zs.c revision 1.13 1 /* $NetBSD: zs.c,v 1.13 1995/12/25 14:16:50 leo Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <machine/video.h>
74
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81
82 #if NZS > 0
83
84 #define PCLK (8053976) /* PCLK pin input clock rate */
85
86 #define splzs spl5
87
88 /*
89 * Software state per found chip.
90 */
91 struct zs_softc {
92 struct device zi_dev; /* base device */
93 volatile struct zsdevice *zi_zs; /* chip registers */
94 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
95 };
96
97 static u_char cb_scheduled = 0; /* Already asked for callback? */
98 /*
99 * Define the registers for a closed port
100 */
101 static u_char zs_init_regs[16] = {
102 /* 0 */ 0,
103 /* 1 */ 0,
104 /* 2 */ 0x60,
105 /* 3 */ 0,
106 /* 4 */ 0,
107 /* 5 */ 0,
108 /* 6 */ 0,
109 /* 7 */ 0,
110 /* 8 */ 0,
111 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
112 /* 10 */ ZSWR10_NRZ,
113 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
114 /* 12 */ 0,
115 /* 13 */ 0,
116 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
117 /* 15 */ 0
118 };
119
120 /*
121 * Define the machine dependant clock frequencies
122 * If BRgen feeds sender/receiver we always use a
123 * divisor 16, therefor the division by 16 can as
124 * well be done here.
125 */
126 static u_long zs_freqs_tt[] = {
127 /*
128 * Atari TT, RTxCB is generated by TT-MFP timer C,
129 * which is set to 307.2KHz during initialisation
130 * and never changed afterwards.
131 */
132 PCLK/16, /* BRgen, PCLK, divisor 16 */
133 229500, /* BRgen, RTxCA, divisor 16 */
134 3672000, /* RTxCA, from PCLK4 */
135 0, /* TRxCA, external */
136
137 PCLK/16, /* BRgen, PCLK, divisor 16 */
138 19200, /* BRgen, RTxCB, divisor 16 */
139 307200, /* RTxCB, from TT-MFP TCO */
140 2457600 /* TRxCB, from BCLK */
141 };
142 static u_long zs_freqs_falcon[] = {
143 /*
144 * Atari Falcon, XXX no specs available, this might be wrong
145 */
146 PCLK/16, /* BRgen, PCLK, divisor 16 */
147 229500, /* BRgen, RTxCA, divisor 16 */
148 3672000, /* RTxCA, ??? */
149 0, /* TRxCA, external */
150
151 PCLK/16, /* BRgen, PCLK, divisor 16 */
152 229500, /* BRgen, RTxCB, divisor 16 */
153 3672000, /* RTxCB, ??? */
154 2457600 /* TRxCB, ??? */
155 };
156 static u_long zs_freqs_generic[] = {
157 /*
158 * other machines, assume only PCLK is available
159 */
160 PCLK/16, /* BRgen, PCLK, divisor 16 */
161 0, /* BRgen, RTxCA, divisor 16 */
162 0, /* RTxCA, unknown */
163 0, /* TRxCA, unknown */
164
165 PCLK/16, /* BRgen, PCLK, divisor 16 */
166 0, /* BRgen, RTxCB, divisor 16 */
167 0, /* RTxCB, unknown */
168 0 /* TRxCB, unknown */
169 };
170 static u_long *zs_frequencies;
171
172 /* Definition of the driver for autoconfig. */
173 static int zsmatch __P((struct device *, struct cfdata *, void *));
174 static void zsattach __P((struct device *, struct device *, void *));
175 struct cfdriver zscd = {
176 NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
177 sizeof(struct zs_softc), NULL, 0 };
178
179 /* Interrupt handlers. */
180 int zshard __P((long));
181 static int zssoft __P((long));
182 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
183 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
184 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
185
186 static struct zs_chanstate *zslist;
187
188 /* Routines called from other code. */
189 static void zsstart __P((struct tty *));
190 void zsstop __P((struct tty *, int));
191 static int zsparam __P((struct tty *, struct termios *));
192 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
193
194 /* Routines purely local to this driver. */
195 static void zs_reset __P((volatile struct zschan *, int, int));
196 static int zs_modem __P((struct zs_chanstate *, int, int));
197 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
198
199 static int zsshortcuts; /* number of "shortcut" software interrupts */
200
201 static int
202 zsmatch(pdp, cfp, auxp)
203 struct device *pdp;
204 struct cfdata *cfp;
205 void *auxp;
206 {
207 if(strcmp("zs", auxp) || cfp->cf_unit != 0)
208 return(0);
209 return(1);
210 }
211
212 /*
213 * Attach a found zs.
214 */
215 static void
216 zsattach(parent, dev, aux)
217 struct device *parent;
218 struct device *dev;
219 void *aux;
220 {
221 register struct zs_softc *zi;
222 register struct zs_chanstate *cs;
223 register volatile struct zsdevice *addr;
224 register struct tty *tp;
225 char tmp;
226
227 addr = (struct zsdevice *)AD_SCC;
228 zi = (struct zs_softc *)dev;
229 zi->zi_zs = addr;
230 cs = zi->zi_cs;
231
232 /*
233 * Get the command register into a known state.
234 */
235 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
236 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
237 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
238 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
239
240 /*
241 * Do a hardware reset.
242 */
243 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
244 delay(50000); /*enough ? */
245 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
246
247 /*
248 * Initialize both channels
249 */
250 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
251 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
252
253 if(machineid & ATARI_TT) {
254 /*
255 * ininitialise TT-MFP timer C: 307200Hz
256 * timer C and D share one control register:
257 * bits 0-2 control timer D
258 * bits 4-6 control timer C
259 */
260 int cr = MFP2->mf_tcdcr & 7;
261 MFP2->mf_tcdcr = cr; /* stop timer C */
262 MFP2->mf_tcdr = 1; /* counter 1 */
263 cr |= T_Q004 << 4; /* divisor 4 */
264 MFP2->mf_tcdcr = cr; /* start timer C */
265 /*
266 * enable scc related interrupts
267 */
268 SCU->sys_mask |= SCU_SCC;
269
270 zs_frequencies = zs_freqs_tt;
271 } else if (machineid & ATARI_FALCON) {
272 zs_frequencies = zs_freqs_falcon;
273 } else {
274 zs_frequencies = zs_freqs_generic;
275 }
276
277 /* link into interrupt list with order (A,B) (B=A+1) */
278 cs[0].cs_next = &cs[1];
279 cs[1].cs_next = zslist;
280 zslist = cs;
281
282 cs->cs_unit = 0;
283 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
284 cs++;
285 cs->cs_unit = 1;
286 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
287
288 printf(": serial2 on channel a and modem2 on channel b\n");
289 }
290
291 /*
292 * Open a zs serial port.
293 */
294 int
295 zsopen(dev, flags, mode, p)
296 dev_t dev;
297 int flags;
298 int mode;
299 struct proc *p;
300 {
301 register struct tty *tp;
302 register struct zs_chanstate *cs;
303 struct zs_softc *zi;
304 int unit = ZS_UNIT(dev);
305 int zs = unit >> 1;
306 int error, s;
307
308 if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
309 return (ENXIO);
310 cs = &zi->zi_cs[unit & 1];
311
312 /*
313 * When port A (ser02) is selected on the TT, make sure
314 * the port is enabled.
315 */
316 if((machineid & ATARI_TT) && !(unit & 1)) {
317 SOUND->sd_selr = YM_IOA;
318 SOUND->sd_wdat = SOUND->sd_rdat | PA_SER2;
319 }
320
321 if (cs->cs_rbuf == NULL) {
322 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
323 M_WAITOK);
324 }
325
326 tp = cs->cs_ttyp;
327 if(tp == NULL) {
328 cs->cs_ttyp = tp = ttymalloc();
329 tp->t_dev = dev;
330 tp->t_oproc = zsstart;
331 tp->t_param = zsparam;
332 }
333
334 s = spltty();
335 if((tp->t_state & TS_ISOPEN) == 0) {
336 ttychars(tp);
337 if(tp->t_ispeed == 0) {
338 tp->t_iflag = TTYDEF_IFLAG;
339 tp->t_oflag = TTYDEF_OFLAG;
340 tp->t_cflag = TTYDEF_CFLAG;
341 tp->t_lflag = TTYDEF_LFLAG;
342 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
343 }
344 (void)zsparam(tp, &tp->t_termios);
345 ttsetwater(tp);
346 }
347 else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
348 splx(s);
349 return (EBUSY);
350 }
351 error = 0;
352 for(;;) {
353 /* loop, turning on the device, until carrier present */
354 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
355
356 /* May never get a status intr. if DCD already on. -gwr */
357 if(cs->cs_zc->zc_csr & ZSRR0_DCD)
358 tp->t_state |= TS_CARR_ON;
359 if(cs->cs_softcar)
360 tp->t_state |= TS_CARR_ON;
361 if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
362 tp->t_state & TS_CARR_ON)
363 break;
364 tp->t_state |= TS_WOPEN;
365 if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
366 ttopen, 0)) {
367 if(!(tp->t_state & TS_ISOPEN)) {
368 zs_modem(cs, 0, DMSET);
369 tp->t_state &= ~TS_WOPEN;
370 ttwakeup(tp);
371 }
372 splx(s);
373 return error;
374 }
375 }
376 splx(s);
377 if(error == 0)
378 error = linesw[tp->t_line].l_open(dev, tp);
379 if(error)
380 zs_modem(cs, 0, DMSET);
381 return(error);
382 }
383
384 /*
385 * Close a zs serial port.
386 */
387 int
388 zsclose(dev, flags, mode, p)
389 dev_t dev;
390 int flags;
391 int mode;
392 struct proc *p;
393 {
394 register struct zs_chanstate *cs;
395 register struct tty *tp;
396 struct zs_softc *zi;
397 int unit = ZS_UNIT(dev);
398 int s;
399
400 zi = zscd.cd_devs[unit >> 1];
401 cs = &zi->zi_cs[unit & 1];
402 tp = cs->cs_ttyp;
403 linesw[tp->t_line].l_close(tp, flags);
404 if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
405 (tp->t_state & TS_ISOPEN) == 0) {
406 zs_modem(cs, 0, DMSET);
407 /* hold low for 1 second */
408 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
409 }
410 if(cs->cs_creg[5] & ZSWR5_BREAK) {
411 s = splzs();
412 cs->cs_preg[5] &= ~ZSWR5_BREAK;
413 cs->cs_creg[5] &= ~ZSWR5_BREAK;
414 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
415 splx(s);
416 }
417 ttyclose(tp);
418
419 /*
420 * Drop all lines and cancel interrupts
421 */
422 zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
423 return (0);
424 }
425
426 /*
427 * Read/write zs serial port.
428 */
429 int
430 zsread(dev, uio, flags)
431 dev_t dev;
432 struct uio *uio;
433 int flags;
434 {
435 register struct zs_chanstate *cs;
436 register struct zs_softc *zi;
437 register struct tty *tp;
438 int unit;
439
440 unit = ZS_UNIT(dev);
441 zi = zscd.cd_devs[unit >> 1];
442 cs = &zi->zi_cs[unit & 1];
443 tp = cs->cs_ttyp;
444
445 return(linesw[tp->t_line].l_read(tp, uio, flags));
446 }
447
448 int
449 zswrite(dev, uio, flags)
450 dev_t dev;
451 struct uio *uio;
452 int flags;
453 {
454 register struct zs_chanstate *cs;
455 register struct zs_softc *zi;
456 register struct tty *tp;
457 int unit;
458
459 unit = ZS_UNIT(dev);
460 zi = zscd.cd_devs[unit >> 1];
461 cs = &zi->zi_cs[unit & 1];
462 tp = cs->cs_ttyp;
463
464 return(linesw[tp->t_line].l_write(tp, uio, flags));
465 }
466
467 struct tty *
468 zstty(dev)
469 dev_t dev;
470 {
471 register struct zs_chanstate *cs;
472 register struct zs_softc *zi;
473 int unit;
474
475 unit = ZS_UNIT(dev);
476 zi = zscd.cd_devs[unit >> 1];
477 cs = &zi->zi_cs[unit & 1];
478 return(cs->cs_ttyp);
479 }
480
481 /*
482 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
483 * channels are kept in (A,B) pairs.
484 *
485 * Do just a little, then get out; set a software interrupt if more
486 * work is needed.
487 *
488 * We deliberately ignore the vectoring Zilog gives us, and match up
489 * only the number of `reset interrupt under service' operations, not
490 * the order.
491 */
492
493 int
494 zshard(sr)
495 long sr;
496 {
497 register struct zs_chanstate *a;
498 #define b (a + 1)
499 register volatile struct zschan *zc;
500 register int rr3, intflags = 0, v, i;
501
502 do {
503 intflags &= ~4;
504 for(a = zslist; a != NULL; a = b->cs_next) {
505 rr3 = ZS_READ(a->cs_zc, 3);
506 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
507 intflags |= 4|2;
508 zc = a->cs_zc;
509 i = a->cs_rbput;
510 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
511 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
512 intflags |= 1;
513 }
514 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
515 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
516 intflags |= 1;
517 }
518 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
519 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
520 intflags |= 1;
521 }
522 a->cs_rbput = i;
523 }
524 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
525 intflags |= 4|2;
526 zc = b->cs_zc;
527 i = b->cs_rbput;
528 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
529 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
530 intflags |= 1;
531 }
532 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
533 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
534 intflags |= 1;
535 }
536 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
537 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
538 intflags |= 1;
539 }
540 b->cs_rbput = i;
541 }
542 }
543 } while(intflags & 4);
544 #undef b
545
546 if(intflags & 1) {
547 if(BASEPRI(sr)) {
548 spl1();
549 zsshortcuts++;
550 return(zssoft(sr));
551 }
552 else if(!cb_scheduled) {
553 cb_scheduled++;
554 add_sicallback(zssoft, 0, 0);
555 }
556 }
557 return(intflags & 2);
558 }
559
560 static int
561 zsrint(cs, zc)
562 register struct zs_chanstate *cs;
563 register volatile struct zschan *zc;
564 {
565 register int c;
566
567 /*
568 * First read the status, because read of the received char
569 * destroy the status of this char.
570 */
571 c = ZS_READ(zc, 1);
572 c |= (zc->zc_data << 8);
573
574 /* clear receive error & interrupt condition */
575 zc->zc_csr = ZSWR0_RESET_ERRORS;
576 zc->zc_csr = ZSWR0_CLR_INTR;
577
578 return(ZRING_MAKE(ZRING_RINT, c));
579 }
580
581 static int
582 zsxint(cs, zc)
583 register struct zs_chanstate *cs;
584 register volatile struct zschan *zc;
585 {
586 register int i = cs->cs_tbc;
587
588 if(i == 0) {
589 zc->zc_csr = ZSWR0_RESET_TXINT;
590 zc->zc_csr = ZSWR0_CLR_INTR;
591 return(ZRING_MAKE(ZRING_XINT, 0));
592 }
593 cs->cs_tbc = i - 1;
594 zc->zc_data = *cs->cs_tba++;
595 zc->zc_csr = ZSWR0_CLR_INTR;
596 return (0);
597 }
598
599 static int
600 zssint(cs, zc)
601 register struct zs_chanstate *cs;
602 register volatile struct zschan *zc;
603 {
604 register int rr0;
605
606 rr0 = zc->zc_csr;
607 zc->zc_csr = ZSWR0_RESET_STATUS;
608 zc->zc_csr = ZSWR0_CLR_INTR;
609 /*
610 * The chip's hardware flow control is, as noted in zsreg.h,
611 * busted---if the DCD line goes low the chip shuts off the
612 * receiver (!). If we want hardware CTS flow control but do
613 * not have it, and carrier is now on, turn HFC on; if we have
614 * HFC now but carrier has gone low, turn it off.
615 */
616 if(rr0 & ZSRR0_DCD) {
617 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
618 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
619 cs->cs_creg[3] |= ZSWR3_HFC;
620 ZS_WRITE(zc, 3, cs->cs_creg[3]);
621 }
622 }
623 else {
624 if (cs->cs_creg[3] & ZSWR3_HFC) {
625 cs->cs_creg[3] &= ~ZSWR3_HFC;
626 ZS_WRITE(zc, 3, cs->cs_creg[3]);
627 }
628 }
629 return(ZRING_MAKE(ZRING_SINT, rr0));
630 }
631
632 /*
633 * Print out a ring or fifo overrun error message.
634 */
635 static void
636 zsoverrun(unit, ptime, what)
637 int unit;
638 long *ptime;
639 char *what;
640 {
641
642 if(*ptime != time.tv_sec) {
643 *ptime = time.tv_sec;
644 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
645 (unit & 1) + 'a', what);
646 }
647 }
648
649 /*
650 * ZS software interrupt. Scan all channels for deferred interrupts.
651 */
652 int
653 zssoft(sr)
654 long sr;
655 {
656 register struct zs_chanstate *cs;
657 register volatile struct zschan *zc;
658 register struct linesw *line;
659 register struct tty *tp;
660 register int get, n, c, cc, unit, s;
661 int retval = 0;
662
663 cb_scheduled = 0;
664 s = spltty();
665 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
666 get = cs->cs_rbget;
667 again:
668 n = cs->cs_rbput; /* atomic */
669 if(get == n) /* nothing more on this line */
670 continue;
671 retval = 1;
672 unit = cs->cs_unit; /* set up to handle interrupts */
673 zc = cs->cs_zc;
674 tp = cs->cs_ttyp;
675 line = &linesw[tp->t_line];
676 /*
677 * Compute the number of interrupts in the receive ring.
678 * If the count is overlarge, we lost some events, and
679 * must advance to the first valid one. It may get
680 * overwritten if more data are arriving, but this is
681 * too expensive to check and gains nothing (we already
682 * lost out; all we can do at this point is trade one
683 * kind of loss for another).
684 */
685 n -= get;
686 if(n > ZLRB_RING_SIZE) {
687 zsoverrun(unit, &cs->cs_rotime, "ring");
688 get += n - ZLRB_RING_SIZE;
689 n = ZLRB_RING_SIZE;
690 }
691 while(--n >= 0) {
692 /* race to keep ahead of incoming interrupts */
693 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
694 switch (ZRING_TYPE(c)) {
695
696 case ZRING_RINT:
697 c = ZRING_VALUE(c);
698 if(c & ZSRR1_DO)
699 zsoverrun(unit, &cs->cs_fotime, "fifo");
700 cc = c >> 8;
701 if(c & ZSRR1_FE)
702 cc |= TTY_FE;
703 if(c & ZSRR1_PE)
704 cc |= TTY_PE;
705 line->l_rint(cc, tp);
706 break;
707
708 case ZRING_XINT:
709 /*
710 * Transmit done: change registers and resume,
711 * or clear BUSY.
712 */
713 if(cs->cs_heldchange) {
714 int sps;
715
716 sps = splzs();
717 c = zc->zc_csr;
718 if((c & ZSRR0_DCD) == 0)
719 cs->cs_preg[3] &= ~ZSWR3_HFC;
720 bcopy((caddr_t)cs->cs_preg,
721 (caddr_t)cs->cs_creg, 16);
722 zs_loadchannelregs(zc, cs->cs_creg);
723 splx(sps);
724 cs->cs_heldchange = 0;
725 if(cs->cs_heldtbc
726 && (tp->t_state & TS_TTSTOP) == 0) {
727 cs->cs_tbc = cs->cs_heldtbc - 1;
728 zc->zc_data = *cs->cs_tba++;
729 goto again;
730 }
731 }
732 tp->t_state &= ~TS_BUSY;
733 if(tp->t_state & TS_FLUSH)
734 tp->t_state &= ~TS_FLUSH;
735 else ndflush(&tp->t_outq,cs->cs_tba
736 - (caddr_t)tp->t_outq.c_cf);
737 line->l_start(tp);
738 break;
739
740 case ZRING_SINT:
741 /*
742 * Status line change. HFC bit is run in
743 * hardware interrupt, to avoid locking
744 * at splzs here.
745 */
746 c = ZRING_VALUE(c);
747 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
748 cc = (c & ZSRR0_DCD) != 0;
749 if(line->l_modem(tp, cc) == 0)
750 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
751 cc ? DMBIS : DMBIC);
752 }
753 cs->cs_rr0 = c;
754 break;
755
756 default:
757 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
758 unit >> 1, (unit & 1) + 'a', c);
759 break;
760 }
761 }
762 cs->cs_rbget = get;
763 goto again;
764 }
765 splx(s);
766 return (retval);
767 }
768
769 int
770 zsioctl(dev, cmd, data, flag, p)
771 dev_t dev;
772 u_long cmd;
773 caddr_t data;
774 int flag;
775 struct proc *p;
776 {
777 int unit = ZS_UNIT(dev);
778 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
779 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
780 register int error, s;
781 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
782
783 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
784 if(error >= 0)
785 return(error);
786 error = ttioctl(tp, cmd, data, flag, p);
787 if(error >= 0)
788 return (error);
789
790 switch (cmd) {
791 case TIOCSBRK:
792 s = splzs();
793 cs->cs_preg[5] |= ZSWR5_BREAK;
794 cs->cs_creg[5] |= ZSWR5_BREAK;
795 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
796 splx(s);
797 break;
798 case TIOCCBRK:
799 s = splzs();
800 cs->cs_preg[5] &= ~ZSWR5_BREAK;
801 cs->cs_creg[5] &= ~ZSWR5_BREAK;
802 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
803 splx(s);
804 break;
805 case TIOCGFLAGS: {
806 int bits = 0;
807
808 if(cs->cs_softcar)
809 bits |= TIOCFLAG_SOFTCAR;
810 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
811 bits |= TIOCFLAG_CLOCAL;
812 if(cs->cs_creg[3] & ZSWR3_HFC)
813 bits |= TIOCFLAG_CRTSCTS;
814 *(int *)data = bits;
815 break;
816 }
817 case TIOCSFLAGS: {
818 int userbits, driverbits = 0;
819
820 error = suser(p->p_ucred, &p->p_acflag);
821 if(error != 0)
822 return (EPERM);
823
824 userbits = *(int *)data;
825
826 /*
827 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
828 # defaulting to software flow control.
829 */
830 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
831 return(EINVAL);
832 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
833 return(ENODEV);
834
835 s = splzs();
836 if((userbits & TIOCFLAG_SOFTCAR)) {
837 cs->cs_softcar = 1; /* turn on softcar */
838 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
839 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
840 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
841 }
842 else if(userbits & TIOCFLAG_CLOCAL) {
843 cs->cs_softcar = 0; /* turn off softcar */
844 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
845 cs->cs_creg[15] |= ZSWR15_DCD_IE;
846 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
847 tp->t_termios.c_cflag |= CLOCAL;
848 }
849 if(userbits & TIOCFLAG_CRTSCTS) {
850 cs->cs_preg[15] |= ZSWR15_CTS_IE;
851 cs->cs_creg[15] |= ZSWR15_CTS_IE;
852 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
853 cs->cs_preg[3] |= ZSWR3_HFC;
854 cs->cs_creg[3] |= ZSWR3_HFC;
855 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
856 tp->t_termios.c_cflag |= CRTSCTS;
857 }
858 else {
859 /* no mdmbuf, so we must want software flow control */
860 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
861 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
862 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
863 cs->cs_preg[3] &= ~ZSWR3_HFC;
864 cs->cs_creg[3] &= ~ZSWR3_HFC;
865 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
866 tp->t_termios.c_cflag &= ~CRTSCTS;
867 }
868 splx(s);
869 break;
870 }
871 case TIOCSDTR:
872 zs_modem(cs, ZSWR5_DTR, DMBIS);
873 break;
874 case TIOCCDTR:
875 zs_modem(cs, ZSWR5_DTR, DMBIC);
876 break;
877 case TIOCMGET:
878 zs_modem(cs, 0, DMGET);
879 break;
880 case TIOCMSET:
881 case TIOCMBIS:
882 case TIOCMBIC:
883 default:
884 return (ENOTTY);
885 }
886 return (0);
887 }
888
889 /*
890 * Start or restart transmission.
891 */
892 static void
893 zsstart(tp)
894 register struct tty *tp;
895 {
896 register struct zs_chanstate *cs;
897 register int s, nch;
898 int unit = ZS_UNIT(tp->t_dev);
899 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
900
901 cs = &zi->zi_cs[unit & 1];
902 s = spltty();
903
904 /*
905 * If currently active or delaying, no need to do anything.
906 */
907 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
908 goto out;
909
910 /*
911 * If there are sleepers, and output has drained below low
912 * water mark, awaken.
913 */
914 if(tp->t_outq.c_cc <= tp->t_lowat) {
915 if(tp->t_state & TS_ASLEEP) {
916 tp->t_state &= ~TS_ASLEEP;
917 wakeup((caddr_t)&tp->t_outq);
918 }
919 selwakeup(&tp->t_wsel);
920 }
921
922 nch = ndqb(&tp->t_outq, 0); /* XXX */
923 if(nch) {
924 register char *p = tp->t_outq.c_cf;
925
926 /* mark busy, enable tx done interrupts, & send first byte */
927 tp->t_state |= TS_BUSY;
928 (void) splzs();
929 cs->cs_preg[1] |= ZSWR1_TIE;
930 cs->cs_creg[1] |= ZSWR1_TIE;
931 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
932 cs->cs_zc->zc_data = *p;
933 cs->cs_tba = p + 1;
934 cs->cs_tbc = nch - 1;
935 } else {
936 /*
937 * Nothing to send, turn off transmit done interrupts.
938 * This is useful if something is doing polled output.
939 */
940 (void) splzs();
941 cs->cs_preg[1] &= ~ZSWR1_TIE;
942 cs->cs_creg[1] &= ~ZSWR1_TIE;
943 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
944 }
945 out:
946 splx(s);
947 }
948
949 /*
950 * Stop output, e.g., for ^S or output flush.
951 */
952 void
953 zsstop(tp, flag)
954 register struct tty *tp;
955 int flag;
956 {
957 register struct zs_chanstate *cs;
958 register int s, unit = ZS_UNIT(tp->t_dev);
959 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
960
961 cs = &zi->zi_cs[unit & 1];
962 s = splzs();
963 if(tp->t_state & TS_BUSY) {
964 /*
965 * Device is transmitting; must stop it.
966 */
967 cs->cs_tbc = 0;
968 if ((tp->t_state & TS_TTSTOP) == 0)
969 tp->t_state |= TS_FLUSH;
970 }
971 splx(s);
972 }
973
974 /*
975 * Set ZS tty parameters from termios.
976 *
977 * This routine makes use of the fact that only registers
978 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
979 */
980 static int
981 zsparam(tp, t)
982 register struct tty *tp;
983 register struct termios *t;
984 {
985 int unit = ZS_UNIT(tp->t_dev);
986 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
987 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
988 int cdiv, clkm, brgm, tcon;
989 register int tmp, tmp5, cflag, s;
990
991 tmp = t->c_ospeed;
992 tmp5 = t->c_ispeed;
993 if(tmp < 0 || (tmp5 && tmp5 != tmp))
994 return(EINVAL);
995 if(tmp == 0) {
996 /* stty 0 => drop DTR and RTS */
997 zs_modem(cs, 0, DMSET);
998 return(0);
999 }
1000 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1001 if (tmp < 0)
1002 return(EINVAL);
1003 tp->t_ispeed = tp->t_ospeed = tmp;
1004
1005 cflag = tp->t_cflag = t->c_cflag;
1006 if (cflag & CSTOPB)
1007 cdiv |= ZSWR4_TWOSB;
1008 else
1009 cdiv |= ZSWR4_ONESB;
1010 if (!(cflag & PARODD))
1011 cdiv |= ZSWR4_EVENP;
1012 if (cflag & PARENB)
1013 cdiv |= ZSWR4_PARENB;
1014
1015 switch(cflag & CSIZE) {
1016 case CS5:
1017 tmp = ZSWR3_RX_5;
1018 tmp5 = ZSWR5_TX_5;
1019 break;
1020 case CS6:
1021 tmp = ZSWR3_RX_6;
1022 tmp5 = ZSWR5_TX_6;
1023 break;
1024 case CS7:
1025 tmp = ZSWR3_RX_7;
1026 tmp5 = ZSWR5_TX_7;
1027 break;
1028 case CS8:
1029 default:
1030 tmp = ZSWR3_RX_8;
1031 tmp5 = ZSWR5_TX_8;
1032 break;
1033 }
1034 tmp |= ZSWR3_RX_ENABLE;
1035 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1036
1037 /*
1038 * Block interrupts so that state will not
1039 * be altered until we are done setting it up.
1040 */
1041 s = splzs();
1042 cs->cs_preg[4] = cdiv;
1043 cs->cs_preg[11] = clkm;
1044 cs->cs_preg[12] = tcon;
1045 cs->cs_preg[13] = tcon >> 8;
1046 cs->cs_preg[14] = brgm;
1047 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1048 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1049 cs->cs_preg[10] = ZSWR10_NRZ;
1050 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1051
1052 /*
1053 * Output hardware flow control on the chip is horrendous: if
1054 * carrier detect drops, the receiver is disabled. Hence we
1055 * can only do this when the carrier is on.
1056 */
1057 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1058 tmp |= ZSWR3_HFC;
1059 cs->cs_preg[3] = tmp;
1060 cs->cs_preg[5] = tmp5;
1061
1062 /*
1063 * If nothing is being transmitted, set up new current values,
1064 * else mark them as pending.
1065 */
1066 if(cs->cs_heldchange == 0) {
1067 if (cs->cs_ttyp->t_state & TS_BUSY) {
1068 cs->cs_heldtbc = cs->cs_tbc;
1069 cs->cs_tbc = 0;
1070 cs->cs_heldchange = 1;
1071 } else {
1072 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1073 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1074 }
1075 }
1076 splx(s);
1077 return (0);
1078 }
1079
1080 /*
1081 * search for the best matching baudrate
1082 */
1083 static int
1084 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1085 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1086 {
1087 int bestdiff, bestbps, source;
1088
1089 unit = (unit & 1) << 2;
1090 for (source = 0; source < 4; ++source) {
1091 long freq = zs_frequencies[unit + source];
1092 int diff, bps, div, clkm, brgm, tcon;
1093 switch (source) {
1094 case 0: /* BRgen, PCLK */
1095 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1096 break;
1097 case 1: /* BRgen, RTxC */
1098 brgm = ZSWR14_BAUD_ENA;
1099 break;
1100 case 2: /* RTxC */
1101 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1102 break;
1103 case 3: /* TRxC */
1104 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1105 break;
1106 }
1107 switch (source) {
1108 case 0:
1109 case 1:
1110 div = ZSWR4_CLK_X16;
1111 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1112 tcon = BPS_TO_TCONST(freq, wanted);
1113 if (tcon < 0)
1114 tcon = 0;
1115 bps = TCONST_TO_BPS(freq, tcon);
1116 break;
1117 case 2:
1118 case 3:
1119 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1120 int b2 = freq / 32, d2 = abs(b2 - wanted);
1121 int b3 = freq / 64, d3 = abs(b3 - wanted);
1122
1123 if (d1 < d2 && d1 < d3) {
1124 div = ZSWR4_CLK_X16;
1125 bps = b1;
1126 } else if (d2 < d3 && d2 < d1) {
1127 div = ZSWR4_CLK_X32;
1128 bps = b2;
1129 } else {
1130 div = ZSWR4_CLK_X64;
1131 bps = b3;
1132 }
1133 brgm = tcon = 0;
1134 break;
1135 }
1136 }
1137 diff = abs(bps - wanted);
1138 if (!source || diff < bestdiff) {
1139 *divisor = div;
1140 *clockmode = clkm;
1141 *brgenmode = brgm;
1142 *timeconst = tcon;
1143 bestbps = bps;
1144 bestdiff = diff;
1145 if (diff == 0)
1146 break;
1147 }
1148 }
1149 /* Allow deviations upto 5% */
1150 if (20 * bestdiff > wanted)
1151 return -1;
1152 return bestbps;
1153 }
1154
1155 /*
1156 * Raise or lower modem control (DTR/RTS) signals. If a character is
1157 * in transmission, the change is deferred.
1158 */
1159 static int
1160 zs_modem(cs, bits, how)
1161 struct zs_chanstate *cs;
1162 int bits, how;
1163 {
1164 int s, mbits;
1165
1166 bits &= ZSWR5_DTR | ZSWR5_RTS;
1167
1168 s = splzs();
1169 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1170
1171 switch(how) {
1172 case DMSET:
1173 mbits = bits;
1174 break;
1175 case DMBIS:
1176 mbits |= bits;
1177 break;
1178 case DMBIC:
1179 mbits &= ~bits;
1180 break;
1181 case DMGET:
1182 splx(s);
1183 return(mbits);
1184 }
1185
1186 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1187 if(cs->cs_heldchange == 0) {
1188 if(cs->cs_ttyp->t_state & TS_BUSY) {
1189 cs->cs_heldtbc = cs->cs_tbc;
1190 cs->cs_tbc = 0;
1191 cs->cs_heldchange = 1;
1192 }
1193 else {
1194 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1195 }
1196 }
1197 splx(s);
1198 return(0);
1199 }
1200
1201 /*
1202 * Write the given register set to the given zs channel in the proper order.
1203 * The channel must not be transmitting at the time. The receiver will
1204 * be disabled for the time it takes to write all the registers.
1205 */
1206 static void
1207 zs_loadchannelregs(zc, reg)
1208 volatile struct zschan *zc;
1209 u_char *reg;
1210 {
1211 int i;
1212
1213 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1214 i = zc->zc_data; /* drain fifo */
1215 i = zc->zc_data;
1216 i = zc->zc_data;
1217 ZS_WRITE(zc, 4, reg[4]);
1218 ZS_WRITE(zc, 10, reg[10]);
1219 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1220 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1221 ZS_WRITE(zc, 1, reg[1]);
1222 ZS_WRITE(zc, 9, reg[9]);
1223 ZS_WRITE(zc, 11, reg[11]);
1224 ZS_WRITE(zc, 12, reg[12]);
1225 ZS_WRITE(zc, 13, reg[13]);
1226 ZS_WRITE(zc, 14, reg[14]);
1227 ZS_WRITE(zc, 15, reg[15]);
1228 ZS_WRITE(zc, 3, reg[3]);
1229 ZS_WRITE(zc, 5, reg[5]);
1230 }
1231 #endif /* NZS > 1 */
1232