.9.2.1      leo 	/*
    312  1.9.2.1      leo 	 * When port A (ser02) is selected on the TT, make sure
    313  1.9.2.1      leo 	 * the port is enabled.
    314  1.9.2.1      leo 	 */
    315  1.9.2.1      leo 	if((machineid & ATARI_TT) && !(unit & 1)) {
    316  1.9.2.1      leo 		SOUND->sd_selr = YM_IOA;
    317  1.9.2.1      leo 		SOUND->sd_wdat = SOUND->sd_rdat | PA_SER2;
    318  1.9.2.1      leo 	}
    319  1.9.2.1      leo 
    320      1.1      leo 	tp = cs->cs_ttyp;
    321      1.1      leo 	if(tp == NULL) {
    322      1.4      leo 		cs->cs_ttyp  = tp = ttymalloc();
    323      1.1      leo 		tp->t_dev    = dev;
    324      1.1      leo 		tp->t_oproc  = zsstart;
    325      1.1      leo 		tp->t_param  = zsparam;
    326      1.1      leo 	}
    327      1.1      leo 
    328      1.1      leo 	s  = spltty();
    329      1.1      leo 	if((tp->t_state & TS_ISOPEN) == 0) {
    330      1.1      leo 		ttychars(tp);
    331      1.1      leo 		if(tp->t_ispeed == 0) {
    332      1.1      leo 			tp->t_iflag = TTYDEF_IFLAG;
    333      1.1      leo 			tp->t_oflag = TTYDEF_OFLAG;
    334      1.1      leo 			tp->t_cflag = TTYDEF_CFLAG;
    335      1.1      leo 			tp->t_lflag = TTYDEF_LFLAG;
    336      1.1      leo 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    337      1.1      leo 		}
    338      1.1      leo 		(void)zsparam(tp, &tp->t_termios);
    339      1.1      leo 		ttsetwater(tp);
    340      1.1      leo 	}
    341      1.1      leo 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    342      1.1      leo 			splx(s);
    343      1.1      leo 			return (EBUSY);
    344      1.1      leo 	}
    345      1.1      leo 	error = 0;
    346      1.1      leo 	for(;;) {
    347      1.1      leo 		/* loop, turning on the device, until carrier present */
    348      1.1      leo 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    349      1.8      leo 
    350      1.8      leo 		/* May never get a status intr. if DCD already on. -gwr */
    351      1.8      leo 		if(cs->cs_zc->zc_csr & ZSRR0_DCD)
    352      1.8      leo 			tp->t_state |= TS_CARR_ON;
    353      1.1      leo 		if(cs->cs_softcar)
    354      1.1      leo 			tp->t_state |= TS_CARR_ON;
    355      1.1      leo 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    356      1.1      leo 		    tp->t_state & TS_CARR_ON)
    357      1.1      leo 			break;
    358      1.1      leo 		tp->t_state |= TS_WOPEN;
    359      1.1      leo 		if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    360      1.1      leo 		    ttopen, 0)) {
    361      1.1      leo 			if(!(tp->t_state & TS_ISOPEN)) {
    362      1.1      leo 				zs_modem(cs, 0, DMSET);
    363      1.1      leo 				tp->t_state &= ~TS_WOPEN;
    364      1.1      leo 				ttwakeup(tp);
    365      1.1      leo 			}
    366      1.1      leo 			splx(s);
    367      1.1      leo 			return error;
    368      1.1      leo 		}
    369      1.1      leo 	}
    370      1.1      leo 	splx(s);
    371      1.1      leo 	if(error == 0)
    372      1.1      leo 		error = linesw[tp->t_line].l_open(dev, tp);
    373      1.1      leo 	if(error)
    374      1.1      leo 		zs_modem(cs, 0, DMSET);
    375      1.1      leo 	return(error);
    376      1.1      leo }
    377      1.1      leo 
    378      1.1      leo /*
    379      1.1      leo  * Close a zs serial port.
    380      1.1      leo  */
    381      1.1      leo int
    382      1.1      leo zsclose(dev, flags, mode, p)
    383      1.1      leo dev_t		dev;
    384      1.1      leo int		flags;
    385      1.1      leo int		mode;
    386      1.1      leo struct proc	*p;
    387      1.1      leo {
    388      1.1      leo 	register struct zs_chanstate	*cs;
    389      1.1      leo 	register struct tty		*tp;
    390      1.1      leo 		 struct zs_softc	*zi;
    391      1.1      leo 		 int			unit = ZS_UNIT(dev);
    392      1.1      leo 		 int			s;
    393      1.1      leo 
    394      1.1      leo 	zi = zscd.cd_devs[unit >> 1];
    395      1.1      leo 	cs = &zi->zi_cs[unit & 1];
    396      1.1      leo 	tp = cs->cs_ttyp;
    397      1.1      leo 	linesw[tp->t_line].l_close(tp, flags);
    398      1.1      leo 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    399      1.1      leo 	    (tp->t_state & TS_ISOPEN) == 0) {
    400      1.1      leo 		zs_modem(cs, 0, DMSET);
    401      1.1      leo 		/* hold low for 1 second */
    402      1.1      leo 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    403      1.1      leo 	}
    404      1.1      leo 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
    405      1.1      leo 		s = splzs();
    406      1.1      leo 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    407      1.1      leo 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    408      1.1      leo 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    409      1.1      leo 		splx(s);
    410      1.1      leo 	}
    411      1.1      leo 	ttyclose(tp);
    412      1.1      leo 
    413      1.1      leo 	/*
    414      1.1      leo 	 * Drop all lines and cancel interrupts
    415      1.1      leo 	 */
    416      1.1      leo 	zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
    417      1.1      leo 	return (0);
    418      1.1      leo }
    419      1.1      leo 
    420      1.1      leo /*
    421      1.1      leo  * Read/write zs serial port.
    422      1.1      leo  */
    423      1.1      leo int
    424      1.1      leo zsread(dev, uio, flags)
    425      1.1      leo dev_t		dev;
    426      1.1      leo struct uio	*uio;
    427      1.1      leo int		flags;
    428      1.1      leo {
    429      1.4      leo 	register struct zs_chanstate	*cs;
    430      1.4      leo 	register struct zs_softc	*zi;
    431      1.4      leo 	register struct tty		*tp;
    432      1.4      leo 		 int			unit;
    433      1.4      leo 
    434      1.4      leo 	unit = ZS_UNIT(dev);
    435      1.4      leo 	zi   = zscd.cd_devs[unit >> 1];
    436      1.4      leo 	cs   = &zi->zi_cs[unit & 1];
    437      1.4      leo 	tp   = cs->cs_ttyp;
    438      1.1      leo 
    439      1.1      leo 	return(linesw[tp->t_line].l_read(tp, uio, flags));
    440      1.1      leo }
    441      1.1      leo 
    442      1.4      leo int
    443      1.4      leo zswrite(dev, uio, flags)
    444      1.1      leo dev_t		dev;
    445      1.1      leo struct uio	*uio;
    446      1.1      leo int		flags;
    447      1.1      leo {
    448      1.4      leo 	register struct zs_chanstate	*cs;
    449      1.4      leo 	register struct zs_softc	*zi;
    450      1.4      leo 	register struct tty		*tp;
    451      1.4      leo 		 int			unit;
    452      1.4      leo 
    453      1.4      leo 	unit = ZS_UNIT(dev);
    454      1.4      leo 	zi   = zscd.cd_devs[unit >> 1];
    455      1.4      leo 	cs   = &zi->zi_cs[unit & 1];
    456      1.4      leo 	tp   = cs->cs_ttyp;
    457      1.1      leo 
    458      1.1      leo 	return(linesw[tp->t_line].l_write(tp, uio, flags));
    459      1.4      leo }
    460      1.4      leo 
    461      1.4      leo struct tty *
    462      1.4      leo zstty(dev)
    463      1.4      leo dev_t	dev;
    464      1.4      leo {
    465      1.4      leo 	register struct zs_chanstate	*cs;
    466      1.4      leo 	register struct zs_softc	*zi;
    467      1.4      leo 		 int			unit;
    468      1.4      leo 
    469      1.4      leo 	unit = ZS_UNIT(dev);
    470      1.4      leo 	zi   = zscd.cd_devs[unit >> 1];
    471      1.4      leo 	cs   = &zi->zi_cs[unit & 1];
    472      1.4      leo 	return(cs->cs_ttyp);
    473      1.1      leo }
    474      1.1      leo 
    475      1.1      leo /*
    476      1.1      leo  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    477      1.1      leo  * channels are kept in (A,B) pairs.
    478      1.1      leo  *
    479      1.1      leo  * Do just a little, then get out; set a software interrupt if more
    480      1.1      leo  * work is needed.
    481      1.1      leo  *
    482      1.1      leo  * We deliberately ignore the vectoring Zilog gives us, and match up
    483      1.1      leo  * only the number of `reset interrupt under service' operations, not
    484      1.1      leo  * the order.
    485      1.1      leo  */
    486      1.8      leo 
    487      1.1      leo int
    488      1.1      leo zshard(sr)
    489      1.1      leo long sr;
    490      1.1      leo {
    491      1.1      leo 	register struct zs_chanstate	*a;
    492      1.1      leo #define	b (a + 1)
    493      1.1      leo 	register volatile struct zschan *zc;
    494      1.1      leo 	register int			rr3, intflags = 0, v, i;
    495      1.1      leo 
    496      1.8      leo 	do {
    497      1.8      leo 	    intflags &= ~4;
    498      1.8      leo 	    for(a = zslist; a != NULL; a = b->cs_next) {
    499      1.1      leo 		rr3 = ZS_READ(a->cs_zc, 3);
    500      1.1      leo 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    501      1.8      leo 			intflags |= 4|2;
    502      1.1      leo 			zc = a->cs_zc;
    503      1.1      leo 			i  = a->cs_rbput;
    504      1.1      leo 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    505      1.1      leo 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    506      1.1      leo 				intflags |= 1;
    507      1.1      leo 			}
    508      1.1      leo 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    509      1.1      leo 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    510      1.1      leo 				intflags |= 1;
    511      1.1      leo 			}
    512      1.1      leo 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    513      1.1      leo 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    514      1.1      leo 				intflags |= 1;
    515      1.1      leo 			}
    516      1.1      leo 			a->cs_rbput = i;
    517      1.1      leo 		}
    518      1.1      leo 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    519      1.8      leo 			intflags |= 4|2;
    520      1.1      leo 			zc = b->cs_zc;
    521      1.1      leo 			i  = b->cs_rbput;
    522      1.1      leo 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    523      1.1      leo 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    524      1.1      leo 				intflags |= 1;
    525      1.1      leo 			}
    526      1.1      leo 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    527      1.1      leo 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    528      1.1      leo 				intflags |= 1;
    529      1.1      leo 			}
    530      1.1      leo 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    531      1.1      leo 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    532      1.1      leo 				intflags |= 1;
    533      1.1      leo 			}
    534      1.1      leo 			b->cs_rbput = i;
    535      1.1      leo 		}
    536      1.8      leo 	    }
    537      1.8      leo 	} while(intflags & 4);
    538      1.1      leo #undef b
    539      1.1      leo 
    540      1.1      leo 	if(intflags & 1) {
    541      1.1      leo 		if(BASEPRI(sr)) {
    542      1.1      leo 			spl1();
    543      1.1      leo 			zsshortcuts++;
    544      1.1      leo 			return(zssoft(sr));
    545      1.1      leo 		}
    546      1.8      leo 		else if(!cb_scheduled) {
    547      1.8      leo 			cb_scheduled++;
    548      1.8      leo 			add_sicallback(zssoft, 0, 0);
    549      1.8      leo 		}
    550      1.1      leo 	}
    551      1.1      leo 	return(intflags & 2);
    552      1.1      leo }
    553      1.1      leo 
    554      1.1      leo static int
    555      1.1      leo zsrint(cs, zc)
    556      1.1      leo register struct zs_chanstate	*cs;
    557      1.1      leo register volatile struct zschan	*zc;
    558      1.1      leo {
    559      1.8      leo 	register int c;
    560      1.1      leo 
    561      1.8      leo 	/*
    562      1.8      leo 	 * First read the status, because read of the received char
    563      1.8      leo 	 * destroy the status of this char.
    564      1.8      leo 	 */
    565      1.8      leo 	c = ZS_READ(zc, 1);
    566      1.8      leo 	c |= (zc->zc_data << 8);
    567      1.1      leo 
    568      1.1      leo 	/* clear receive error & interrupt condition */
    569      1.1      leo 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    570      1.1      leo 	zc->zc_csr = ZSWR0_CLR_INTR;
    571      1.1      leo 
    572      1.1      leo 	return(ZRING_MAKE(ZRING_RINT, c));
    573      1.1      leo }
    574      1.1      leo 
    575      1.1      leo static int
    576      1.1      leo zsxint(cs, zc)
    577      1.1      leo register struct zs_chanstate	*cs;
    578      1.1      leo register volatile struct zschan	*zc;
    579      1.1      leo {
    580      1.1      leo 	register int i = cs->cs_tbc;
    581      1.1      leo 
    582      1.1      leo 	if(i == 0) {
    583      1.1      leo 		zc->zc_csr = ZSWR0_RESET_TXINT;
    584      1.1      leo 		zc->zc_csr = ZSWR0_CLR_INTR;
    585      1.1      leo 		return(ZRING_MAKE(ZRING_XINT, 0));
    586      1.1      leo 	}
    587      1.1      leo 	cs->cs_tbc = i - 1;
    588      1.1      leo 	zc->zc_data = *cs->cs_tba++;
    589      1.1      leo 	zc->zc_csr = ZSWR0_CLR_INTR;
    590      1.1      leo 	return (0);
    591      1.1      leo }
    592      1.1      leo 
    593      1.1      leo static int
    594      1.1      leo zssint(cs, zc)
    595      1.1      leo register struct zs_chanstate	*cs;
    596      1.1      leo register volatile struct zschan	*zc;
    597      1.1      leo {
    598      1.1      leo 	register int rr0;
    599      1.1      leo 
    600      1.1      leo 	rr0 = zc->zc_csr;
    601      1.1      leo 	zc->zc_csr = ZSWR0_RESET_STATUS;
    602      1.1      leo 	zc->zc_csr = ZSWR0_CLR_INTR;
    603      1.1      leo 	/*
    604      1.1      leo 	 * The chip's hardware flow control is, as noted in zsreg.h,
    605      1.1      leo 	 * busted---if the DCD line goes low the chip shuts off the
    606      1.1      leo 	 * receiver (!).  If we want hardware CTS flow control but do
    607      1.1      leo 	 * not have it, and carrier is now on, turn HFC on; if we have
    608      1.1      leo 	 * HFC now but carrier has gone low, turn it off.
    609      1.1      leo 	 */
    610      1.1      leo 	if(rr0 & ZSRR0_DCD) {
    611      1.1      leo 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    612      1.1      leo 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    613      1.1      leo 			cs->cs_creg[3] |= ZSWR3_HFC;
    614      1.1      leo 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    615      1.1      leo 		}
    616      1.1      leo 	}
    617      1.1      leo 	else {
    618      1.1      leo 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    619      1.1      leo 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    620      1.1      leo 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    621      1.1      leo 		}
    622      1.1      leo 	}
    623      1.1      leo 	return(ZRING_MAKE(ZRING_SINT, rr0));
    624      1.1      leo }
    625      1.1      leo 
    626      1.1      leo /*
    627      1.1      leo  * Print out a ring or fifo overrun error message.
    628      1.1      leo  */
    629      1.1      leo static void
    630      1.1      leo zsoverrun(unit, ptime, what)
    631      1.1      leo int	unit;
    632      1.1      leo long	*ptime;
    633      1.1      leo char	*what;
    634      1.1      leo {
    635      1.1      leo 
    636      1.1      leo 	if(*ptime != time.tv_sec) {
    637      1.1      leo 		*ptime = time.tv_sec;
    638      1.1      leo 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    639      1.1      leo 		    (unit & 1) + 'a', what);
    640      1.1      leo 	}
    641      1.1      leo }
    642      1.1      leo 
    643      1.1      leo /*
    644      1.1      leo  * ZS software interrupt.  Scan all channels for deferred interrupts.
    645      1.1      leo  */
    646      1.1      leo int
    647      1.1      leo zssoft(sr)
    648      1.1      leo long sr;
    649      1.1      leo {
    650      1.1      leo     register struct zs_chanstate	*cs;
    651      1.1      leo     register volatile struct zschan	*zc;
    652      1.1      leo     register struct linesw		*line;
    653      1.1      leo     register struct tty			*tp;
    654      1.1      leo     register int			get, n, c, cc, unit, s;
    655      1.1      leo  	     int			retval = 0;
    656      1.1      leo 
    657      1.8      leo     cb_scheduled = 0;
    658      1.1      leo     s = spltty();
    659      1.1      leo     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    660      1.1      leo 	get = cs->cs_rbget;
    661      1.1      leo again:
    662      1.1      leo 	n = cs->cs_rbput;	/* atomic			*/
    663      1.1      leo 	if(get == n)		/* nothing more on this line	*/
    664      1.1      leo 		continue;
    665      1.1      leo 	retval = 1;
    666      1.1      leo 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    667      1.1      leo 	zc     = cs->cs_zc;
    668      1.1      leo 	tp     = cs->cs_ttyp;
    669      1.1      leo 	line   = &linesw[tp->t_line];
    670      1.1      leo 	/*
    671      1.1      leo 	 * Compute the number of interrupts in the receive ring.
    672      1.1      leo 	 * If the count is overlarge, we lost some events, and
    673      1.1      leo 	 * must advance to the first valid one.  It may get
    674      1.1      leo 	 * overwritten if more data are arriving, but this is
    675      1.1      leo 	 * too expensive to check and gains nothing (we already
    676      1.1      leo 	 * lost out; all we can do at this point is trade one
    677      1.1      leo 	 * kind of loss for another).
    678      1.1      leo 	 */
    679      1.1      leo 	n -= get;
    680      1.1      leo 	if(n > ZLRB_RING_SIZE) {
    681      1.1      leo 		zsoverrun(unit, &cs->cs_rotime, "ring");
    682      1.1      leo 		get += n - ZLRB_RING_SIZE;
    683      1.1      leo 		n    = ZLRB_RING_SIZE;
    684      1.1      leo 	}
    685      1.1      leo 	while(--n >= 0) {
    686      1.1      leo 		/* race to keep ahead of incoming interrupts */
    687      1.1      leo 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    688      1.1      leo 		switch (ZRING_TYPE(c)) {
    689      1.1      leo 
    690      1.1      leo 		case ZRING_RINT:
    691      1.1      leo 			c = ZRING_VALUE(c);
    692      1.1      leo 			if(c & ZSRR1_DO)
    693      1.1      leo 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    694      1.1      leo 			cc = c >> 8;
    695      1.1      leo 			if(c & ZSRR1_FE)
    696      1.1      leo 				cc |= TTY_FE;
    697      1.1      leo 			if(c & ZSRR1_PE)
    698      1.1      leo 				cc |= TTY_PE;
    699      1.1      leo 			line->l_rint(cc, tp);
    700      1.1      leo 			break;
    701      1.1      leo 
    702      1.1      leo 		case ZRING_XINT:
    703      1.1      leo 			/*
    704      1.1      leo 			 * Transmit done: change registers and resume,
    705      1.1      leo 			 * or clear BUSY.
    706      1.1      leo 			 */
    707      1.1      leo 			if(cs->cs_heldchange) {
    708      1.1      leo 				int sps;
    709      1.1      leo 
    710      1.1      leo 				sps = splzs();
    711      1.1      leo 				c = zc->zc_csr;
    712      1.1      leo 				if((c & ZSRR0_DCD) == 0)
    713      1.1      leo 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    714      1.1      leo 				bcopy((caddr_t)cs->cs_preg,
    715      1.1      leo 				    (caddr_t)cs->cs_creg, 16);
    716      1.1      leo 				zs_loadchannelregs(zc, cs->cs_creg);
    717      1.1      leo 				splx(sps);
    718      1.1      leo 				cs->cs_heldchange = 0;
    719      1.1      leo 				if(cs->cs_heldtbc
    720      1.1      leo 					&& (tp->t_state & TS_TTSTOP) == 0) {
    721      1.1      leo 					cs->cs_tbc = cs->cs_heldtbc - 1;
    722      1.1      leo 					zc->zc_data = *cs->cs_tba++;
    723      1.1      leo 					goto again;
    724      1.1      leo 				}
    725      1.1      leo 			}
    726      1.1      leo 			tp->t_state &= ~TS_BUSY;
    727      1.1      leo 			if(tp->t_state & TS_FLUSH)
    728      1.1      leo 				tp->t_state &= ~TS_FLUSH;
    729      1.1      leo 			else ndflush(&tp->t_outq,cs->cs_tba
    730      1.1      leo 						- (caddr_t)tp->t_outq.c_cf);
    731      1.1      leo 			line->l_start(tp);
    732      1.1      leo 			break;
    733      1.1      leo 
    734      1.1      leo 		case ZRING_SINT:
    735      1.1      leo 			/*
    736      1.1      leo 			 * Status line change.  HFC bit is run in
    737      1.1      leo 			 * hardware interrupt, to avoid locking
    738      1.1      leo 			 * at splzs here.
    739      1.1      leo 			 */
    740      1.1      leo 			c = ZRING_VALUE(c);
    741      1.1      leo 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    742      1.1      leo 				cc = (c & ZSRR0_DCD) != 0;
    743      1.1      leo 				if(line->l_modem(tp, cc) == 0)
    744      1.1      leo 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    745      1.1      leo 							cc ? DMBIS : DMBIC);
    746      1.1      leo 			}
    747      1.1      leo 			cs->cs_rr0 = c;
    748      1.1      leo 			break;
    749      1.1      leo 
    750      1.1      leo 		default:
    751      1.1      leo 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    752      1.1      leo 			    unit >> 1, (unit & 1) + 'a', c);
    753      1.1      leo 			break;
    754      1.1      leo 		}
    755      1.1      leo 	}
    756      1.1      leo 	cs->cs_rbget = get;
    757      1.1      leo 	goto again;
    758      1.1      leo     }
    759      1.1      leo     splx(s);
    760      1.1      leo     return (retval);
    761      1.1      leo }
    762      1.1      leo 
    763      1.1      leo int
    764      1.1      leo zsioctl(dev, cmd, data, flag, p)
    765      1.1      leo dev_t		dev;
    766      1.1      leo u_long		cmd;
    767      1.1      leo caddr_t		data;
    768      1.1      leo int		flag;
    769      1.1      leo struct proc	*p;
    770      1.1      leo {
    771      1.1      leo 		 int			unit = ZS_UNIT(dev);
    772      1.1      leo 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    773      1.1      leo 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    774      1.1      leo 	register int			error, s;
    775      1.1      leo 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    776      1.1      leo 
    777      1.1      leo 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
    778      1.1      leo 	if(error >= 0)
    779      1.1      leo 		return(error);
    780      1.1      leo 	error = ttioctl(tp, cmd, data, flag, p);
    781      1.1      leo 	if(error >= 0)
    782      1.1      leo 		return (error);
    783      1.1      leo 
    784      1.1      leo 	switch (cmd) {
    785      1.1      leo 	case TIOCSBRK:
    786      1.1      leo 		s = splzs();
    787      1.1      leo 		cs->cs_preg[5] |= ZSWR5_BREAK;
    788      1.1      leo 		cs->cs_creg[5] |= ZSWR5_BREAK;
    789      1.1      leo 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    790      1.1      leo 		splx(s);
    791      1.1      leo 		break;
    792      1.1      leo 	case TIOCCBRK:
    793      1.1      leo 		s = splzs();
    794      1.1      leo 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    795      1.1      leo 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    796      1.1      leo 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    797      1.1      leo 		splx(s);
    798      1.1      leo 		break;
    799      1.1      leo 	case TIOCGFLAGS: {
    800      1.1      leo 		int bits = 0;
    801      1.1      leo 
    802      1.1      leo 		if(cs->cs_softcar)
    803      1.1      leo 			bits |= TIOCFLAG_SOFTCAR;
    804      1.1      leo 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    805      1.1      leo 			bits |= TIOCFLAG_CLOCAL;
    806      1.1      leo 		if(cs->cs_creg[3] & ZSWR3_HFC)
    807      1.1      leo 			bits |= TIOCFLAG_CRTSCTS;
    808      1.1      leo 		*(int *)data = bits;
    809      1.1      leo 		break;
    810      1.1      leo 	}
    811      1.1      leo 	case TIOCSFLAGS: {
    812      1.1      leo 		int userbits, driverbits = 0;
    813      1.1      leo 
    814      1.3  mycroft 		error = suser(p->p_ucred, &p->p_acflag);
    815      1.1      leo 		if(error != 0)
    816      1.1      leo 			return (EPERM);
    817      1.1      leo 
    818      1.1      leo 		userbits = *(int *)data;
    819      1.1      leo 
    820      1.1      leo 		/*
    821      1.1      leo 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    822      1.1      leo 		 # defaulting to software flow control.
    823      1.1      leo 		 */
    824      1.1      leo 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    825      1.1      leo 			return(EINVAL);
    826      1.1      leo 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    827      1.1      leo 			return(ENXIO);
    828      1.1      leo 
    829      1.1      leo 		s = splzs();
    830      1.1      leo 		if((userbits & TIOCFLAG_SOFTCAR)) {
    831      1.1      leo 			cs->cs_softcar = 1;	/* turn on softcar */
    832      1.1      leo 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    833      1.1      leo 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    834      1.1      leo 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    835      1.1      leo 		}
    836      1.1      leo 		else if(userbits & TIOCFLAG_CLOCAL) {
    837      1.1      leo 			cs->cs_softcar = 0; 	/* turn off softcar */
    838      1.1      leo 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    839      1.1      leo 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    840      1.1      leo 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    841      1.1      leo 			tp->t_termios.c_cflag |= CLOCAL;
    842      1.1      leo 		}
    843      1.1      leo 		if(userbits & TIOCFLAG_CRTSCTS) {
    844      1.1      leo 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    845      1.1      leo 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    846      1.1      leo 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    847      1.1      leo 			cs->cs_preg[3] |= ZSWR3_HFC;
    848      1.1      leo 			cs->cs_creg[3] |= ZSWR3_HFC;
    849      1.1      leo 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    850      1.1      leo 			tp->t_termios.c_cflag |= CRTSCTS;
    851      1.1      leo 		}
    852      1.1      leo 		else {
    853      1.1      leo 			/* no mdmbuf, so we must want software flow control */
    854      1.1      leo 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    855      1.1      leo 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    856      1.1      leo 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    857      1.1      leo 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    858      1.1      leo 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    859      1.1      leo 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    860      1.1      leo 			tp->t_termios.c_cflag &= ~CRTSCTS;
    861      1.1      leo 		}
    862      1.1      leo 		splx(s);
    863      1.1      leo 		break;
    864      1.1      leo 	}
    865      1.1      leo 	case TIOCSDTR:
    866      1.1      leo 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    867      1.1      leo 		break;
    868      1.1      leo 	case TIOCCDTR:
    869      1.1      leo 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    870      1.1      leo 		break;
    871      1.1      leo 	case TIOCMGET:
    872      1.1      leo 		zs_modem(cs, 0, DMGET);
    873      1.1      leo 		break;
    874      1.1      leo 	case TIOCMSET:
    875      1.1      leo 	case TIOCMBIS:
    876      1.1      leo 	case TIOCMBIC:
    877      1.1      leo 	default:
    878      1.1      leo 		return (ENOTTY);
    879      1.1      leo 	}
    880      1.1      leo 	return (0);
    881      1.1      leo }
    882      1.1      leo 
    883      1.1      leo /*
    884      1.1      leo  * Start or restart transmission.
    885      1.1      leo  */
    886      1.1      leo static void
    887      1.1      leo zsstart(tp)
    888      1.1      leo register struct tty *tp;
    889      1.1      leo {
    890      1.1      leo 	register struct zs_chanstate	*cs;
    891      1.1      leo 	register int			s, nch;
    892      1.1      leo 		 int			unit = ZS_UNIT(tp->t_dev);
    893      1.1      leo 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    894      1.1      leo 
    895      1.1      leo 	cs = &zi->zi_cs[unit & 1];
    896      1.1      leo 	s  = spltty();
    897      1.1      leo 
    898      1.1      leo 	/*
    899      1.1      leo 	 * If currently active or delaying, no need to do anything.
    900      1.1      leo 	 */
    901      1.1      leo 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    902      1.1      leo 		goto out;
    903      1.1      leo 
    904      1.1      leo 	/*
    905      1.1      leo 	 * If there are sleepers, and output has drained below low
    906      1.1      leo 	 * water mark, awaken.
    907      1.1      leo 	 */
    908      1.1      leo 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    909      1.1      leo 		if(tp->t_state & TS_ASLEEP) {
    910      1.1      leo 			tp->t_state &= ~TS_ASLEEP;
    911      1.1      leo 			wakeup((caddr_t)&tp->t_outq);
    912      1.1      leo 		}
    913      1.1      leo 		selwakeup(&tp->t_wsel);
    914      1.1      leo 	}
    915      1.1      leo 
    916      1.1      leo 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    917      1.1      leo 	if(nch) {
    918      1.1      leo 		register char *p = tp->t_outq.c_cf;
    919      1.1      leo 
    920      1.1      leo 		/* mark busy, enable tx done interrupts, & send first byte */
    921      1.1      leo 		tp->t_state |= TS_BUSY;
    922      1.1      leo 		(void) splzs();
    923      1.1      leo 		cs->cs_preg[1] |= ZSWR1_TIE;
    924      1.1      leo 		cs->cs_creg[1] |= ZSWR1_TIE;
    925      1.1      leo 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    926      1.1      leo 		cs->cs_zc->zc_data = *p;
    927      1.1      leo 		cs->cs_tba = p + 1;
    928      1.1      leo 		cs->cs_tbc = nch - 1;
    929      1.1      leo 	} else {
    930      1.1      leo 		/*
    931      1.1      leo 		 * Nothing to send, turn off transmit done interrupts.
    932      1.1      leo 		 * This is useful if something is doing polled output.
    933      1.1      leo 		 */
    934      1.1      leo 		(void) splzs();
    935      1.1      leo 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    936      1.1      leo 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    937      1.1      leo 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    938      1.1      leo 	}
    939      1.1      leo out:
    940      1.1      leo 	splx(s);
    941      1.1      leo }
    942      1.1      leo 
    943      1.1      leo /*
    944      1.1      leo  * Stop output, e.g., for ^S or output flush.
    945      1.1      leo  */
    946      1.1      leo void
    947      1.1      leo zsstop(tp, flag)
    948      1.1      leo register struct tty	*tp;
    949      1.1      leo 	 int		flag;
    950      1.1      leo {
    951      1.1      leo 	register struct zs_chanstate	*cs;
    952      1.1      leo 	register int			s, unit = ZS_UNIT(tp->t_dev);
    953      1.1      leo 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    954      1.1      leo 
    955      1.1      leo 	cs = &zi->zi_cs[unit & 1];
    956      1.1      leo 	s  = splzs();
    957      1.1      leo 	if(tp->t_state & TS_BUSY) {
    958      1.1      leo 		/*
    959      1.1      leo 		 * Device is transmitting; must stop it.
    960      1.1      leo 		 */
    961      1.1      leo 		cs->cs_tbc = 0;
    962      1.1      leo 		if ((tp->t_state & TS_TTSTOP) == 0)
    963      1.1      leo 			tp->t_state |= TS_FLUSH;
    964      1.1      leo 	}
    965      1.1      leo 	splx(s);
    966      1.1      leo }
    967      1.1      leo 
    968      1.1      leo /*
    969      1.1      leo  * Set ZS tty parameters from termios.
    970      1.1      leo  *
    971      1.1      leo  * This routine makes use of the fact that only registers
    972      1.1      leo  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
    973      1.1      leo  */
    974      1.1      leo static int
    975      1.1      leo zsparam(tp, t)
    976      1.1      leo register struct tty	*tp;
    977      1.1      leo register struct termios	*t;
    978      1.1      leo {
    979      1.1      leo 		 int			unit = ZS_UNIT(tp->t_dev);
    980      1.1      leo 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    981      1.1      leo 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    982      1.6      leo 		 int			cdiv, clkm, brgm, tcon;
    983      1.1      leo 	register int			tmp, tmp5, cflag, s;
    984      1.1      leo 
    985      1.6      leo 	tmp  = t->c_ospeed;
    986      1.6      leo 	tmp5 = t->c_ispeed;
    987      1.6      leo 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
    988      1.1      leo 		return(EINVAL);
    989      1.1      leo 	if(tmp == 0) {
    990      1.1      leo 		/* stty 0 => drop DTR and RTS */
    991      1.1      leo 		zs_modem(cs, 0, DMSET);
    992      1.1      leo 		return(0);
    993      1.1      leo 	}
    994      1.6      leo 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
    995      1.6      leo 	if (tmp < 0)
    996      1.1      leo 		return(EINVAL);
    997      1.6      leo 	tp->t_ispeed = tp->t_ospeed = tmp;
    998      1.1      leo 
    999      1.6      leo 	cflag = tp->t_cflag = t->c_cflag;
   1000      1.6      leo 	if (cflag & CSTOPB)
   1001      1.6      leo 		cdiv |= ZSWR4_TWOSB;
   1002      1.6      leo 	else
   1003      1.6      leo 		cdiv |= ZSWR4_ONESB;
   1004      1.6      leo 	if (!(cflag & PARODD))
   1005      1.6      leo 		cdiv |= ZSWR4_EVENP;
   1006      1.6      leo 	if (cflag & PARENB)
   1007      1.6      leo 		cdiv |= ZSWR4_PARENB;
   1008      1.1      leo 
   1009      1.1      leo 	switch(cflag & CSIZE) {
   1010      1.1      leo 	case CS5:
   1011      1.1      leo 		tmp  = ZSWR3_RX_5;
   1012      1.1      leo 		tmp5 = ZSWR5_TX_5;
   1013      1.1      leo 		break;
   1014      1.1      leo 	case CS6:
   1015      1.1      leo 		tmp  = ZSWR3_RX_6;
   1016      1.1      leo 		tmp5 = ZSWR5_TX_6;
   1017      1.1      leo 		break;
   1018      1.1      leo 	case CS7:
   1019      1.1      leo 		tmp  = ZSWR3_RX_7;
   1020      1.1      leo 		tmp5 = ZSWR5_TX_7;
   1021      1.1      leo 		break;
   1022      1.1      leo 	case CS8:
   1023      1.1      leo 	default:
   1024      1.1      leo 		tmp  = ZSWR3_RX_8;
   1025      1.1      leo 		tmp5 = ZSWR5_TX_8;
   1026      1.1      leo 		break;
   1027      1.1      leo 	}
   1028      1.6      leo 	tmp  |= ZSWR3_RX_ENABLE;
   1029      1.6      leo 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1030      1.6      leo 
   1031      1.6      leo 	/*
   1032      1.6      leo 	 * Block interrupts so that state will not
   1033      1.6      leo 	 * be altered until we are done setting it up.
   1034      1.6      leo 	 */
   1035      1.6      leo 	s = splzs();
   1036      1.6      leo 	cs->cs_preg[4]  = cdiv;
   1037      1.6      leo 	cs->cs_preg[11] = clkm;
   1038      1.6      leo 	cs->cs_preg[12] = tcon;
   1039      1.6      leo 	cs->cs_preg[13] = tcon >> 8;
   1040      1.6      leo 	cs->cs_preg[14] = brgm;
   1041      1.6      leo 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1042      1.6      leo 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1043      1.6      leo 	cs->cs_preg[10] = ZSWR10_NRZ;
   1044      1.6      leo 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1045      1.1      leo 
   1046      1.1      leo 	/*
   1047      1.1      leo 	 * Output hardware flow control on the chip is horrendous: if
   1048      1.1      leo 	 * carrier detect drops, the receiver is disabled.  Hence we
   1049      1.1      leo 	 * can only do this when the carrier is on.
   1050      1.1      leo 	 */
   1051      1.1      leo 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1052      1.6      leo 		tmp |= ZSWR3_HFC;
   1053      1.1      leo 	cs->cs_preg[3] = tmp;
   1054      1.6      leo 	cs->cs_preg[5] = tmp5;
   1055      1.1      leo 
   1056      1.1      leo 	/*
   1057      1.1      leo 	 * If nothing is being transmitted, set up new current values,
   1058      1.1      leo 	 * else mark them as pending.
   1059      1.1      leo 	 */
   1060      1.1      leo 	if(cs->cs_heldchange == 0) {
   1061      1.1      leo 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1062      1.1      leo 			cs->cs_heldtbc = cs->cs_tbc;
   1063      1.1      leo 			cs->cs_tbc = 0;
   1064      1.1      leo 			cs->cs_heldchange = 1;
   1065      1.6      leo 		} else {
   1066      1.1      leo 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1067      1.1      leo 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1068      1.1      leo 		}
   1069      1.1      leo 	}
   1070      1.1      leo 	splx(s);
   1071      1.1      leo 	return (0);
   1072      1.6      leo }
   1073      1.6      leo 
   1074      1.6      leo /*
   1075      1.6      leo  * search for the best matching baudrate
   1076      1.6      leo  */
   1077      1.6      leo static int
   1078      1.6      leo zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1079      1.6      leo int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1080      1.6      leo {
   1081      1.6      leo 	int	bestdiff, bestbps, source;
   1082      1.6      leo 
   1083      1.6      leo 	unit = (unit & 1) << 2;
   1084      1.6      leo 	for (source = 0; source < 4; ++source) {
   1085      1.6      leo 		long	freq = zs_frequencies[unit + source];
   1086      1.6      leo 		int	diff, bps, div, clkm, brgm, tcon;
   1087      1.6      leo 		switch (source) {
   1088      1.6      leo 			case 0:	/* BRgen, PCLK */
   1089      1.6      leo 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1090      1.6      leo 				break;
   1091      1.6      leo 			case 1:	/* BRgen, RTxC */
   1092      1.6      leo 				brgm = ZSWR14_BAUD_ENA;
   1093      1.6      leo 				break;
   1094      1.6      leo 			case 2: /* RTxC */
   1095      1.6      leo 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1096      1.6      leo 				break;
   1097      1.6      leo 			case 3: /* TRxC */
   1098      1.6      leo 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1099      1.6      leo 				break;
   1100      1.6      leo 		}
   1101      1.6      leo 		switch (source) {
   1102      1.6      leo 			case 0:
   1103      1.6      leo 			case 1:
   1104      1.6      leo 				div  = ZSWR4_CLK_X16;
   1105      1.6      leo 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1106      1.6      leo 				tcon = BPS_TO_TCONST(freq, wanted);
   1107      1.6      leo 				if (tcon < 0)
   1108      1.6      leo 					tcon = 0;
   1109      1.6      leo 				bps  = TCONST_TO_BPS(freq, tcon);
   1110      1.6      leo 				break;
   1111      1.6      leo 			case 2:
   1112      1.6      leo 			case 3:
   1113      1.6      leo 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1114      1.6      leo 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1115      1.6      leo 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1116      1.6      leo 
   1117      1.6      leo 				if (d1 < d2 && d1 < d3) {
   1118      1.6      leo 					div = ZSWR4_CLK_X16;
   1119      1.6      leo 					bps = b1;
   1120      1.6      leo 				} else if (d2 < d3 && d2 < d1) {
   1121      1.6      leo 					div = ZSWR4_CLK_X32;
   1122      1.6      leo 					bps = b2;
   1123      1.6      leo 				} else {
   1124      1.6      leo 					div = ZSWR4_CLK_X64;
   1125      1.6      leo 					bps = b3;
   1126      1.6      leo 				}
   1127      1.6      leo 				brgm = tcon = 0;
   1128      1.6      leo 				break;
   1129      1.6      leo 			}
   1130      1.6      leo 		}
   1131      1.6      leo 		diff = abs(bps - wanted);
   1132      1.6      leo 		if (!source || diff < bestdiff) {
   1133      1.6      leo 			*divisor   = div;
   1134      1.6      leo 			*clockmode = clkm;
   1135      1.6      leo 			*brgenmode = brgm;
   1136      1.6      leo 			*timeconst = tcon;
   1137      1.6      leo 			bestbps    = bps;
   1138      1.6      leo 			bestdiff   = diff;
   1139      1.6      leo 			if (diff == 0)
   1140      1.6      leo 				break;
   1141      1.6      leo 		}
   1142      1.6      leo 	}
   1143      1.6      leo 	/* Allow deviations upto 5% */
   1144      1.6      leo 	if (20 * bestdiff > wanted)
   1145      1.6      leo 		return -1;
   1146      1.6      leo 	return bestbps;
   1147      1.1      leo }
   1148      1.1      leo 
   1149      1.1      leo /*
   1150      1.1      leo  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1151      1.1      leo  * in transmission, the change is deferred.
   1152      1.1      leo  */
   1153      1.1      leo static int
   1154      1.1      leo zs_modem(cs, bits, how)
   1155      1.1      leo struct zs_chanstate	*cs;
   1156      1.1      leo int			bits, how;
   1157      1.1      leo {
   1158      1.1      leo 	int s, mbits;
   1159      1.1      leo 
   1160      1.1      leo 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1161      1.1      leo 
   1162      1.1      leo 	s = splzs();
   1163      1.1      leo 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1164      1.1      leo 
   1165      1.1      leo 	switch(how) {
   1166      1.1      leo 		case DMSET:
   1167      1.1      leo 				mbits  = bits;
   1168      1.1      leo 				break;
   1169      1.1      leo 		case DMBIS:
   1170      1.1      leo 				mbits |= bits;
   1171      1.1      leo 				break;
   1172      1.1      leo 		case DMBIC:
   1173      1.1      leo 				mbits &= ~bits;
   1174      1.1      leo 				break;
   1175      1.1      leo 		case DMGET:
   1176      1.1      leo 				splx(s);
   1177      1.1      leo 				return(mbits);
   1178      1.1      leo 	}
   1179      1.1      leo 
   1180      1.1      leo 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1181      1.1      leo 	if(cs->cs_heldchange == 0) {
   1182      1.1      leo 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1183      1.1      leo 			cs->cs_heldtbc = cs->cs_tbc;
   1184      1.1      leo 			cs->cs_tbc = 0;
   1185      1.1      leo 			cs->cs_heldchange = 1;
   1186      1.1      leo 		}
   1187      1.1      leo 		else {
   1188      1.1      leo 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1189      1.1      leo 		}
   1190      1.1      leo 	}
   1191      1.1      leo 	splx(s);
   1192      1.1      leo 	return(0);
   1193      1.1      leo }
   1194      1.1      leo 
   1195      1.1      leo /*
   1196      1.1      leo  * Write the given register set to the given zs channel in the proper order.
   1197      1.1      leo  * The channel must not be transmitting at the time.  The receiver will
   1198      1.1      leo  * be disabled for the time it takes to write all the registers.
   1199      1.1      leo  */
   1200      1.1      leo static void
   1201      1.1      leo zs_loadchannelregs(zc, reg)
   1202      1.1      leo volatile struct zschan	*zc;
   1203      1.1      leo u_char			*reg;
   1204      1.1      leo {
   1205      1.1      leo 	int i;
   1206      1.1      leo 
   1207      1.1      leo 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1208      1.1      leo 	i = zc->zc_data;		/* drain fifo */
   1209      1.1      leo 	i = zc->zc_data;
   1210      1.1      leo 	i = zc->zc_data;
   1211      1.1      leo 	ZS_WRITE(zc,  4, reg[4]);
   1212      1.1      leo 	ZS_WRITE(zc, 10, reg[10]);
   1213      1.1      leo 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1214      1.1      leo 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1215      1.1      leo 	ZS_WRITE(zc,  1, reg[1]);
   1216      1.1      leo 	ZS_WRITE(zc,  9, reg[9]);
   1217      1.1      leo 	ZS_WRITE(zc, 11, reg[11]);
   1218      1.1      leo 	ZS_WRITE(zc, 12, reg[12]);
   1219      1.1      leo 	ZS_WRITE(zc, 13, reg[13]);
   1220      1.1      leo 	ZS_WRITE(zc, 14, reg[14]);
   1221      1.1      leo 	ZS_WRITE(zc, 15, reg[15]);
   1222      1.1      leo 	ZS_WRITE(zc,  3, reg[3]);
   1223      1.1      leo 	ZS_WRITE(zc,  5, reg[5]);
   1224      1.1      leo }
   1225      1.1      leo #endif /* NZS > 1 */
   1226