zs.c revision 1.12 1 /* $NetBSD: zs.c,v 1.12 1995/12/16 21:45:31 leo Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/tty.h>
64 #include <sys/time.h>
65 #include <sys/kernel.h>
66 #include <sys/syslog.h>
67
68 #include <machine/cpu.h>
69 #include <machine/iomap.h>
70 #include <machine/scu.h>
71 #include <machine/mfp.h>
72 #include <machine/video.h>
73
74 #include <dev/ic/z8530reg.h>
75 #include <atari/dev/zsvar.h>
76 #include "zs.h"
77 #if NZS > 1
78 #error "This driver supports only 1 85C30!"
79 #endif
80
81 #if NZS > 0
82
83 #define PCLK (8053976) /* PCLK pin input clock rate */
84
85 #define splzs spl5
86
87 /*
88 * Software state per found chip.
89 */
90 struct zs_softc {
91 struct device zi_dev; /* base device */
92 volatile struct zsdevice *zi_zs; /* chip registers */
93 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
94 };
95
96 static u_char cb_scheduled = 0; /* Already asked for callback? */
97 /*
98 * Define the registers for a closed port
99 */
100 static u_char zs_init_regs[16] = {
101 /* 0 */ 0,
102 /* 1 */ 0,
103 /* 2 */ 0x60,
104 /* 3 */ 0,
105 /* 4 */ 0,
106 /* 5 */ 0,
107 /* 6 */ 0,
108 /* 7 */ 0,
109 /* 8 */ 0,
110 /* 9 */ ZSWR9_VECTOR_INCL_STAT,
111 /* 10 */ ZSWR10_NRZ,
112 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
113 /* 12 */ 0,
114 /* 13 */ 0,
115 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
116 /* 15 */ 0
117 };
118
119 /*
120 * Define the machine dependant clock frequencies
121 * If BRgen feeds sender/receiver we always use a
122 * divisor 16, therefor the division by 16 can as
123 * well be done here.
124 */
125 static u_long zs_freqs_tt[] = {
126 /*
127 * Atari TT, RTxCB is generated by TT-MFP timer C,
128 * which is set to 307.2KHz during initialisation
129 * and never changed afterwards.
130 */
131 PCLK/16, /* BRgen, PCLK, divisor 16 */
132 229500, /* BRgen, RTxCA, divisor 16 */
133 3672000, /* RTxCA, from PCLK4 */
134 0, /* TRxCA, external */
135
136 PCLK/16, /* BRgen, PCLK, divisor 16 */
137 19200, /* BRgen, RTxCB, divisor 16 */
138 307200, /* RTxCB, from TT-MFP TCO */
139 2457600 /* TRxCB, from BCLK */
140 };
141 static u_long zs_freqs_falcon[] = {
142 /*
143 * Atari Falcon, XXX no specs available, this might be wrong
144 */
145 PCLK/16, /* BRgen, PCLK, divisor 16 */
146 229500, /* BRgen, RTxCA, divisor 16 */
147 3672000, /* RTxCA, ??? */
148 0, /* TRxCA, external */
149
150 PCLK/16, /* BRgen, PCLK, divisor 16 */
151 229500, /* BRgen, RTxCB, divisor 16 */
152 3672000, /* RTxCB, ??? */
153 2457600 /* TRxCB, ??? */
154 };
155 static u_long zs_freqs_generic[] = {
156 /*
157 * other machines, assume only PCLK is available
158 */
159 PCLK/16, /* BRgen, PCLK, divisor 16 */
160 0, /* BRgen, RTxCA, divisor 16 */
161 0, /* RTxCA, unknown */
162 0, /* TRxCA, unknown */
163
164 PCLK/16, /* BRgen, PCLK, divisor 16 */
165 0, /* BRgen, RTxCB, divisor 16 */
166 0, /* RTxCB, unknown */
167 0 /* TRxCB, unknown */
168 };
169 static u_long *zs_frequencies;
170
171 /* Definition of the driver for autoconfig. */
172 static int zsmatch __P((struct device *, struct cfdata *, void *));
173 static void zsattach __P((struct device *, struct device *, void *));
174 struct cfdriver zscd = {
175 NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
176 sizeof(struct zs_softc), NULL, 0 };
177
178 /* Interrupt handlers. */
179 int zshard __P((long));
180 static int zssoft __P((long));
181 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
182 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
183 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
184
185 static struct zs_chanstate *zslist;
186
187 /* Routines called from other code. */
188 static void zsstart __P((struct tty *));
189 void zsstop __P((struct tty *, int));
190 static int zsparam __P((struct tty *, struct termios *));
191 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
192
193 /* Routines purely local to this driver. */
194 static void zs_reset __P((volatile struct zschan *, int, int));
195 static int zs_modem __P((struct zs_chanstate *, int, int));
196 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
197
198 static int zsshortcuts; /* number of "shortcut" software interrupts */
199
200 static int
201 zsmatch(pdp, cfp, auxp)
202 struct device *pdp;
203 struct cfdata *cfp;
204 void *auxp;
205 {
206 if(strcmp("zs", auxp) || cfp->cf_unit != 0)
207 return(0);
208 return(1);
209 }
210
211 /*
212 * Attach a found zs.
213 */
214 static void
215 zsattach(parent, dev, aux)
216 struct device *parent;
217 struct device *dev;
218 void *aux;
219 {
220 register struct zs_softc *zi;
221 register struct zs_chanstate *cs;
222 register volatile struct zsdevice *addr;
223 register struct tty *tp;
224 char tmp;
225
226 addr = (struct zsdevice *)AD_SCC;
227 zi = (struct zs_softc *)dev;
228 zi->zi_zs = addr;
229 cs = zi->zi_cs;
230
231 /*
232 * Get the command register into a known state.
233 */
234 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
235 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
236 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
237 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
238
239 /*
240 * Do a hardware reset.
241 */
242 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
243 delay(50000); /*enough ? */
244 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
245
246 /*
247 * Initialize both channels
248 */
249 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
250 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
251
252 if(machineid & ATARI_TT) {
253 /*
254 * ininitialise TT-MFP timer C: 307200Hz
255 * timer C and D share one control register:
256 * bits 0-2 control timer D
257 * bits 4-6 control timer C
258 */
259 int cr = MFP2->mf_tcdcr & 7;
260 MFP2->mf_tcdcr = cr; /* stop timer C */
261 MFP2->mf_tcdr = 1; /* counter 1 */
262 cr |= T_Q004 << 4; /* divisor 4 */
263 MFP2->mf_tcdcr = cr; /* start timer C */
264 /*
265 * enable scc related interrupts
266 */
267 SCU->sys_mask |= SCU_SCC;
268
269 zs_frequencies = zs_freqs_tt;
270 } else if (machineid & ATARI_FALCON) {
271 zs_frequencies = zs_freqs_falcon;
272 } else {
273 zs_frequencies = zs_freqs_generic;
274 }
275
276 /* link into interrupt list with order (A,B) (B=A+1) */
277 cs[0].cs_next = &cs[1];
278 cs[1].cs_next = zslist;
279 zslist = cs;
280
281 cs->cs_unit = 0;
282 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
283 cs++;
284 cs->cs_unit = 1;
285 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
286
287 printf(": serial2 on channel a and modem2 on channel b\n");
288 }
289
290 /*
291 * Open a zs serial port.
292 */
293 int
294 zsopen(dev, flags, mode, p)
295 dev_t dev;
296 int flags;
297 int mode;
298 struct proc *p;
299 {
300 register struct tty *tp;
301 register struct zs_chanstate *cs;
302 struct zs_softc *zi;
303 int unit = ZS_UNIT(dev);
304 int zs = unit >> 1;
305 int error, s;
306
307 if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
308 return (ENXIO);
309 cs = &zi->zi_cs[unit & 1];
310
311 /*
312 * When port A (ser02) is selected on the TT, make sure
313 * the port is enabled.
314 */
315 if((machineid & ATARI_TT) && !(unit & 1)) {
316 SOUND->sd_selr = YM_IOA;
317 SOUND->sd_wdat = SOUND->sd_rdat | PA_SER2;
318 }
319
320 tp = cs->cs_ttyp;
321 if(tp == NULL) {
322 cs->cs_ttyp = tp = ttymalloc();
323 tp->t_dev = dev;
324 tp->t_oproc = zsstart;
325 tp->t_param = zsparam;
326 }
327
328 s = spltty();
329 if((tp->t_state & TS_ISOPEN) == 0) {
330 ttychars(tp);
331 if(tp->t_ispeed == 0) {
332 tp->t_iflag = TTYDEF_IFLAG;
333 tp->t_oflag = TTYDEF_OFLAG;
334 tp->t_cflag = TTYDEF_CFLAG;
335 tp->t_lflag = TTYDEF_LFLAG;
336 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
337 }
338 (void)zsparam(tp, &tp->t_termios);
339 ttsetwater(tp);
340 }
341 else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
342 splx(s);
343 return (EBUSY);
344 }
345 error = 0;
346 for(;;) {
347 /* loop, turning on the device, until carrier present */
348 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
349
350 /* May never get a status intr. if DCD already on. -gwr */
351 if(cs->cs_zc->zc_csr & ZSRR0_DCD)
352 tp->t_state |= TS_CARR_ON;
353 if(cs->cs_softcar)
354 tp->t_state |= TS_CARR_ON;
355 if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
356 tp->t_state & TS_CARR_ON)
357 break;
358 tp->t_state |= TS_WOPEN;
359 if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
360 ttopen, 0)) {
361 if(!(tp->t_state & TS_ISOPEN)) {
362 zs_modem(cs, 0, DMSET);
363 tp->t_state &= ~TS_WOPEN;
364 ttwakeup(tp);
365 }
366 splx(s);
367 return error;
368 }
369 }
370 splx(s);
371 if(error == 0)
372 error = linesw[tp->t_line].l_open(dev, tp);
373 if(error)
374 zs_modem(cs, 0, DMSET);
375 return(error);
376 }
377
378 /*
379 * Close a zs serial port.
380 */
381 int
382 zsclose(dev, flags, mode, p)
383 dev_t dev;
384 int flags;
385 int mode;
386 struct proc *p;
387 {
388 register struct zs_chanstate *cs;
389 register struct tty *tp;
390 struct zs_softc *zi;
391 int unit = ZS_UNIT(dev);
392 int s;
393
394 zi = zscd.cd_devs[unit >> 1];
395 cs = &zi->zi_cs[unit & 1];
396 tp = cs->cs_ttyp;
397 linesw[tp->t_line].l_close(tp, flags);
398 if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
399 (tp->t_state & TS_ISOPEN) == 0) {
400 zs_modem(cs, 0, DMSET);
401 /* hold low for 1 second */
402 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
403 }
404 if(cs->cs_creg[5] & ZSWR5_BREAK) {
405 s = splzs();
406 cs->cs_preg[5] &= ~ZSWR5_BREAK;
407 cs->cs_creg[5] &= ~ZSWR5_BREAK;
408 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
409 splx(s);
410 }
411 ttyclose(tp);
412
413 /*
414 * Drop all lines and cancel interrupts
415 */
416 zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
417 return (0);
418 }
419
420 /*
421 * Read/write zs serial port.
422 */
423 int
424 zsread(dev, uio, flags)
425 dev_t dev;
426 struct uio *uio;
427 int flags;
428 {
429 register struct zs_chanstate *cs;
430 register struct zs_softc *zi;
431 register struct tty *tp;
432 int unit;
433
434 unit = ZS_UNIT(dev);
435 zi = zscd.cd_devs[unit >> 1];
436 cs = &zi->zi_cs[unit & 1];
437 tp = cs->cs_ttyp;
438
439 return(linesw[tp->t_line].l_read(tp, uio, flags));
440 }
441
442 int
443 zswrite(dev, uio, flags)
444 dev_t dev;
445 struct uio *uio;
446 int flags;
447 {
448 register struct zs_chanstate *cs;
449 register struct zs_softc *zi;
450 register struct tty *tp;
451 int unit;
452
453 unit = ZS_UNIT(dev);
454 zi = zscd.cd_devs[unit >> 1];
455 cs = &zi->zi_cs[unit & 1];
456 tp = cs->cs_ttyp;
457
458 return(linesw[tp->t_line].l_write(tp, uio, flags));
459 }
460
461 struct tty *
462 zstty(dev)
463 dev_t dev;
464 {
465 register struct zs_chanstate *cs;
466 register struct zs_softc *zi;
467 int unit;
468
469 unit = ZS_UNIT(dev);
470 zi = zscd.cd_devs[unit >> 1];
471 cs = &zi->zi_cs[unit & 1];
472 return(cs->cs_ttyp);
473 }
474
475 /*
476 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
477 * channels are kept in (A,B) pairs.
478 *
479 * Do just a little, then get out; set a software interrupt if more
480 * work is needed.
481 *
482 * We deliberately ignore the vectoring Zilog gives us, and match up
483 * only the number of `reset interrupt under service' operations, not
484 * the order.
485 */
486
487 int
488 zshard(sr)
489 long sr;
490 {
491 register struct zs_chanstate *a;
492 #define b (a + 1)
493 register volatile struct zschan *zc;
494 register int rr3, intflags = 0, v, i;
495
496 do {
497 intflags &= ~4;
498 for(a = zslist; a != NULL; a = b->cs_next) {
499 rr3 = ZS_READ(a->cs_zc, 3);
500 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
501 intflags |= 4|2;
502 zc = a->cs_zc;
503 i = a->cs_rbput;
504 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
505 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
506 intflags |= 1;
507 }
508 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
509 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
510 intflags |= 1;
511 }
512 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
513 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
514 intflags |= 1;
515 }
516 a->cs_rbput = i;
517 }
518 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
519 intflags |= 4|2;
520 zc = b->cs_zc;
521 i = b->cs_rbput;
522 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
523 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
524 intflags |= 1;
525 }
526 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
527 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
528 intflags |= 1;
529 }
530 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
531 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
532 intflags |= 1;
533 }
534 b->cs_rbput = i;
535 }
536 }
537 } while(intflags & 4);
538 #undef b
539
540 if(intflags & 1) {
541 if(BASEPRI(sr)) {
542 spl1();
543 zsshortcuts++;
544 return(zssoft(sr));
545 }
546 else if(!cb_scheduled) {
547 cb_scheduled++;
548 add_sicallback(zssoft, 0, 0);
549 }
550 }
551 return(intflags & 2);
552 }
553
554 static int
555 zsrint(cs, zc)
556 register struct zs_chanstate *cs;
557 register volatile struct zschan *zc;
558 {
559 register int c;
560
561 /*
562 * First read the status, because read of the received char
563 * destroy the status of this char.
564 */
565 c = ZS_READ(zc, 1);
566 c |= (zc->zc_data << 8);
567
568 /* clear receive error & interrupt condition */
569 zc->zc_csr = ZSWR0_RESET_ERRORS;
570 zc->zc_csr = ZSWR0_CLR_INTR;
571
572 return(ZRING_MAKE(ZRING_RINT, c));
573 }
574
575 static int
576 zsxint(cs, zc)
577 register struct zs_chanstate *cs;
578 register volatile struct zschan *zc;
579 {
580 register int i = cs->cs_tbc;
581
582 if(i == 0) {
583 zc->zc_csr = ZSWR0_RESET_TXINT;
584 zc->zc_csr = ZSWR0_CLR_INTR;
585 return(ZRING_MAKE(ZRING_XINT, 0));
586 }
587 cs->cs_tbc = i - 1;
588 zc->zc_data = *cs->cs_tba++;
589 zc->zc_csr = ZSWR0_CLR_INTR;
590 return (0);
591 }
592
593 static int
594 zssint(cs, zc)
595 register struct zs_chanstate *cs;
596 register volatile struct zschan *zc;
597 {
598 register int rr0;
599
600 rr0 = zc->zc_csr;
601 zc->zc_csr = ZSWR0_RESET_STATUS;
602 zc->zc_csr = ZSWR0_CLR_INTR;
603 /*
604 * The chip's hardware flow control is, as noted in zsreg.h,
605 * busted---if the DCD line goes low the chip shuts off the
606 * receiver (!). If we want hardware CTS flow control but do
607 * not have it, and carrier is now on, turn HFC on; if we have
608 * HFC now but carrier has gone low, turn it off.
609 */
610 if(rr0 & ZSRR0_DCD) {
611 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
612 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
613 cs->cs_creg[3] |= ZSWR3_HFC;
614 ZS_WRITE(zc, 3, cs->cs_creg[3]);
615 }
616 }
617 else {
618 if (cs->cs_creg[3] & ZSWR3_HFC) {
619 cs->cs_creg[3] &= ~ZSWR3_HFC;
620 ZS_WRITE(zc, 3, cs->cs_creg[3]);
621 }
622 }
623 return(ZRING_MAKE(ZRING_SINT, rr0));
624 }
625
626 /*
627 * Print out a ring or fifo overrun error message.
628 */
629 static void
630 zsoverrun(unit, ptime, what)
631 int unit;
632 long *ptime;
633 char *what;
634 {
635
636 if(*ptime != time.tv_sec) {
637 *ptime = time.tv_sec;
638 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
639 (unit & 1) + 'a', what);
640 }
641 }
642
643 /*
644 * ZS software interrupt. Scan all channels for deferred interrupts.
645 */
646 int
647 zssoft(sr)
648 long sr;
649 {
650 register struct zs_chanstate *cs;
651 register volatile struct zschan *zc;
652 register struct linesw *line;
653 register struct tty *tp;
654 register int get, n, c, cc, unit, s;
655 int retval = 0;
656
657 cb_scheduled = 0;
658 s = spltty();
659 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
660 get = cs->cs_rbget;
661 again:
662 n = cs->cs_rbput; /* atomic */
663 if(get == n) /* nothing more on this line */
664 continue;
665 retval = 1;
666 unit = cs->cs_unit; /* set up to handle interrupts */
667 zc = cs->cs_zc;
668 tp = cs->cs_ttyp;
669 line = &linesw[tp->t_line];
670 /*
671 * Compute the number of interrupts in the receive ring.
672 * If the count is overlarge, we lost some events, and
673 * must advance to the first valid one. It may get
674 * overwritten if more data are arriving, but this is
675 * too expensive to check and gains nothing (we already
676 * lost out; all we can do at this point is trade one
677 * kind of loss for another).
678 */
679 n -= get;
680 if(n > ZLRB_RING_SIZE) {
681 zsoverrun(unit, &cs->cs_rotime, "ring");
682 get += n - ZLRB_RING_SIZE;
683 n = ZLRB_RING_SIZE;
684 }
685 while(--n >= 0) {
686 /* race to keep ahead of incoming interrupts */
687 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
688 switch (ZRING_TYPE(c)) {
689
690 case ZRING_RINT:
691 c = ZRING_VALUE(c);
692 if(c & ZSRR1_DO)
693 zsoverrun(unit, &cs->cs_fotime, "fifo");
694 cc = c >> 8;
695 if(c & ZSRR1_FE)
696 cc |= TTY_FE;
697 if(c & ZSRR1_PE)
698 cc |= TTY_PE;
699 line->l_rint(cc, tp);
700 break;
701
702 case ZRING_XINT:
703 /*
704 * Transmit done: change registers and resume,
705 * or clear BUSY.
706 */
707 if(cs->cs_heldchange) {
708 int sps;
709
710 sps = splzs();
711 c = zc->zc_csr;
712 if((c & ZSRR0_DCD) == 0)
713 cs->cs_preg[3] &= ~ZSWR3_HFC;
714 bcopy((caddr_t)cs->cs_preg,
715 (caddr_t)cs->cs_creg, 16);
716 zs_loadchannelregs(zc, cs->cs_creg);
717 splx(sps);
718 cs->cs_heldchange = 0;
719 if(cs->cs_heldtbc
720 && (tp->t_state & TS_TTSTOP) == 0) {
721 cs->cs_tbc = cs->cs_heldtbc - 1;
722 zc->zc_data = *cs->cs_tba++;
723 goto again;
724 }
725 }
726 tp->t_state &= ~TS_BUSY;
727 if(tp->t_state & TS_FLUSH)
728 tp->t_state &= ~TS_FLUSH;
729 else ndflush(&tp->t_outq,cs->cs_tba
730 - (caddr_t)tp->t_outq.c_cf);
731 line->l_start(tp);
732 break;
733
734 case ZRING_SINT:
735 /*
736 * Status line change. HFC bit is run in
737 * hardware interrupt, to avoid locking
738 * at splzs here.
739 */
740 c = ZRING_VALUE(c);
741 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
742 cc = (c & ZSRR0_DCD) != 0;
743 if(line->l_modem(tp, cc) == 0)
744 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
745 cc ? DMBIS : DMBIC);
746 }
747 cs->cs_rr0 = c;
748 break;
749
750 default:
751 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
752 unit >> 1, (unit & 1) + 'a', c);
753 break;
754 }
755 }
756 cs->cs_rbget = get;
757 goto again;
758 }
759 splx(s);
760 return (retval);
761 }
762
763 int
764 zsioctl(dev, cmd, data, flag, p)
765 dev_t dev;
766 u_long cmd;
767 caddr_t data;
768 int flag;
769 struct proc *p;
770 {
771 int unit = ZS_UNIT(dev);
772 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
773 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
774 register int error, s;
775 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
776
777 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
778 if(error >= 0)
779 return(error);
780 error = ttioctl(tp, cmd, data, flag, p);
781 if(error >= 0)
782 return (error);
783
784 switch (cmd) {
785 case TIOCSBRK:
786 s = splzs();
787 cs->cs_preg[5] |= ZSWR5_BREAK;
788 cs->cs_creg[5] |= ZSWR5_BREAK;
789 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
790 splx(s);
791 break;
792 case TIOCCBRK:
793 s = splzs();
794 cs->cs_preg[5] &= ~ZSWR5_BREAK;
795 cs->cs_creg[5] &= ~ZSWR5_BREAK;
796 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
797 splx(s);
798 break;
799 case TIOCGFLAGS: {
800 int bits = 0;
801
802 if(cs->cs_softcar)
803 bits |= TIOCFLAG_SOFTCAR;
804 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
805 bits |= TIOCFLAG_CLOCAL;
806 if(cs->cs_creg[3] & ZSWR3_HFC)
807 bits |= TIOCFLAG_CRTSCTS;
808 *(int *)data = bits;
809 break;
810 }
811 case TIOCSFLAGS: {
812 int userbits, driverbits = 0;
813
814 error = suser(p->p_ucred, &p->p_acflag);
815 if(error != 0)
816 return (EPERM);
817
818 userbits = *(int *)data;
819
820 /*
821 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
822 # defaulting to software flow control.
823 */
824 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
825 return(EINVAL);
826 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
827 return(ENODEV);
828
829 s = splzs();
830 if((userbits & TIOCFLAG_SOFTCAR)) {
831 cs->cs_softcar = 1; /* turn on softcar */
832 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
833 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
834 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
835 }
836 else if(userbits & TIOCFLAG_CLOCAL) {
837 cs->cs_softcar = 0; /* turn off softcar */
838 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
839 cs->cs_creg[15] |= ZSWR15_DCD_IE;
840 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
841 tp->t_termios.c_cflag |= CLOCAL;
842 }
843 if(userbits & TIOCFLAG_CRTSCTS) {
844 cs->cs_preg[15] |= ZSWR15_CTS_IE;
845 cs->cs_creg[15] |= ZSWR15_CTS_IE;
846 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
847 cs->cs_preg[3] |= ZSWR3_HFC;
848 cs->cs_creg[3] |= ZSWR3_HFC;
849 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
850 tp->t_termios.c_cflag |= CRTSCTS;
851 }
852 else {
853 /* no mdmbuf, so we must want software flow control */
854 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
855 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
856 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
857 cs->cs_preg[3] &= ~ZSWR3_HFC;
858 cs->cs_creg[3] &= ~ZSWR3_HFC;
859 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
860 tp->t_termios.c_cflag &= ~CRTSCTS;
861 }
862 splx(s);
863 break;
864 }
865 case TIOCSDTR:
866 zs_modem(cs, ZSWR5_DTR, DMBIS);
867 break;
868 case TIOCCDTR:
869 zs_modem(cs, ZSWR5_DTR, DMBIC);
870 break;
871 case TIOCMGET:
872 zs_modem(cs, 0, DMGET);
873 break;
874 case TIOCMSET:
875 case TIOCMBIS:
876 case TIOCMBIC:
877 default:
878 return (ENOTTY);
879 }
880 return (0);
881 }
882
883 /*
884 * Start or restart transmission.
885 */
886 static void
887 zsstart(tp)
888 register struct tty *tp;
889 {
890 register struct zs_chanstate *cs;
891 register int s, nch;
892 int unit = ZS_UNIT(tp->t_dev);
893 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
894
895 cs = &zi->zi_cs[unit & 1];
896 s = spltty();
897
898 /*
899 * If currently active or delaying, no need to do anything.
900 */
901 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
902 goto out;
903
904 /*
905 * If there are sleepers, and output has drained below low
906 * water mark, awaken.
907 */
908 if(tp->t_outq.c_cc <= tp->t_lowat) {
909 if(tp->t_state & TS_ASLEEP) {
910 tp->t_state &= ~TS_ASLEEP;
911 wakeup((caddr_t)&tp->t_outq);
912 }
913 selwakeup(&tp->t_wsel);
914 }
915
916 nch = ndqb(&tp->t_outq, 0); /* XXX */
917 if(nch) {
918 register char *p = tp->t_outq.c_cf;
919
920 /* mark busy, enable tx done interrupts, & send first byte */
921 tp->t_state |= TS_BUSY;
922 (void) splzs();
923 cs->cs_preg[1] |= ZSWR1_TIE;
924 cs->cs_creg[1] |= ZSWR1_TIE;
925 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
926 cs->cs_zc->zc_data = *p;
927 cs->cs_tba = p + 1;
928 cs->cs_tbc = nch - 1;
929 } else {
930 /*
931 * Nothing to send, turn off transmit done interrupts.
932 * This is useful if something is doing polled output.
933 */
934 (void) splzs();
935 cs->cs_preg[1] &= ~ZSWR1_TIE;
936 cs->cs_creg[1] &= ~ZSWR1_TIE;
937 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
938 }
939 out:
940 splx(s);
941 }
942
943 /*
944 * Stop output, e.g., for ^S or output flush.
945 */
946 void
947 zsstop(tp, flag)
948 register struct tty *tp;
949 int flag;
950 {
951 register struct zs_chanstate *cs;
952 register int s, unit = ZS_UNIT(tp->t_dev);
953 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
954
955 cs = &zi->zi_cs[unit & 1];
956 s = splzs();
957 if(tp->t_state & TS_BUSY) {
958 /*
959 * Device is transmitting; must stop it.
960 */
961 cs->cs_tbc = 0;
962 if ((tp->t_state & TS_TTSTOP) == 0)
963 tp->t_state |= TS_FLUSH;
964 }
965 splx(s);
966 }
967
968 /*
969 * Set ZS tty parameters from termios.
970 *
971 * This routine makes use of the fact that only registers
972 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
973 */
974 static int
975 zsparam(tp, t)
976 register struct tty *tp;
977 register struct termios *t;
978 {
979 int unit = ZS_UNIT(tp->t_dev);
980 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
981 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
982 int cdiv, clkm, brgm, tcon;
983 register int tmp, tmp5, cflag, s;
984
985 tmp = t->c_ospeed;
986 tmp5 = t->c_ispeed;
987 if(tmp < 0 || (tmp5 && tmp5 != tmp))
988 return(EINVAL);
989 if(tmp == 0) {
990 /* stty 0 => drop DTR and RTS */
991 zs_modem(cs, 0, DMSET);
992 return(0);
993 }
994 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
995 if (tmp < 0)
996 return(EINVAL);
997 tp->t_ispeed = tp->t_ospeed = tmp;
998
999 cflag = tp->t_cflag = t->c_cflag;
1000 if (cflag & CSTOPB)
1001 cdiv |= ZSWR4_TWOSB;
1002 else
1003 cdiv |= ZSWR4_ONESB;
1004 if (!(cflag & PARODD))
1005 cdiv |= ZSWR4_EVENP;
1006 if (cflag & PARENB)
1007 cdiv |= ZSWR4_PARENB;
1008
1009 switch(cflag & CSIZE) {
1010 case CS5:
1011 tmp = ZSWR3_RX_5;
1012 tmp5 = ZSWR5_TX_5;
1013 break;
1014 case CS6:
1015 tmp = ZSWR3_RX_6;
1016 tmp5 = ZSWR5_TX_6;
1017 break;
1018 case CS7:
1019 tmp = ZSWR3_RX_7;
1020 tmp5 = ZSWR5_TX_7;
1021 break;
1022 case CS8:
1023 default:
1024 tmp = ZSWR3_RX_8;
1025 tmp5 = ZSWR5_TX_8;
1026 break;
1027 }
1028 tmp |= ZSWR3_RX_ENABLE;
1029 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1030
1031 /*
1032 * Block interrupts so that state will not
1033 * be altered until we are done setting it up.
1034 */
1035 s = splzs();
1036 cs->cs_preg[4] = cdiv;
1037 cs->cs_preg[11] = clkm;
1038 cs->cs_preg[12] = tcon;
1039 cs->cs_preg[13] = tcon >> 8;
1040 cs->cs_preg[14] = brgm;
1041 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1042 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1043 cs->cs_preg[10] = ZSWR10_NRZ;
1044 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1045
1046 /*
1047 * Output hardware flow control on the chip is horrendous: if
1048 * carrier detect drops, the receiver is disabled. Hence we
1049 * can only do this when the carrier is on.
1050 */
1051 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1052 tmp |= ZSWR3_HFC;
1053 cs->cs_preg[3] = tmp;
1054 cs->cs_preg[5] = tmp5;
1055
1056 /*
1057 * If nothing is being transmitted, set up new current values,
1058 * else mark them as pending.
1059 */
1060 if(cs->cs_heldchange == 0) {
1061 if (cs->cs_ttyp->t_state & TS_BUSY) {
1062 cs->cs_heldtbc = cs->cs_tbc;
1063 cs->cs_tbc = 0;
1064 cs->cs_heldchange = 1;
1065 } else {
1066 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1067 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1068 }
1069 }
1070 splx(s);
1071 return (0);
1072 }
1073
1074 /*
1075 * search for the best matching baudrate
1076 */
1077 static int
1078 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1079 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1080 {
1081 int bestdiff, bestbps, source;
1082
1083 unit = (unit & 1) << 2;
1084 for (source = 0; source < 4; ++source) {
1085 long freq = zs_frequencies[unit + source];
1086 int diff, bps, div, clkm, brgm, tcon;
1087 switch (source) {
1088 case 0: /* BRgen, PCLK */
1089 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1090 break;
1091 case 1: /* BRgen, RTxC */
1092 brgm = ZSWR14_BAUD_ENA;
1093 break;
1094 case 2: /* RTxC */
1095 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1096 break;
1097 case 3: /* TRxC */
1098 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1099 break;
1100 }
1101 switch (source) {
1102 case 0:
1103 case 1:
1104 div = ZSWR4_CLK_X16;
1105 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1106 tcon = BPS_TO_TCONST(freq, wanted);
1107 if (tcon < 0)
1108 tcon = 0;
1109 bps = TCONST_TO_BPS(freq, tcon);
1110 break;
1111 case 2:
1112 case 3:
1113 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1114 int b2 = freq / 32, d2 = abs(b2 - wanted);
1115 int b3 = freq / 64, d3 = abs(b3 - wanted);
1116
1117 if (d1 < d2 && d1 < d3) {
1118 div = ZSWR4_CLK_X16;
1119 bps = b1;
1120 } else if (d2 < d3 && d2 < d1) {
1121 div = ZSWR4_CLK_X32;
1122 bps = b2;
1123 } else {
1124 div = ZSWR4_CLK_X64;
1125 bps = b3;
1126 }
1127 brgm = tcon = 0;
1128 break;
1129 }
1130 }
1131 diff = abs(bps - wanted);
1132 if (!source || diff < bestdiff) {
1133 *divisor = div;
1134 *clockmode = clkm;
1135 *brgenmode = brgm;
1136 *timeconst = tcon;
1137 bestbps = bps;
1138 bestdiff = diff;
1139 if (diff == 0)
1140 break;
1141 }
1142 }
1143 /* Allow deviations upto 5% */
1144 if (20 * bestdiff > wanted)
1145 return -1;
1146 return bestbps;
1147 }
1148
1149 /*
1150 * Raise or lower modem control (DTR/RTS) signals. If a character is
1151 * in transmission, the change is deferred.
1152 */
1153 static int
1154 zs_modem(cs, bits, how)
1155 struct zs_chanstate *cs;
1156 int bits, how;
1157 {
1158 int s, mbits;
1159
1160 bits &= ZSWR5_DTR | ZSWR5_RTS;
1161
1162 s = splzs();
1163 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1164
1165 switch(how) {
1166 case DMSET:
1167 mbits = bits;
1168 break;
1169 case DMBIS:
1170 mbits |= bits;
1171 break;
1172 case DMBIC:
1173 mbits &= ~bits;
1174 break;
1175 case DMGET:
1176 splx(s);
1177 return(mbits);
1178 }
1179
1180 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1181 if(cs->cs_heldchange == 0) {
1182 if(cs->cs_ttyp->t_state & TS_BUSY) {
1183 cs->cs_heldtbc = cs->cs_tbc;
1184 cs->cs_tbc = 0;
1185 cs->cs_heldchange = 1;
1186 }
1187 else {
1188 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1189 }
1190 }
1191 splx(s);
1192 return(0);
1193 }
1194
1195 /*
1196 * Write the given register set to the given zs channel in the proper order.
1197 * The channel must not be transmitting at the time. The receiver will
1198 * be disabled for the time it takes to write all the registers.
1199 */
1200 static void
1201 zs_loadchannelregs(zc, reg)
1202 volatile struct zschan *zc;
1203 u_char *reg;
1204 {
1205 int i;
1206
1207 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1208 i = zc->zc_data; /* drain fifo */
1209 i = zc->zc_data;
1210 i = zc->zc_data;
1211 ZS_WRITE(zc, 4, reg[4]);
1212 ZS_WRITE(zc, 10, reg[10]);
1213 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1214 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1215 ZS_WRITE(zc, 1, reg[1]);
1216 ZS_WRITE(zc, 9, reg[9]);
1217 ZS_WRITE(zc, 11, reg[11]);
1218 ZS_WRITE(zc, 12, reg[12]);
1219 ZS_WRITE(zc, 13, reg[13]);
1220 ZS_WRITE(zc, 14, reg[14]);
1221 ZS_WRITE(zc, 15, reg[15]);
1222 ZS_WRITE(zc, 3, reg[3]);
1223 ZS_WRITE(zc, 5, reg[5]);
1224 }
1225 #endif /* NZS > 1 */
1226