Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.1
      1 /*	$NetBSD: zs.c,v 1.1 1995/03/26 07:12:14 leo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/proc.h>
     58 #include <sys/device.h>
     59 #include <sys/conf.h>
     60 #include <sys/file.h>
     61 #include <sys/ioctl.h>
     62 #include <sys/tty.h>
     63 #include <sys/time.h>
     64 #include <sys/kernel.h>
     65 #include <sys/syslog.h>
     66 
     67 #include <machine/cpu.h>
     68 #include <machine/iomap.h>
     69 #include <machine/scu.h>
     70 #include <machine/mfp.h>
     71 
     72 #include <atari/dev/zsreg.h>
     73 #include <atari/dev/zsvar.h>
     74 #include "zs.h"
     75 #if NZS > 1
     76 #error "This driver supports only 1 85C30!"
     77 #endif
     78 
     79 #if NZS > 0
     80 
     81 #define PCLK	(8000000)	/* PCLK pin input clock rate */
     82 
     83 #define splzs	spl5
     84 
     85 /*
     86  * Software state per found chip.
     87  */
     88 struct zs_softc {
     89     struct	device		zi_dev;    /* base device		  */
     90     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     91     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     92 };
     93 
     94 /*
     95  * Define the registers for a closed port
     96  */
     97 u_char zs_init_regs[16] = {
     98 /*  0 */	0,
     99 /*  1 */	0,
    100 /*  2 */	0x60,
    101 /*  3 */	0,
    102 /*  4 */	0,
    103 /*  5 */	0,
    104 /*  6 */	0,
    105 /*  7 */	0,
    106 /*  8 */	0,
    107 /*  9 */	ZSWR9_VECTOR_INCL_STAT,
    108 /* 10 */	ZSWR10_NRZ,
    109 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    110 /* 12 */	0,
    111 /* 13 */	0,
    112 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    113 /* 15 */	0
    114 };
    115 
    116 struct tty *zs_tty[NZS * 2];		/* XXX should be dynamic */
    117 
    118 /* Definition of the driver for autoconfig. */
    119 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    120 static void	zsattach __P((struct device *, struct device *, void *));
    121 struct cfdriver zscd = {
    122 	NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
    123 	sizeof(struct zs_softc), NULL, 0 };
    124 
    125 /* Interrupt handlers. */
    126 int		zshard __P((long));
    127 static int	zssoft __P((long));
    128 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    129 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    130 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    131 
    132 struct zs_chanstate *zslist;
    133 
    134 /* Routines called from other code. */
    135 static void	zsstart __P((struct tty *));
    136 void		zsstop __P((struct tty *, int));
    137 static int	zsparam __P((struct tty *, struct termios *));
    138 
    139 /* Routines purely local to this driver. */
    140 static void	zs_reset __P((volatile struct zschan *, int, int));
    141 static int	zs_modem __P((struct zs_chanstate *, int, int));
    142 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    143 
    144 int zsshortcuts;	/* number of "shortcut" software interrupts */
    145 
    146 static int zsmatch(pdp, cfp, auxp)
    147 struct device	*pdp;
    148 struct cfdata	*cfp;
    149 void		*auxp;
    150 {
    151 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
    152 		return(0);
    153 	return(1);
    154 }
    155 
    156 /*
    157  * Attach a found zs.
    158  */
    159 static void
    160 zsattach(parent, dev, aux)
    161 struct device	*parent;
    162 struct device	*dev;
    163 void		*aux;
    164 {
    165 	register struct zs_softc		*zi;
    166 	register struct zs_chanstate		*cs;
    167 	register volatile struct zsdevice	*addr;
    168 	register struct tty			*tp;
    169 		 char				tmp;
    170 
    171 	addr      = (struct zsdevice *)AD_SCC;
    172 	zi        = (struct zs_softc *)dev;
    173 	zi->zi_zs = addr;
    174 	cs        = zi->zi_cs;
    175 
    176 	/*
    177 	 * Get the command register into a known state.
    178 	 */
    179 	tmp = addr->zs_chan[CHAN_A].zc_csr;
    180 	tmp = addr->zs_chan[CHAN_A].zc_csr;
    181 	tmp = addr->zs_chan[CHAN_B].zc_csr;
    182 	tmp = addr->zs_chan[CHAN_B].zc_csr;
    183 
    184 	/*
    185 	 * Do a hardware reset.
    186 	 */
    187 	ZS_WRITE(&addr->zs_chan[CHAN_A], 9, ZSWR9_HARD_RESET);
    188 	delay(50000);	/*enough ? */
    189 	ZS_WRITE(&addr->zs_chan[CHAN_A], 9, 0);
    190 
    191 	/*
    192 	 * Initialize both channels
    193 	 */
    194 	zs_loadchannelregs(&addr->zs_chan[CHAN_A], zs_init_regs);
    195 	zs_loadchannelregs(&addr->zs_chan[CHAN_B], zs_init_regs);
    196 
    197 	/*
    198 	 * enable scc related interrupts
    199 	 */
    200 	SCU->sys_mask |= SCU_SCC;
    201 
    202 	/* link into interrupt list with order (A,B) (B=A+1) */
    203 	cs[0].cs_next = &cs[1];
    204 	cs[1].cs_next = zslist;
    205 	zslist        = cs;
    206 
    207 	cs->cs_unit  = 0;
    208 	cs->cs_zc    = &addr->zs_chan[CHAN_A];
    209 	cs++;
    210 	cs->cs_unit  = 1;
    211 	cs->cs_zc    = &addr->zs_chan[CHAN_B];
    212 
    213 	printf(": serial2 on channel a and modem2 on channel b\n");
    214 }
    215 
    216 /*
    217  * Open a zs serial port.
    218  */
    219 int
    220 zsopen(dev, flags, mode, p)
    221 dev_t		dev;
    222 int		flags;
    223 int		mode;
    224 struct proc	*p;
    225 {
    226 	register struct tty		*tp;
    227 	register struct zs_chanstate	*cs;
    228 		 struct zs_softc	*zi;
    229 		 int			unit = ZS_UNIT(dev);
    230 		 int			zs = unit >> 1;
    231 		 int			error, s;
    232 
    233 	if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
    234 		return (ENXIO);
    235 	cs = &zi->zi_cs[unit & 1];
    236 	tp = cs->cs_ttyp;
    237 	if(tp == NULL) {
    238 		cs->cs_ttyp  = tp = zs_tty[unit] = ttymalloc();
    239 		tp->t_dev    = dev;
    240 		tp->t_oproc  = zsstart;
    241 		tp->t_param  = zsparam;
    242 	}
    243 
    244 	s  = spltty();
    245 	if((tp->t_state & TS_ISOPEN) == 0) {
    246 		ttychars(tp);
    247 		if(tp->t_ispeed == 0) {
    248 			tp->t_iflag = TTYDEF_IFLAG;
    249 			tp->t_oflag = TTYDEF_OFLAG;
    250 			tp->t_cflag = TTYDEF_CFLAG;
    251 			tp->t_lflag = TTYDEF_LFLAG;
    252 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    253 		}
    254 		(void)zsparam(tp, &tp->t_termios);
    255 		ttsetwater(tp);
    256 	}
    257 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    258 			splx(s);
    259 			return (EBUSY);
    260 	}
    261 	error = 0;
    262 	for(;;) {
    263 		/* loop, turning on the device, until carrier present */
    264 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    265 		if(cs->cs_softcar)
    266 			tp->t_state |= TS_CARR_ON;
    267 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    268 		    tp->t_state & TS_CARR_ON)
    269 			break;
    270 		tp->t_state |= TS_WOPEN;
    271 		if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    272 		    ttopen, 0)) {
    273 			if(!(tp->t_state & TS_ISOPEN)) {
    274 				zs_modem(cs, 0, DMSET);
    275 				tp->t_state &= ~TS_WOPEN;
    276 				ttwakeup(tp);
    277 			}
    278 			splx(s);
    279 			return error;
    280 		}
    281 	}
    282 	splx(s);
    283 	if(error == 0)
    284 		error = linesw[tp->t_line].l_open(dev, tp);
    285 	if(error)
    286 		zs_modem(cs, 0, DMSET);
    287 	return(error);
    288 }
    289 
    290 /*
    291  * Close a zs serial port.
    292  */
    293 int
    294 zsclose(dev, flags, mode, p)
    295 dev_t		dev;
    296 int		flags;
    297 int		mode;
    298 struct proc	*p;
    299 {
    300 	register struct zs_chanstate	*cs;
    301 	register struct tty		*tp;
    302 		 struct zs_softc	*zi;
    303 		 int			unit = ZS_UNIT(dev);
    304 		 int			s;
    305 
    306 	zi = zscd.cd_devs[unit >> 1];
    307 	cs = &zi->zi_cs[unit & 1];
    308 	tp = cs->cs_ttyp;
    309 	linesw[tp->t_line].l_close(tp, flags);
    310 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    311 	    (tp->t_state & TS_ISOPEN) == 0) {
    312 		zs_modem(cs, 0, DMSET);
    313 		/* hold low for 1 second */
    314 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    315 	}
    316 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
    317 		s = splzs();
    318 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    319 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    320 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    321 		splx(s);
    322 	}
    323 	ttyclose(tp);
    324 
    325 	/*
    326 	 * Drop all lines and cancel interrupts
    327 	 */
    328 	zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
    329 	return (0);
    330 }
    331 
    332 /*
    333  * Read/write zs serial port.
    334  */
    335 int
    336 zsread(dev, uio, flags)
    337 dev_t		dev;
    338 struct uio	*uio;
    339 int		flags;
    340 {
    341 	register struct tty *tp = zs_tty[ZS_UNIT(dev)];
    342 
    343 	return(linesw[tp->t_line].l_read(tp, uio, flags));
    344 }
    345 
    346 int zswrite(dev, uio, flags)
    347 dev_t		dev;
    348 struct uio	*uio;
    349 int		flags;
    350 {
    351 	register struct tty *tp = zs_tty[ZS_UNIT(dev)];
    352 
    353 	return(linesw[tp->t_line].l_write(tp, uio, flags));
    354 }
    355 
    356 /*
    357  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    358  * channels are kept in (A,B) pairs.
    359  *
    360  * Do just a little, then get out; set a software interrupt if more
    361  * work is needed.
    362  *
    363  * We deliberately ignore the vectoring Zilog gives us, and match up
    364  * only the number of `reset interrupt under service' operations, not
    365  * the order.
    366  */
    367 int
    368 zshard(sr)
    369 long sr;
    370 {
    371 	register struct zs_chanstate	*a;
    372 #define	b (a + 1)
    373 	register volatile struct zschan *zc;
    374 	register int			rr3, intflags = 0, v, i;
    375 
    376 	for(a = zslist; a != NULL; a = b->cs_next) {
    377 		rr3 = ZS_READ(a->cs_zc, 3);
    378 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    379 			intflags |= 2;
    380 			zc = a->cs_zc;
    381 			i  = a->cs_rbput;
    382 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    383 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    384 				intflags |= 1;
    385 			}
    386 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    387 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    388 				intflags |= 1;
    389 			}
    390 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    391 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    392 				intflags |= 1;
    393 			}
    394 			a->cs_rbput = i;
    395 		}
    396 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    397 			intflags |= 2;
    398 			zc = b->cs_zc;
    399 			i  = b->cs_rbput;
    400 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    401 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    402 				intflags |= 1;
    403 			}
    404 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    405 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    406 				intflags |= 1;
    407 			}
    408 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    409 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    410 				intflags |= 1;
    411 			}
    412 			b->cs_rbput = i;
    413 		}
    414 	}
    415 #undef b
    416 
    417 	if(intflags & 1) {
    418 		if(BASEPRI(sr)) {
    419 			spl1();
    420 			zsshortcuts++;
    421 			return(zssoft(sr));
    422 		}
    423 		else add_sicallback(zssoft, 0, 0);
    424 	}
    425 	return(intflags & 2);
    426 }
    427 
    428 static int
    429 zsrint(cs, zc)
    430 register struct zs_chanstate	*cs;
    431 register volatile struct zschan	*zc;
    432 {
    433 	register int c = zc->zc_data;
    434 
    435 	/* compose receive character and status */
    436 	c <<= 8;
    437 	c |= ZS_READ(zc, 1);
    438 
    439 	/* clear receive error & interrupt condition */
    440 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    441 	zc->zc_csr = ZSWR0_CLR_INTR;
    442 
    443 	return(ZRING_MAKE(ZRING_RINT, c));
    444 }
    445 
    446 static int
    447 zsxint(cs, zc)
    448 register struct zs_chanstate	*cs;
    449 register volatile struct zschan	*zc;
    450 {
    451 	register int i = cs->cs_tbc;
    452 
    453 	if(i == 0) {
    454 		zc->zc_csr = ZSWR0_RESET_TXINT;
    455 		zc->zc_csr = ZSWR0_CLR_INTR;
    456 		return(ZRING_MAKE(ZRING_XINT, 0));
    457 	}
    458 	cs->cs_tbc = i - 1;
    459 	zc->zc_data = *cs->cs_tba++;
    460 	zc->zc_csr = ZSWR0_CLR_INTR;
    461 	return (0);
    462 }
    463 
    464 static int
    465 zssint(cs, zc)
    466 register struct zs_chanstate	*cs;
    467 register volatile struct zschan	*zc;
    468 {
    469 	register int rr0;
    470 
    471 	rr0 = zc->zc_csr;
    472 	zc->zc_csr = ZSWR0_RESET_STATUS;
    473 	zc->zc_csr = ZSWR0_CLR_INTR;
    474 	/*
    475 	 * The chip's hardware flow control is, as noted in zsreg.h,
    476 	 * busted---if the DCD line goes low the chip shuts off the
    477 	 * receiver (!).  If we want hardware CTS flow control but do
    478 	 * not have it, and carrier is now on, turn HFC on; if we have
    479 	 * HFC now but carrier has gone low, turn it off.
    480 	 */
    481 	if(rr0 & ZSRR0_DCD) {
    482 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    483 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    484 			cs->cs_creg[3] |= ZSWR3_HFC;
    485 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    486 		}
    487 	}
    488 	else {
    489 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    490 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    491 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    492 		}
    493 	}
    494 	return(ZRING_MAKE(ZRING_SINT, rr0));
    495 }
    496 
    497 /*
    498  * Print out a ring or fifo overrun error message.
    499  */
    500 static void
    501 zsoverrun(unit, ptime, what)
    502 int	unit;
    503 long	*ptime;
    504 char	*what;
    505 {
    506 
    507 	if(*ptime != time.tv_sec) {
    508 		*ptime = time.tv_sec;
    509 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    510 		    (unit & 1) + 'a', what);
    511 	}
    512 }
    513 
    514 /*
    515  * ZS software interrupt.  Scan all channels for deferred interrupts.
    516  */
    517 int
    518 zssoft(sr)
    519 long sr;
    520 {
    521     register struct zs_chanstate	*cs;
    522     register volatile struct zschan	*zc;
    523     register struct linesw		*line;
    524     register struct tty			*tp;
    525     register int			get, n, c, cc, unit, s;
    526  	     int			retval = 0;
    527 
    528     s = spltty();
    529     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    530 	get = cs->cs_rbget;
    531 again:
    532 	n = cs->cs_rbput;	/* atomic			*/
    533 	if(get == n)		/* nothing more on this line	*/
    534 		continue;
    535 	retval = 1;
    536 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    537 	zc     = cs->cs_zc;
    538 	tp     = cs->cs_ttyp;
    539 	line   = &linesw[tp->t_line];
    540 	/*
    541 	 * Compute the number of interrupts in the receive ring.
    542 	 * If the count is overlarge, we lost some events, and
    543 	 * must advance to the first valid one.  It may get
    544 	 * overwritten if more data are arriving, but this is
    545 	 * too expensive to check and gains nothing (we already
    546 	 * lost out; all we can do at this point is trade one
    547 	 * kind of loss for another).
    548 	 */
    549 	n -= get;
    550 	if(n > ZLRB_RING_SIZE) {
    551 		zsoverrun(unit, &cs->cs_rotime, "ring");
    552 		get += n - ZLRB_RING_SIZE;
    553 		n    = ZLRB_RING_SIZE;
    554 	}
    555 	while(--n >= 0) {
    556 		/* race to keep ahead of incoming interrupts */
    557 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    558 		switch (ZRING_TYPE(c)) {
    559 
    560 		case ZRING_RINT:
    561 			c = ZRING_VALUE(c);
    562 			if(c & ZSRR1_DO)
    563 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    564 			cc = c >> 8;
    565 			if(c & ZSRR1_FE)
    566 				cc |= TTY_FE;
    567 			if(c & ZSRR1_PE)
    568 				cc |= TTY_PE;
    569 			line->l_rint(cc, tp);
    570 			break;
    571 
    572 		case ZRING_XINT:
    573 			/*
    574 			 * Transmit done: change registers and resume,
    575 			 * or clear BUSY.
    576 			 */
    577 			if(cs->cs_heldchange) {
    578 				int sps;
    579 
    580 				sps = splzs();
    581 				c = zc->zc_csr;
    582 				if((c & ZSRR0_DCD) == 0)
    583 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    584 				bcopy((caddr_t)cs->cs_preg,
    585 				    (caddr_t)cs->cs_creg, 16);
    586 				zs_loadchannelregs(zc, cs->cs_creg);
    587 				splx(sps);
    588 				cs->cs_heldchange = 0;
    589 				if(cs->cs_heldtbc
    590 					&& (tp->t_state & TS_TTSTOP) == 0) {
    591 					cs->cs_tbc = cs->cs_heldtbc - 1;
    592 					zc->zc_data = *cs->cs_tba++;
    593 					goto again;
    594 				}
    595 			}
    596 			tp->t_state &= ~TS_BUSY;
    597 			if(tp->t_state & TS_FLUSH)
    598 				tp->t_state &= ~TS_FLUSH;
    599 			else ndflush(&tp->t_outq,cs->cs_tba
    600 						- (caddr_t)tp->t_outq.c_cf);
    601 			line->l_start(tp);
    602 			break;
    603 
    604 		case ZRING_SINT:
    605 			/*
    606 			 * Status line change.  HFC bit is run in
    607 			 * hardware interrupt, to avoid locking
    608 			 * at splzs here.
    609 			 */
    610 			c = ZRING_VALUE(c);
    611 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    612 				cc = (c & ZSRR0_DCD) != 0;
    613 				if(line->l_modem(tp, cc) == 0)
    614 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    615 							cc ? DMBIS : DMBIC);
    616 			}
    617 			cs->cs_rr0 = c;
    618 			break;
    619 
    620 		default:
    621 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    622 			    unit >> 1, (unit & 1) + 'a', c);
    623 			break;
    624 		}
    625 	}
    626 	cs->cs_rbget = get;
    627 	goto again;
    628     }
    629     splx(s);
    630     return (retval);
    631 }
    632 
    633 int
    634 zsioctl(dev, cmd, data, flag, p)
    635 dev_t		dev;
    636 u_long		cmd;
    637 caddr_t		data;
    638 int		flag;
    639 struct proc	*p;
    640 {
    641 		 int			unit = ZS_UNIT(dev);
    642 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    643 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    644 	register int			error, s;
    645 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    646 
    647 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
    648 	if(error >= 0)
    649 		return(error);
    650 	error = ttioctl(tp, cmd, data, flag, p);
    651 	if(error >= 0)
    652 		return (error);
    653 
    654 	switch (cmd) {
    655 	case TIOCSBRK:
    656 		s = splzs();
    657 		cs->cs_preg[5] |= ZSWR5_BREAK;
    658 		cs->cs_creg[5] |= ZSWR5_BREAK;
    659 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    660 		splx(s);
    661 		break;
    662 	case TIOCCBRK:
    663 		s = splzs();
    664 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    665 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    666 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    667 		splx(s);
    668 		break;
    669 	case TIOCGFLAGS: {
    670 		int bits = 0;
    671 
    672 		if(cs->cs_softcar)
    673 			bits |= TIOCFLAG_SOFTCAR;
    674 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    675 			bits |= TIOCFLAG_CLOCAL;
    676 		if(cs->cs_creg[3] & ZSWR3_HFC)
    677 			bits |= TIOCFLAG_CRTSCTS;
    678 		*(int *)data = bits;
    679 		break;
    680 	}
    681 	case TIOCSFLAGS: {
    682 		int userbits, driverbits = 0;
    683 
    684 		error = suser(p->p_ucred, &p->p_acflag);
    685 		if(error != 0)
    686 			return (EPERM);
    687 
    688 		userbits = *(int *)data;
    689 
    690 		/*
    691 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    692 		 # defaulting to software flow control.
    693 		 */
    694 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    695 			return(EINVAL);
    696 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    697 			return(ENXIO);
    698 
    699 		s = splzs();
    700 		if((userbits & TIOCFLAG_SOFTCAR)) {
    701 			cs->cs_softcar = 1;	/* turn on softcar */
    702 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    703 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    704 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    705 		}
    706 		else if(userbits & TIOCFLAG_CLOCAL) {
    707 			cs->cs_softcar = 0; 	/* turn off softcar */
    708 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    709 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    710 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    711 			tp->t_termios.c_cflag |= CLOCAL;
    712 		}
    713 		if(userbits & TIOCFLAG_CRTSCTS) {
    714 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    715 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    716 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    717 			cs->cs_preg[3] |= ZSWR3_HFC;
    718 			cs->cs_creg[3] |= ZSWR3_HFC;
    719 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    720 			tp->t_termios.c_cflag |= CRTSCTS;
    721 		}
    722 		else {
    723 			/* no mdmbuf, so we must want software flow control */
    724 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    725 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    726 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    727 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    728 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    729 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    730 			tp->t_termios.c_cflag &= ~CRTSCTS;
    731 		}
    732 		splx(s);
    733 		break;
    734 	}
    735 	case TIOCSDTR:
    736 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    737 		break;
    738 	case TIOCCDTR:
    739 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    740 		break;
    741 	case TIOCMGET:
    742 		zs_modem(cs, 0, DMGET);
    743 		break;
    744 	case TIOCMSET:
    745 	case TIOCMBIS:
    746 	case TIOCMBIC:
    747 	default:
    748 		return (ENOTTY);
    749 	}
    750 	return (0);
    751 }
    752 
    753 /*
    754  * Start or restart transmission.
    755  */
    756 static void
    757 zsstart(tp)
    758 register struct tty *tp;
    759 {
    760 	register struct zs_chanstate	*cs;
    761 	register int			s, nch;
    762 		 int			unit = ZS_UNIT(tp->t_dev);
    763 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    764 
    765 	cs = &zi->zi_cs[unit & 1];
    766 	s  = spltty();
    767 
    768 	/*
    769 	 * If currently active or delaying, no need to do anything.
    770 	 */
    771 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    772 		goto out;
    773 
    774 	/*
    775 	 * If there are sleepers, and output has drained below low
    776 	 * water mark, awaken.
    777 	 */
    778 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    779 		if(tp->t_state & TS_ASLEEP) {
    780 			tp->t_state &= ~TS_ASLEEP;
    781 			wakeup((caddr_t)&tp->t_outq);
    782 		}
    783 		selwakeup(&tp->t_wsel);
    784 	}
    785 
    786 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    787 	if(nch) {
    788 		register char *p = tp->t_outq.c_cf;
    789 
    790 		/* mark busy, enable tx done interrupts, & send first byte */
    791 		tp->t_state |= TS_BUSY;
    792 		(void) splzs();
    793 		cs->cs_preg[1] |= ZSWR1_TIE;
    794 		cs->cs_creg[1] |= ZSWR1_TIE;
    795 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    796 		cs->cs_zc->zc_data = *p;
    797 		cs->cs_tba = p + 1;
    798 		cs->cs_tbc = nch - 1;
    799 	} else {
    800 		/*
    801 		 * Nothing to send, turn off transmit done interrupts.
    802 		 * This is useful if something is doing polled output.
    803 		 */
    804 		(void) splzs();
    805 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    806 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    807 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    808 	}
    809 out:
    810 	splx(s);
    811 }
    812 
    813 /*
    814  * Stop output, e.g., for ^S or output flush.
    815  */
    816 void
    817 zsstop(tp, flag)
    818 register struct tty	*tp;
    819 	 int		flag;
    820 {
    821 	register struct zs_chanstate	*cs;
    822 	register int			s, unit = ZS_UNIT(tp->t_dev);
    823 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    824 
    825 	cs = &zi->zi_cs[unit & 1];
    826 	s  = splzs();
    827 	if(tp->t_state & TS_BUSY) {
    828 		/*
    829 		 * Device is transmitting; must stop it.
    830 		 */
    831 		cs->cs_tbc = 0;
    832 		if ((tp->t_state & TS_TTSTOP) == 0)
    833 			tp->t_state |= TS_FLUSH;
    834 	}
    835 	splx(s);
    836 }
    837 
    838 /*
    839  * Set ZS tty parameters from termios.
    840  *
    841  * This routine makes use of the fact that only registers
    842  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
    843  */
    844 static int
    845 zsparam(tp, t)
    846 register struct tty	*tp;
    847 register struct termios	*t;
    848 {
    849 		 int			unit = ZS_UNIT(tp->t_dev);
    850 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    851 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    852 	register int			tmp, tmp5, cflag, s;
    853 
    854 	tmp = t->c_ospeed;
    855 	if(tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
    856 		return(EINVAL);
    857 	if(tmp == 0) {
    858 		/* stty 0 => drop DTR and RTS */
    859 		zs_modem(cs, 0, DMSET);
    860 		return(0);
    861 	}
    862 	tmp = BPS_TO_TCONST(PCLK / 16, tmp);
    863 	if(tmp < 2)
    864 		return(EINVAL);
    865 
    866 	cflag = t->c_cflag;
    867 	tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
    868 	tp->t_cflag = cflag;
    869 
    870 	/*
    871 	 * Block interrupts so that state will not
    872 	 * be altered until we are done setting it up.
    873 	 */
    874 	s = splzs();
    875 	cs->cs_preg[12] = tmp;
    876 	cs->cs_preg[13] = tmp >> 8;
    877 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
    878 	switch(cflag & CSIZE) {
    879 	case CS5:
    880 		tmp  = ZSWR3_RX_5;
    881 		tmp5 = ZSWR5_TX_5;
    882 		break;
    883 	case CS6:
    884 		tmp  = ZSWR3_RX_6;
    885 		tmp5 = ZSWR5_TX_6;
    886 		break;
    887 	case CS7:
    888 		tmp  = ZSWR3_RX_7;
    889 		tmp5 = ZSWR5_TX_7;
    890 		break;
    891 	case CS8:
    892 	default:
    893 		tmp  = ZSWR3_RX_8;
    894 		tmp5 = ZSWR5_TX_8;
    895 		break;
    896 	}
    897 
    898 	/*
    899 	 * Output hardware flow control on the chip is horrendous: if
    900 	 * carrier detect drops, the receiver is disabled.  Hence we
    901 	 * can only do this when the carrier is on.
    902 	 */
    903 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
    904 		tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
    905 	else tmp |= ZSWR3_RX_ENABLE;
    906 	cs->cs_preg[3] = tmp;
    907 	cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
    908 
    909 	tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
    910 	if((cflag & PARODD) == 0)
    911 		tmp |= ZSWR4_EVENP;
    912 	if (cflag & PARENB)
    913 		tmp |= ZSWR4_PARENB;
    914 	cs->cs_preg[4]  = tmp;
    915 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
    916 	cs->cs_preg[10] = ZSWR10_NRZ;
    917 	cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
    918 	cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
    919 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
    920 
    921 	/*
    922 	 * If nothing is being transmitted, set up new current values,
    923 	 * else mark them as pending.
    924 	 */
    925 	if(cs->cs_heldchange == 0) {
    926 		if (cs->cs_ttyp->t_state & TS_BUSY) {
    927 			cs->cs_heldtbc = cs->cs_tbc;
    928 			cs->cs_tbc = 0;
    929 			cs->cs_heldchange = 1;
    930 		}
    931 		else {
    932 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
    933 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
    934 		}
    935 	}
    936 	splx(s);
    937 	return (0);
    938 }
    939 
    940 /*
    941  * Raise or lower modem control (DTR/RTS) signals.  If a character is
    942  * in transmission, the change is deferred.
    943  */
    944 static int
    945 zs_modem(cs, bits, how)
    946 struct zs_chanstate	*cs;
    947 int			bits, how;
    948 {
    949 	int s, mbits;
    950 
    951 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
    952 
    953 	s = splzs();
    954 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
    955 
    956 	switch(how) {
    957 		case DMSET:
    958 				mbits  = bits;
    959 				break;
    960 		case DMBIS:
    961 				mbits |= bits;
    962 				break;
    963 		case DMBIC:
    964 				mbits &= ~bits;
    965 				break;
    966 		case DMGET:
    967 				splx(s);
    968 				return(mbits);
    969 	}
    970 
    971 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
    972 	if(cs->cs_heldchange == 0) {
    973 		if(cs->cs_ttyp->t_state & TS_BUSY) {
    974 			cs->cs_heldtbc = cs->cs_tbc;
    975 			cs->cs_tbc = 0;
    976 			cs->cs_heldchange = 1;
    977 		}
    978 		else {
    979 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    980 		}
    981 	}
    982 	splx(s);
    983 	return(0);
    984 }
    985 
    986 /*
    987  * Write the given register set to the given zs channel in the proper order.
    988  * The channel must not be transmitting at the time.  The receiver will
    989  * be disabled for the time it takes to write all the registers.
    990  */
    991 static void
    992 zs_loadchannelregs(zc, reg)
    993 volatile struct zschan	*zc;
    994 u_char			*reg;
    995 {
    996 	int i;
    997 
    998 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
    999 	i = zc->zc_data;		/* drain fifo */
   1000 	i = zc->zc_data;
   1001 	i = zc->zc_data;
   1002 	ZS_WRITE(zc,  4, reg[4]);
   1003 	ZS_WRITE(zc, 10, reg[10]);
   1004 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1005 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1006 	ZS_WRITE(zc,  1, reg[1]);
   1007 	ZS_WRITE(zc,  9, reg[9]);
   1008 	ZS_WRITE(zc, 11, reg[11]);
   1009 	ZS_WRITE(zc, 12, reg[12]);
   1010 	ZS_WRITE(zc, 13, reg[13]);
   1011 	ZS_WRITE(zc, 14, reg[14]);
   1012 	ZS_WRITE(zc, 15, reg[15]);
   1013 	ZS_WRITE(zc,  3, reg[3]);
   1014 	ZS_WRITE(zc,  5, reg[5]);
   1015 }
   1016 #endif /* NZS > 1 */
   1017