Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.11
      1 /*	$NetBSD: zs.c,v 1.11 1995/12/03 14:32:39 leo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/systm.h>
     58 #include <sys/proc.h>
     59 #include <sys/device.h>
     60 #include <sys/conf.h>
     61 #include <sys/file.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/tty.h>
     64 #include <sys/time.h>
     65 #include <sys/kernel.h>
     66 #include <sys/syslog.h>
     67 
     68 #include <machine/cpu.h>
     69 #include <machine/iomap.h>
     70 #include <machine/scu.h>
     71 #include <machine/mfp.h>
     72 #include <machine/video.h>
     73 
     74 #include <dev/ic/z8530reg.h>
     75 #include <atari/dev/zsvar.h>
     76 #include "zs.h"
     77 #if NZS > 1
     78 #error "This driver supports only 1 85C30!"
     79 #endif
     80 
     81 #if NZS > 0
     82 
     83 #define PCLK	(8000000)	/* PCLK pin input clock rate */
     84 
     85 #define splzs	spl5
     86 
     87 /*
     88  * Software state per found chip.
     89  */
     90 struct zs_softc {
     91     struct	device		zi_dev;    /* base device		  */
     92     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     93     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     94 };
     95 
     96 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
     97 /*
     98  * Define the registers for a closed port
     99  */
    100 static u_char zs_init_regs[16] = {
    101 /*  0 */	0,
    102 /*  1 */	0,
    103 /*  2 */	0x60,
    104 /*  3 */	0,
    105 /*  4 */	0,
    106 /*  5 */	0,
    107 /*  6 */	0,
    108 /*  7 */	0,
    109 /*  8 */	0,
    110 /*  9 */	ZSWR9_VECTOR_INCL_STAT,
    111 /* 10 */	ZSWR10_NRZ,
    112 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    113 /* 12 */	0,
    114 /* 13 */	0,
    115 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    116 /* 15 */	0
    117 };
    118 
    119 /*
    120  * Define the machine dependant clock frequencies
    121  * If BRgen feeds sender/receiver we always use a
    122  * divisor 16, therefor the division by 16 can as
    123  * well be done here.
    124  */
    125 static u_long zs_freqs_tt[] = {
    126 	/*
    127 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    128 	 * which is set to 307.2KHz during initialisation
    129 	 * and never changed afterwards.
    130 	 */
    131 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    132 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    133 	3672000,	/* RTxCA, from PCLK4		*/
    134 	      0,	/* TRxCA, external		*/
    135 
    136 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    137 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    138 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    139 	2457600		/* TRxCB, from BCLK		*/
    140 };
    141 static u_long zs_freqs_falcon[] = {
    142 	/*
    143 	 * Atari Falcon, XXX no specs available, this might be wrong
    144 	 */
    145 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    146 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    147 	3672000,	/* RTxCA, ???			*/
    148 	      0,	/* TRxCA, external		*/
    149 
    150 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    151 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    152 	3672000,	/* RTxCB, ???			*/
    153 	2457600		/* TRxCB, ???			*/
    154 };
    155 static u_long zs_freqs_generic[] = {
    156 	/*
    157 	 * other machines, assume only PCLK is available
    158 	 */
    159 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    160 	      0,	/* BRgen, RTxCA, divisor 16	*/
    161 	      0,	/* RTxCA, unknown		*/
    162 	      0,	/* TRxCA, unknown		*/
    163 
    164 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    165 	      0,	/* BRgen, RTxCB, divisor 16	*/
    166 	      0,	/* RTxCB, unknown		*/
    167 	      0		/* TRxCB, unknown		*/
    168 };
    169 static u_long *zs_frequencies;
    170 
    171 /* Definition of the driver for autoconfig. */
    172 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    173 static void	zsattach __P((struct device *, struct device *, void *));
    174 struct cfdriver zscd = {
    175 	NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
    176 	sizeof(struct zs_softc), NULL, 0 };
    177 
    178 /* Interrupt handlers. */
    179 int		zshard __P((long));
    180 static int	zssoft __P((long));
    181 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    182 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    183 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    184 
    185 static struct zs_chanstate *zslist;
    186 
    187 /* Routines called from other code. */
    188 static void	zsstart __P((struct tty *));
    189 void		zsstop __P((struct tty *, int));
    190 static int	zsparam __P((struct tty *, struct termios *));
    191 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    192 
    193 /* Routines purely local to this driver. */
    194 static void	zs_reset __P((volatile struct zschan *, int, int));
    195 static int	zs_modem __P((struct zs_chanstate *, int, int));
    196 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    197 
    198 static int zsshortcuts;	/* number of "shortcut" software interrupts */
    199 
    200 static int
    201 zsmatch(pdp, cfp, auxp)
    202 struct device	*pdp;
    203 struct cfdata	*cfp;
    204 void		*auxp;
    205 {
    206 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
    207 		return(0);
    208 	return(1);
    209 }
    210 
    211 /*
    212  * Attach a found zs.
    213  */
    214 static void
    215 zsattach(parent, dev, aux)
    216 struct device	*parent;
    217 struct device	*dev;
    218 void		*aux;
    219 {
    220 	register struct zs_softc		*zi;
    221 	register struct zs_chanstate		*cs;
    222 	register volatile struct zsdevice	*addr;
    223 	register struct tty			*tp;
    224 		 char				tmp;
    225 
    226 	addr      = (struct zsdevice *)AD_SCC;
    227 	zi        = (struct zs_softc *)dev;
    228 	zi->zi_zs = addr;
    229 	cs        = zi->zi_cs;
    230 
    231 	/*
    232 	 * Get the command register into a known state.
    233 	 */
    234 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    235 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    236 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    237 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    238 
    239 	/*
    240 	 * Do a hardware reset.
    241 	 */
    242 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    243 	delay(50000);	/*enough ? */
    244 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    245 
    246 	/*
    247 	 * Initialize both channels
    248 	 */
    249 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    250 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    251 
    252 	if(machineid & ATARI_TT) {
    253 		/*
    254 		 * ininitialise TT-MFP timer C: 307200Hz
    255 		 * timer C and D share one control register:
    256 		 *	bits 0-2 control timer D
    257 		 *	bits 4-6 control timer C
    258 		 */
    259 		int cr = MFP2->mf_tcdcr & 7;
    260 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    261 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    262 		cr |= T_Q004 << 4;		/* divisor 4     */
    263 		MFP2->mf_tcdcr = cr;		/* start timer C */
    264 		/*
    265 		 * enable scc related interrupts
    266 		 */
    267 		SCU->sys_mask |= SCU_SCC;
    268 
    269 		zs_frequencies = zs_freqs_tt;
    270 	} else if (machineid & ATARI_FALCON) {
    271 		zs_frequencies = zs_freqs_falcon;
    272 	} else {
    273 		zs_frequencies = zs_freqs_generic;
    274 	}
    275 
    276 	/* link into interrupt list with order (A,B) (B=A+1) */
    277 	cs[0].cs_next = &cs[1];
    278 	cs[1].cs_next = zslist;
    279 	zslist        = cs;
    280 
    281 	cs->cs_unit  = 0;
    282 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    283 	cs++;
    284 	cs->cs_unit  = 1;
    285 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    286 
    287 	printf(": serial2 on channel a and modem2 on channel b\n");
    288 }
    289 
    290 /*
    291  * Open a zs serial port.
    292  */
    293 int
    294 zsopen(dev, flags, mode, p)
    295 dev_t		dev;
    296 int		flags;
    297 int		mode;
    298 struct proc	*p;
    299 {
    300 	register struct tty		*tp;
    301 	register struct zs_chanstate	*cs;
    302 		 struct zs_softc	*zi;
    303 		 int			unit = ZS_UNIT(dev);
    304 		 int			zs = unit >> 1;
    305 		 int			error, s;
    306 
    307 	if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
    308 		return (ENXIO);
    309 	cs = &zi->zi_cs[unit & 1];
    310 
    311 	/*
    312 	 * When port A (ser02) is selected on the TT, make sure
    313 	 * the port is enabled.
    314 	 */
    315 	if((machineid & ATARI_TT) && !(unit & 1)) {
    316 		SOUND->sd_selr = YM_IOA;
    317 		SOUND->sd_wdat = SOUND->sd_rdat | PA_SER2;
    318 	}
    319 
    320 	tp = cs->cs_ttyp;
    321 	if(tp == NULL) {
    322 		cs->cs_ttyp  = tp = ttymalloc();
    323 		tp->t_dev    = dev;
    324 		tp->t_oproc  = zsstart;
    325 		tp->t_param  = zsparam;
    326 	}
    327 
    328 	s  = spltty();
    329 	if((tp->t_state & TS_ISOPEN) == 0) {
    330 		ttychars(tp);
    331 		if(tp->t_ispeed == 0) {
    332 			tp->t_iflag = TTYDEF_IFLAG;
    333 			tp->t_oflag = TTYDEF_OFLAG;
    334 			tp->t_cflag = TTYDEF_CFLAG;
    335 			tp->t_lflag = TTYDEF_LFLAG;
    336 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    337 		}
    338 		(void)zsparam(tp, &tp->t_termios);
    339 		ttsetwater(tp);
    340 	}
    341 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    342 			splx(s);
    343 			return (EBUSY);
    344 	}
    345 	error = 0;
    346 	for(;;) {
    347 		/* loop, turning on the device, until carrier present */
    348 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    349 
    350 		/* May never get a status intr. if DCD already on. -gwr */
    351 		if(cs->cs_zc->zc_csr & ZSRR0_DCD)
    352 			tp->t_state |= TS_CARR_ON;
    353 		if(cs->cs_softcar)
    354 			tp->t_state |= TS_CARR_ON;
    355 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    356 		    tp->t_state & TS_CARR_ON)
    357 			break;
    358 		tp->t_state |= TS_WOPEN;
    359 		if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    360 		    ttopen, 0)) {
    361 			if(!(tp->t_state & TS_ISOPEN)) {
    362 				zs_modem(cs, 0, DMSET);
    363 				tp->t_state &= ~TS_WOPEN;
    364 				ttwakeup(tp);
    365 			}
    366 			splx(s);
    367 			return error;
    368 		}
    369 	}
    370 	splx(s);
    371 	if(error == 0)
    372 		error = linesw[tp->t_line].l_open(dev, tp);
    373 	if(error)
    374 		zs_modem(cs, 0, DMSET);
    375 	return(error);
    376 }
    377 
    378 /*
    379  * Close a zs serial port.
    380  */
    381 int
    382 zsclose(dev, flags, mode, p)
    383 dev_t		dev;
    384 int		flags;
    385 int		mode;
    386 struct proc	*p;
    387 {
    388 	register struct zs_chanstate	*cs;
    389 	register struct tty		*tp;
    390 		 struct zs_softc	*zi;
    391 		 int			unit = ZS_UNIT(dev);
    392 		 int			s;
    393 
    394 	zi = zscd.cd_devs[unit >> 1];
    395 	cs = &zi->zi_cs[unit & 1];
    396 	tp = cs->cs_ttyp;
    397 	linesw[tp->t_line].l_close(tp, flags);
    398 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    399 	    (tp->t_state & TS_ISOPEN) == 0) {
    400 		zs_modem(cs, 0, DMSET);
    401 		/* hold low for 1 second */
    402 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    403 	}
    404 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
    405 		s = splzs();
    406 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    407 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    408 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    409 		splx(s);
    410 	}
    411 	ttyclose(tp);
    412 
    413 	/*
    414 	 * Drop all lines and cancel interrupts
    415 	 */
    416 	zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
    417 	return (0);
    418 }
    419 
    420 /*
    421  * Read/write zs serial port.
    422  */
    423 int
    424 zsread(dev, uio, flags)
    425 dev_t		dev;
    426 struct uio	*uio;
    427 int		flags;
    428 {
    429 	register struct zs_chanstate	*cs;
    430 	register struct zs_softc	*zi;
    431 	register struct tty		*tp;
    432 		 int			unit;
    433 
    434 	unit = ZS_UNIT(dev);
    435 	zi   = zscd.cd_devs[unit >> 1];
    436 	cs   = &zi->zi_cs[unit & 1];
    437 	tp   = cs->cs_ttyp;
    438 
    439 	return(linesw[tp->t_line].l_read(tp, uio, flags));
    440 }
    441 
    442 int
    443 zswrite(dev, uio, flags)
    444 dev_t		dev;
    445 struct uio	*uio;
    446 int		flags;
    447 {
    448 	register struct zs_chanstate	*cs;
    449 	register struct zs_softc	*zi;
    450 	register struct tty		*tp;
    451 		 int			unit;
    452 
    453 	unit = ZS_UNIT(dev);
    454 	zi   = zscd.cd_devs[unit >> 1];
    455 	cs   = &zi->zi_cs[unit & 1];
    456 	tp   = cs->cs_ttyp;
    457 
    458 	return(linesw[tp->t_line].l_write(tp, uio, flags));
    459 }
    460 
    461 struct tty *
    462 zstty(dev)
    463 dev_t	dev;
    464 {
    465 	register struct zs_chanstate	*cs;
    466 	register struct zs_softc	*zi;
    467 		 int			unit;
    468 
    469 	unit = ZS_UNIT(dev);
    470 	zi   = zscd.cd_devs[unit >> 1];
    471 	cs   = &zi->zi_cs[unit & 1];
    472 	return(cs->cs_ttyp);
    473 }
    474 
    475 /*
    476  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    477  * channels are kept in (A,B) pairs.
    478  *
    479  * Do just a little, then get out; set a software interrupt if more
    480  * work is needed.
    481  *
    482  * We deliberately ignore the vectoring Zilog gives us, and match up
    483  * only the number of `reset interrupt under service' operations, not
    484  * the order.
    485  */
    486 
    487 int
    488 zshard(sr)
    489 long sr;
    490 {
    491 	register struct zs_chanstate	*a;
    492 #define	b (a + 1)
    493 	register volatile struct zschan *zc;
    494 	register int			rr3, intflags = 0, v, i;
    495 
    496 	do {
    497 	    intflags &= ~4;
    498 	    for(a = zslist; a != NULL; a = b->cs_next) {
    499 		rr3 = ZS_READ(a->cs_zc, 3);
    500 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    501 			intflags |= 4|2;
    502 			zc = a->cs_zc;
    503 			i  = a->cs_rbput;
    504 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    505 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    506 				intflags |= 1;
    507 			}
    508 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    509 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    510 				intflags |= 1;
    511 			}
    512 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    513 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    514 				intflags |= 1;
    515 			}
    516 			a->cs_rbput = i;
    517 		}
    518 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    519 			intflags |= 4|2;
    520 			zc = b->cs_zc;
    521 			i  = b->cs_rbput;
    522 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    523 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    524 				intflags |= 1;
    525 			}
    526 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    527 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    528 				intflags |= 1;
    529 			}
    530 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    531 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    532 				intflags |= 1;
    533 			}
    534 			b->cs_rbput = i;
    535 		}
    536 	    }
    537 	} while(intflags & 4);
    538 #undef b
    539 
    540 	if(intflags & 1) {
    541 		if(BASEPRI(sr)) {
    542 			spl1();
    543 			zsshortcuts++;
    544 			return(zssoft(sr));
    545 		}
    546 		else if(!cb_scheduled) {
    547 			cb_scheduled++;
    548 			add_sicallback(zssoft, 0, 0);
    549 		}
    550 	}
    551 	return(intflags & 2);
    552 }
    553 
    554 static int
    555 zsrint(cs, zc)
    556 register struct zs_chanstate	*cs;
    557 register volatile struct zschan	*zc;
    558 {
    559 	register int c;
    560 
    561 	/*
    562 	 * First read the status, because read of the received char
    563 	 * destroy the status of this char.
    564 	 */
    565 	c = ZS_READ(zc, 1);
    566 	c |= (zc->zc_data << 8);
    567 
    568 	/* clear receive error & interrupt condition */
    569 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    570 	zc->zc_csr = ZSWR0_CLR_INTR;
    571 
    572 	return(ZRING_MAKE(ZRING_RINT, c));
    573 }
    574 
    575 static int
    576 zsxint(cs, zc)
    577 register struct zs_chanstate	*cs;
    578 register volatile struct zschan	*zc;
    579 {
    580 	register int i = cs->cs_tbc;
    581 
    582 	if(i == 0) {
    583 		zc->zc_csr = ZSWR0_RESET_TXINT;
    584 		zc->zc_csr = ZSWR0_CLR_INTR;
    585 		return(ZRING_MAKE(ZRING_XINT, 0));
    586 	}
    587 	cs->cs_tbc = i - 1;
    588 	zc->zc_data = *cs->cs_tba++;
    589 	zc->zc_csr = ZSWR0_CLR_INTR;
    590 	return (0);
    591 }
    592 
    593 static int
    594 zssint(cs, zc)
    595 register struct zs_chanstate	*cs;
    596 register volatile struct zschan	*zc;
    597 {
    598 	register int rr0;
    599 
    600 	rr0 = zc->zc_csr;
    601 	zc->zc_csr = ZSWR0_RESET_STATUS;
    602 	zc->zc_csr = ZSWR0_CLR_INTR;
    603 	/*
    604 	 * The chip's hardware flow control is, as noted in zsreg.h,
    605 	 * busted---if the DCD line goes low the chip shuts off the
    606 	 * receiver (!).  If we want hardware CTS flow control but do
    607 	 * not have it, and carrier is now on, turn HFC on; if we have
    608 	 * HFC now but carrier has gone low, turn it off.
    609 	 */
    610 	if(rr0 & ZSRR0_DCD) {
    611 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    612 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    613 			cs->cs_creg[3] |= ZSWR3_HFC;
    614 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    615 		}
    616 	}
    617 	else {
    618 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    619 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    620 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    621 		}
    622 	}
    623 	return(ZRING_MAKE(ZRING_SINT, rr0));
    624 }
    625 
    626 /*
    627  * Print out a ring or fifo overrun error message.
    628  */
    629 static void
    630 zsoverrun(unit, ptime, what)
    631 int	unit;
    632 long	*ptime;
    633 char	*what;
    634 {
    635 
    636 	if(*ptime != time.tv_sec) {
    637 		*ptime = time.tv_sec;
    638 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    639 		    (unit & 1) + 'a', what);
    640 	}
    641 }
    642 
    643 /*
    644  * ZS software interrupt.  Scan all channels for deferred interrupts.
    645  */
    646 int
    647 zssoft(sr)
    648 long sr;
    649 {
    650     register struct zs_chanstate	*cs;
    651     register volatile struct zschan	*zc;
    652     register struct linesw		*line;
    653     register struct tty			*tp;
    654     register int			get, n, c, cc, unit, s;
    655  	     int			retval = 0;
    656 
    657     cb_scheduled = 0;
    658     s = spltty();
    659     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    660 	get = cs->cs_rbget;
    661 again:
    662 	n = cs->cs_rbput;	/* atomic			*/
    663 	if(get == n)		/* nothing more on this line	*/
    664 		continue;
    665 	retval = 1;
    666 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    667 	zc     = cs->cs_zc;
    668 	tp     = cs->cs_ttyp;
    669 	line   = &linesw[tp->t_line];
    670 	/*
    671 	 * Compute the number of interrupts in the receive ring.
    672 	 * If the count is overlarge, we lost some events, and
    673 	 * must advance to the first valid one.  It may get
    674 	 * overwritten if more data are arriving, but this is
    675 	 * too expensive to check and gains nothing (we already
    676 	 * lost out; all we can do at this point is trade one
    677 	 * kind of loss for another).
    678 	 */
    679 	n -= get;
    680 	if(n > ZLRB_RING_SIZE) {
    681 		zsoverrun(unit, &cs->cs_rotime, "ring");
    682 		get += n - ZLRB_RING_SIZE;
    683 		n    = ZLRB_RING_SIZE;
    684 	}
    685 	while(--n >= 0) {
    686 		/* race to keep ahead of incoming interrupts */
    687 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    688 		switch (ZRING_TYPE(c)) {
    689 
    690 		case ZRING_RINT:
    691 			c = ZRING_VALUE(c);
    692 			if(c & ZSRR1_DO)
    693 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    694 			cc = c >> 8;
    695 			if(c & ZSRR1_FE)
    696 				cc |= TTY_FE;
    697 			if(c & ZSRR1_PE)
    698 				cc |= TTY_PE;
    699 			line->l_rint(cc, tp);
    700 			break;
    701 
    702 		case ZRING_XINT:
    703 			/*
    704 			 * Transmit done: change registers and resume,
    705 			 * or clear BUSY.
    706 			 */
    707 			if(cs->cs_heldchange) {
    708 				int sps;
    709 
    710 				sps = splzs();
    711 				c = zc->zc_csr;
    712 				if((c & ZSRR0_DCD) == 0)
    713 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    714 				bcopy((caddr_t)cs->cs_preg,
    715 				    (caddr_t)cs->cs_creg, 16);
    716 				zs_loadchannelregs(zc, cs->cs_creg);
    717 				splx(sps);
    718 				cs->cs_heldchange = 0;
    719 				if(cs->cs_heldtbc
    720 					&& (tp->t_state & TS_TTSTOP) == 0) {
    721 					cs->cs_tbc = cs->cs_heldtbc - 1;
    722 					zc->zc_data = *cs->cs_tba++;
    723 					goto again;
    724 				}
    725 			}
    726 			tp->t_state &= ~TS_BUSY;
    727 			if(tp->t_state & TS_FLUSH)
    728 				tp->t_state &= ~TS_FLUSH;
    729 			else ndflush(&tp->t_outq,cs->cs_tba
    730 						- (caddr_t)tp->t_outq.c_cf);
    731 			line->l_start(tp);
    732 			break;
    733 
    734 		case ZRING_SINT:
    735 			/*
    736 			 * Status line change.  HFC bit is run in
    737 			 * hardware interrupt, to avoid locking
    738 			 * at splzs here.
    739 			 */
    740 			c = ZRING_VALUE(c);
    741 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    742 				cc = (c & ZSRR0_DCD) != 0;
    743 				if(line->l_modem(tp, cc) == 0)
    744 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    745 							cc ? DMBIS : DMBIC);
    746 			}
    747 			cs->cs_rr0 = c;
    748 			break;
    749 
    750 		default:
    751 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    752 			    unit >> 1, (unit & 1) + 'a', c);
    753 			break;
    754 		}
    755 	}
    756 	cs->cs_rbget = get;
    757 	goto again;
    758     }
    759     splx(s);
    760     return (retval);
    761 }
    762 
    763 int
    764 zsioctl(dev, cmd, data, flag, p)
    765 dev_t		dev;
    766 u_long		cmd;
    767 caddr_t		data;
    768 int		flag;
    769 struct proc	*p;
    770 {
    771 		 int			unit = ZS_UNIT(dev);
    772 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    773 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    774 	register int			error, s;
    775 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    776 
    777 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
    778 	if(error >= 0)
    779 		return(error);
    780 	error = ttioctl(tp, cmd, data, flag, p);
    781 	if(error >= 0)
    782 		return (error);
    783 
    784 	switch (cmd) {
    785 	case TIOCSBRK:
    786 		s = splzs();
    787 		cs->cs_preg[5] |= ZSWR5_BREAK;
    788 		cs->cs_creg[5] |= ZSWR5_BREAK;
    789 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    790 		splx(s);
    791 		break;
    792 	case TIOCCBRK:
    793 		s = splzs();
    794 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    795 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    796 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    797 		splx(s);
    798 		break;
    799 	case TIOCGFLAGS: {
    800 		int bits = 0;
    801 
    802 		if(cs->cs_softcar)
    803 			bits |= TIOCFLAG_SOFTCAR;
    804 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    805 			bits |= TIOCFLAG_CLOCAL;
    806 		if(cs->cs_creg[3] & ZSWR3_HFC)
    807 			bits |= TIOCFLAG_CRTSCTS;
    808 		*(int *)data = bits;
    809 		break;
    810 	}
    811 	case TIOCSFLAGS: {
    812 		int userbits, driverbits = 0;
    813 
    814 		error = suser(p->p_ucred, &p->p_acflag);
    815 		if(error != 0)
    816 			return (EPERM);
    817 
    818 		userbits = *(int *)data;
    819 
    820 		/*
    821 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    822 		 # defaulting to software flow control.
    823 		 */
    824 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    825 			return(EINVAL);
    826 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    827 			return(ENODEV);
    828 
    829 		s = splzs();
    830 		if((userbits & TIOCFLAG_SOFTCAR)) {
    831 			cs->cs_softcar = 1;	/* turn on softcar */
    832 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    833 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    834 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    835 		}
    836 		else if(userbits & TIOCFLAG_CLOCAL) {
    837 			cs->cs_softcar = 0; 	/* turn off softcar */
    838 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    839 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    840 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    841 			tp->t_termios.c_cflag |= CLOCAL;
    842 		}
    843 		if(userbits & TIOCFLAG_CRTSCTS) {
    844 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    845 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    846 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    847 			cs->cs_preg[3] |= ZSWR3_HFC;
    848 			cs->cs_creg[3] |= ZSWR3_HFC;
    849 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    850 			tp->t_termios.c_cflag |= CRTSCTS;
    851 		}
    852 		else {
    853 			/* no mdmbuf, so we must want software flow control */
    854 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    855 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    856 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    857 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    858 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    859 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    860 			tp->t_termios.c_cflag &= ~CRTSCTS;
    861 		}
    862 		splx(s);
    863 		break;
    864 	}
    865 	case TIOCSDTR:
    866 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    867 		break;
    868 	case TIOCCDTR:
    869 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    870 		break;
    871 	case TIOCMGET:
    872 		zs_modem(cs, 0, DMGET);
    873 		break;
    874 	case TIOCMSET:
    875 	case TIOCMBIS:
    876 	case TIOCMBIC:
    877 	default:
    878 		return (ENOTTY);
    879 	}
    880 	return (0);
    881 }
    882 
    883 /*
    884  * Start or restart transmission.
    885  */
    886 static void
    887 zsstart(tp)
    888 register struct tty *tp;
    889 {
    890 	register struct zs_chanstate	*cs;
    891 	register int			s, nch;
    892 		 int			unit = ZS_UNIT(tp->t_dev);
    893 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    894 
    895 	cs = &zi->zi_cs[unit & 1];
    896 	s  = spltty();
    897 
    898 	/*
    899 	 * If currently active or delaying, no need to do anything.
    900 	 */
    901 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    902 		goto out;
    903 
    904 	/*
    905 	 * If there are sleepers, and output has drained below low
    906 	 * water mark, awaken.
    907 	 */
    908 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    909 		if(tp->t_state & TS_ASLEEP) {
    910 			tp->t_state &= ~TS_ASLEEP;
    911 			wakeup((caddr_t)&tp->t_outq);
    912 		}
    913 		selwakeup(&tp->t_wsel);
    914 	}
    915 
    916 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    917 	if(nch) {
    918 		register char *p = tp->t_outq.c_cf;
    919 
    920 		/* mark busy, enable tx done interrupts, & send first byte */
    921 		tp->t_state |= TS_BUSY;
    922 		(void) splzs();
    923 		cs->cs_preg[1] |= ZSWR1_TIE;
    924 		cs->cs_creg[1] |= ZSWR1_TIE;
    925 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    926 		cs->cs_zc->zc_data = *p;
    927 		cs->cs_tba = p + 1;
    928 		cs->cs_tbc = nch - 1;
    929 	} else {
    930 		/*
    931 		 * Nothing to send, turn off transmit done interrupts.
    932 		 * This is useful if something is doing polled output.
    933 		 */
    934 		(void) splzs();
    935 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    936 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    937 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    938 	}
    939 out:
    940 	splx(s);
    941 }
    942 
    943 /*
    944  * Stop output, e.g., for ^S or output flush.
    945  */
    946 void
    947 zsstop(tp, flag)
    948 register struct tty	*tp;
    949 	 int		flag;
    950 {
    951 	register struct zs_chanstate	*cs;
    952 	register int			s, unit = ZS_UNIT(tp->t_dev);
    953 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    954 
    955 	cs = &zi->zi_cs[unit & 1];
    956 	s  = splzs();
    957 	if(tp->t_state & TS_BUSY) {
    958 		/*
    959 		 * Device is transmitting; must stop it.
    960 		 */
    961 		cs->cs_tbc = 0;
    962 		if ((tp->t_state & TS_TTSTOP) == 0)
    963 			tp->t_state |= TS_FLUSH;
    964 	}
    965 	splx(s);
    966 }
    967 
    968 /*
    969  * Set ZS tty parameters from termios.
    970  *
    971  * This routine makes use of the fact that only registers
    972  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
    973  */
    974 static int
    975 zsparam(tp, t)
    976 register struct tty	*tp;
    977 register struct termios	*t;
    978 {
    979 		 int			unit = ZS_UNIT(tp->t_dev);
    980 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    981 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    982 		 int			cdiv, clkm, brgm, tcon;
    983 	register int			tmp, tmp5, cflag, s;
    984 
    985 	tmp  = t->c_ospeed;
    986 	tmp5 = t->c_ispeed;
    987 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
    988 		return(EINVAL);
    989 	if(tmp == 0) {
    990 		/* stty 0 => drop DTR and RTS */
    991 		zs_modem(cs, 0, DMSET);
    992 		return(0);
    993 	}
    994 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
    995 	if (tmp < 0)
    996 		return(EINVAL);
    997 	tp->t_ispeed = tp->t_ospeed = tmp;
    998 
    999 	cflag = tp->t_cflag = t->c_cflag;
   1000 	if (cflag & CSTOPB)
   1001 		cdiv |= ZSWR4_TWOSB;
   1002 	else
   1003 		cdiv |= ZSWR4_ONESB;
   1004 	if (!(cflag & PARODD))
   1005 		cdiv |= ZSWR4_EVENP;
   1006 	if (cflag & PARENB)
   1007 		cdiv |= ZSWR4_PARENB;
   1008 
   1009 	switch(cflag & CSIZE) {
   1010 	case CS5:
   1011 		tmp  = ZSWR3_RX_5;
   1012 		tmp5 = ZSWR5_TX_5;
   1013 		break;
   1014 	case CS6:
   1015 		tmp  = ZSWR3_RX_6;
   1016 		tmp5 = ZSWR5_TX_6;
   1017 		break;
   1018 	case CS7:
   1019 		tmp  = ZSWR3_RX_7;
   1020 		tmp5 = ZSWR5_TX_7;
   1021 		break;
   1022 	case CS8:
   1023 	default:
   1024 		tmp  = ZSWR3_RX_8;
   1025 		tmp5 = ZSWR5_TX_8;
   1026 		break;
   1027 	}
   1028 	tmp  |= ZSWR3_RX_ENABLE;
   1029 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1030 
   1031 	/*
   1032 	 * Block interrupts so that state will not
   1033 	 * be altered until we are done setting it up.
   1034 	 */
   1035 	s = splzs();
   1036 	cs->cs_preg[4]  = cdiv;
   1037 	cs->cs_preg[11] = clkm;
   1038 	cs->cs_preg[12] = tcon;
   1039 	cs->cs_preg[13] = tcon >> 8;
   1040 	cs->cs_preg[14] = brgm;
   1041 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1042 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1043 	cs->cs_preg[10] = ZSWR10_NRZ;
   1044 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1045 
   1046 	/*
   1047 	 * Output hardware flow control on the chip is horrendous: if
   1048 	 * carrier detect drops, the receiver is disabled.  Hence we
   1049 	 * can only do this when the carrier is on.
   1050 	 */
   1051 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1052 		tmp |= ZSWR3_HFC;
   1053 	cs->cs_preg[3] = tmp;
   1054 	cs->cs_preg[5] = tmp5;
   1055 
   1056 	/*
   1057 	 * If nothing is being transmitted, set up new current values,
   1058 	 * else mark them as pending.
   1059 	 */
   1060 	if(cs->cs_heldchange == 0) {
   1061 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1062 			cs->cs_heldtbc = cs->cs_tbc;
   1063 			cs->cs_tbc = 0;
   1064 			cs->cs_heldchange = 1;
   1065 		} else {
   1066 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1067 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1068 		}
   1069 	}
   1070 	splx(s);
   1071 	return (0);
   1072 }
   1073 
   1074 /*
   1075  * search for the best matching baudrate
   1076  */
   1077 static int
   1078 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1079 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1080 {
   1081 	int	bestdiff, bestbps, source;
   1082 
   1083 	unit = (unit & 1) << 2;
   1084 	for (source = 0; source < 4; ++source) {
   1085 		long	freq = zs_frequencies[unit + source];
   1086 		int	diff, bps, div, clkm, brgm, tcon;
   1087 		switch (source) {
   1088 			case 0:	/* BRgen, PCLK */
   1089 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1090 				break;
   1091 			case 1:	/* BRgen, RTxC */
   1092 				brgm = ZSWR14_BAUD_ENA;
   1093 				break;
   1094 			case 2: /* RTxC */
   1095 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1096 				break;
   1097 			case 3: /* TRxC */
   1098 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1099 				break;
   1100 		}
   1101 		switch (source) {
   1102 			case 0:
   1103 			case 1:
   1104 				div  = ZSWR4_CLK_X16;
   1105 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1106 				tcon = BPS_TO_TCONST(freq, wanted);
   1107 				if (tcon < 0)
   1108 					tcon = 0;
   1109 				bps  = TCONST_TO_BPS(freq, tcon);
   1110 				break;
   1111 			case 2:
   1112 			case 3:
   1113 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1114 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1115 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1116 
   1117 				if (d1 < d2 && d1 < d3) {
   1118 					div = ZSWR4_CLK_X16;
   1119 					bps = b1;
   1120 				} else if (d2 < d3 && d2 < d1) {
   1121 					div = ZSWR4_CLK_X32;
   1122 					bps = b2;
   1123 				} else {
   1124 					div = ZSWR4_CLK_X64;
   1125 					bps = b3;
   1126 				}
   1127 				brgm = tcon = 0;
   1128 				break;
   1129 			}
   1130 		}
   1131 		diff = abs(bps - wanted);
   1132 		if (!source || diff < bestdiff) {
   1133 			*divisor   = div;
   1134 			*clockmode = clkm;
   1135 			*brgenmode = brgm;
   1136 			*timeconst = tcon;
   1137 			bestbps    = bps;
   1138 			bestdiff   = diff;
   1139 			if (diff == 0)
   1140 				break;
   1141 		}
   1142 	}
   1143 	/* Allow deviations upto 5% */
   1144 	if (20 * bestdiff > wanted)
   1145 		return -1;
   1146 	return bestbps;
   1147 }
   1148 
   1149 /*
   1150  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1151  * in transmission, the change is deferred.
   1152  */
   1153 static int
   1154 zs_modem(cs, bits, how)
   1155 struct zs_chanstate	*cs;
   1156 int			bits, how;
   1157 {
   1158 	int s, mbits;
   1159 
   1160 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1161 
   1162 	s = splzs();
   1163 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1164 
   1165 	switch(how) {
   1166 		case DMSET:
   1167 				mbits  = bits;
   1168 				break;
   1169 		case DMBIS:
   1170 				mbits |= bits;
   1171 				break;
   1172 		case DMBIC:
   1173 				mbits &= ~bits;
   1174 				break;
   1175 		case DMGET:
   1176 				splx(s);
   1177 				return(mbits);
   1178 	}
   1179 
   1180 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1181 	if(cs->cs_heldchange == 0) {
   1182 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1183 			cs->cs_heldtbc = cs->cs_tbc;
   1184 			cs->cs_tbc = 0;
   1185 			cs->cs_heldchange = 1;
   1186 		}
   1187 		else {
   1188 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1189 		}
   1190 	}
   1191 	splx(s);
   1192 	return(0);
   1193 }
   1194 
   1195 /*
   1196  * Write the given register set to the given zs channel in the proper order.
   1197  * The channel must not be transmitting at the time.  The receiver will
   1198  * be disabled for the time it takes to write all the registers.
   1199  */
   1200 static void
   1201 zs_loadchannelregs(zc, reg)
   1202 volatile struct zschan	*zc;
   1203 u_char			*reg;
   1204 {
   1205 	int i;
   1206 
   1207 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1208 	i = zc->zc_data;		/* drain fifo */
   1209 	i = zc->zc_data;
   1210 	i = zc->zc_data;
   1211 	ZS_WRITE(zc,  4, reg[4]);
   1212 	ZS_WRITE(zc, 10, reg[10]);
   1213 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1214 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1215 	ZS_WRITE(zc,  1, reg[1]);
   1216 	ZS_WRITE(zc,  9, reg[9]);
   1217 	ZS_WRITE(zc, 11, reg[11]);
   1218 	ZS_WRITE(zc, 12, reg[12]);
   1219 	ZS_WRITE(zc, 13, reg[13]);
   1220 	ZS_WRITE(zc, 14, reg[14]);
   1221 	ZS_WRITE(zc, 15, reg[15]);
   1222 	ZS_WRITE(zc,  3, reg[3]);
   1223 	ZS_WRITE(zc,  5, reg[5]);
   1224 }
   1225 #endif /* NZS > 1 */
   1226