zs.c revision 1.14 1 /* $NetBSD: zs.c,v 1.14 1996/01/23 09:35:15 leo Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <machine/video.h>
74
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81
82 #if NZS > 0
83
84 #define PCLK (8053976) /* PCLK pin input clock rate */
85
86 #define splzs spl5
87
88 /*
89 * Software state per found chip.
90 */
91 struct zs_softc {
92 struct device zi_dev; /* base device */
93 volatile struct zsdevice *zi_zs; /* chip registers */
94 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
95 };
96
97 static u_char cb_scheduled = 0; /* Already asked for callback? */
98 /*
99 * Define the registers for a closed port
100 */
101 static u_char zs_init_regs[16] = {
102 /* 0 */ 0,
103 /* 1 */ 0,
104 /* 2 */ 0x60,
105 /* 3 */ 0,
106 /* 4 */ 0,
107 /* 5 */ 0,
108 /* 6 */ 0,
109 /* 7 */ 0,
110 /* 8 */ 0,
111 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
112 /* 10 */ ZSWR10_NRZ,
113 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
114 /* 12 */ 0,
115 /* 13 */ 0,
116 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
117 /* 15 */ 0
118 };
119
120 /*
121 * Define the machine dependant clock frequencies
122 * If BRgen feeds sender/receiver we always use a
123 * divisor 16, therefor the division by 16 can as
124 * well be done here.
125 */
126 static u_long zs_freqs_tt[] = {
127 /*
128 * Atari TT, RTxCB is generated by TT-MFP timer C,
129 * which is set to 307.2KHz during initialisation
130 * and never changed afterwards.
131 */
132 PCLK/16, /* BRgen, PCLK, divisor 16 */
133 229500, /* BRgen, RTxCA, divisor 16 */
134 3672000, /* RTxCA, from PCLK4 */
135 0, /* TRxCA, external */
136
137 PCLK/16, /* BRgen, PCLK, divisor 16 */
138 19200, /* BRgen, RTxCB, divisor 16 */
139 307200, /* RTxCB, from TT-MFP TCO */
140 2457600 /* TRxCB, from BCLK */
141 };
142 static u_long zs_freqs_falcon[] = {
143 /*
144 * Atari Falcon, XXX no specs available, this might be wrong
145 */
146 PCLK/16, /* BRgen, PCLK, divisor 16 */
147 229500, /* BRgen, RTxCA, divisor 16 */
148 3672000, /* RTxCA, ??? */
149 0, /* TRxCA, external */
150
151 PCLK/16, /* BRgen, PCLK, divisor 16 */
152 229500, /* BRgen, RTxCB, divisor 16 */
153 3672000, /* RTxCB, ??? */
154 2457600 /* TRxCB, ??? */
155 };
156 static u_long zs_freqs_generic[] = {
157 /*
158 * other machines, assume only PCLK is available
159 */
160 PCLK/16, /* BRgen, PCLK, divisor 16 */
161 0, /* BRgen, RTxCA, divisor 16 */
162 0, /* RTxCA, unknown */
163 0, /* TRxCA, unknown */
164
165 PCLK/16, /* BRgen, PCLK, divisor 16 */
166 0, /* BRgen, RTxCB, divisor 16 */
167 0, /* RTxCB, unknown */
168 0 /* TRxCB, unknown */
169 };
170 static u_long *zs_frequencies;
171
172 /* Definition of the driver for autoconfig. */
173 static int zsmatch __P((struct device *, struct cfdata *, void *));
174 static void zsattach __P((struct device *, struct device *, void *));
175 struct cfdriver zscd = {
176 NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
177 sizeof(struct zs_softc), NULL, 0 };
178
179 /* Interrupt handlers. */
180 int zshard __P((long));
181 static int zssoft __P((long));
182 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
183 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
184 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
185
186 static struct zs_chanstate *zslist;
187
188 /* Routines called from other code. */
189 static void zsstart __P((struct tty *));
190 void zsstop __P((struct tty *, int));
191 static int zsparam __P((struct tty *, struct termios *));
192 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
193
194 /* Routines purely local to this driver. */
195 static void zs_reset __P((volatile struct zschan *, int, int));
196 static int zs_modem __P((struct zs_chanstate *, int, int));
197 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
198
199 static int zsshortcuts; /* number of "shortcut" software interrupts */
200
201 static int
202 zsmatch(pdp, cfp, auxp)
203 struct device *pdp;
204 struct cfdata *cfp;
205 void *auxp;
206 {
207 if(strcmp("zs", auxp) || cfp->cf_unit != 0)
208 return(0);
209 return(1);
210 }
211
212 /*
213 * Attach a found zs.
214 */
215 static void
216 zsattach(parent, dev, aux)
217 struct device *parent;
218 struct device *dev;
219 void *aux;
220 {
221 register struct zs_softc *zi;
222 register struct zs_chanstate *cs;
223 register volatile struct zsdevice *addr;
224 register struct tty *tp;
225 char tmp;
226
227 addr = (struct zsdevice *)AD_SCC;
228 zi = (struct zs_softc *)dev;
229 zi->zi_zs = addr;
230 cs = zi->zi_cs;
231
232 /*
233 * Get the command register into a known state.
234 */
235 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
236 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
237 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
238 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
239
240 /*
241 * Do a hardware reset.
242 */
243 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
244 delay(50000); /*enough ? */
245 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
246
247 /*
248 * Initialize both channels
249 */
250 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
251 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
252
253 if(machineid & ATARI_TT) {
254 /*
255 * ininitialise TT-MFP timer C: 307200Hz
256 * timer C and D share one control register:
257 * bits 0-2 control timer D
258 * bits 4-6 control timer C
259 */
260 int cr = MFP2->mf_tcdcr & 7;
261 MFP2->mf_tcdcr = cr; /* stop timer C */
262 MFP2->mf_tcdr = 1; /* counter 1 */
263 cr |= T_Q004 << 4; /* divisor 4 */
264 MFP2->mf_tcdcr = cr; /* start timer C */
265 /*
266 * enable scc related interrupts
267 */
268 SCU->sys_mask |= SCU_SCC;
269
270 zs_frequencies = zs_freqs_tt;
271 } else if (machineid & ATARI_FALCON) {
272 zs_frequencies = zs_freqs_falcon;
273 } else {
274 zs_frequencies = zs_freqs_generic;
275 }
276
277 /* link into interrupt list with order (A,B) (B=A+1) */
278 cs[0].cs_next = &cs[1];
279 cs[1].cs_next = zslist;
280 zslist = cs;
281
282 cs->cs_unit = 0;
283 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
284 cs++;
285 cs->cs_unit = 1;
286 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
287
288 printf(": serial2 on channel a and modem2 on channel b\n");
289 }
290
291 /*
292 * Open a zs serial port.
293 */
294 int
295 zsopen(dev, flags, mode, p)
296 dev_t dev;
297 int flags;
298 int mode;
299 struct proc *p;
300 {
301 register struct tty *tp;
302 register struct zs_chanstate *cs;
303 struct zs_softc *zi;
304 int unit = ZS_UNIT(dev);
305 int zs = unit >> 1;
306 int error, s;
307
308 if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
309 return (ENXIO);
310 cs = &zi->zi_cs[unit & 1];
311
312 /*
313 * When port A (ser02) is selected on the TT, make sure
314 * the port is enabled.
315 */
316 if((machineid & ATARI_TT) && !(unit & 1)) {
317 SOUND->sd_selr = YM_IOA;
318 SOUND->sd_wdat = SOUND->sd_rdat | PA_SER2;
319 }
320
321 if (cs->cs_rbuf == NULL) {
322 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
323 M_WAITOK);
324 }
325
326 tp = cs->cs_ttyp;
327 if(tp == NULL) {
328 cs->cs_ttyp = tp = ttymalloc();
329 tp->t_dev = dev;
330 tp->t_oproc = zsstart;
331 tp->t_param = zsparam;
332 }
333
334 s = spltty();
335 if((tp->t_state & TS_ISOPEN) == 0) {
336 ttychars(tp);
337 if(tp->t_ispeed == 0) {
338 tp->t_iflag = TTYDEF_IFLAG;
339 tp->t_oflag = TTYDEF_OFLAG;
340 tp->t_cflag = TTYDEF_CFLAG;
341 tp->t_lflag = TTYDEF_LFLAG;
342 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
343 }
344 (void)zsparam(tp, &tp->t_termios);
345 ttsetwater(tp);
346 }
347 else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
348 splx(s);
349 return (EBUSY);
350 }
351 error = 0;
352 for(;;) {
353 /* loop, turning on the device, until carrier present */
354 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
355
356 /* May never get a status intr. if DCD already on. -gwr */
357 if(cs->cs_zc->zc_csr & ZSRR0_DCD)
358 tp->t_state |= TS_CARR_ON;
359 if(cs->cs_softcar)
360 tp->t_state |= TS_CARR_ON;
361 if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
362 tp->t_state & TS_CARR_ON)
363 break;
364 tp->t_state |= TS_WOPEN;
365 if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
366 ttopen, 0)) {
367 if(!(tp->t_state & TS_ISOPEN)) {
368 zs_modem(cs, 0, DMSET);
369 tp->t_state &= ~TS_WOPEN;
370 ttwakeup(tp);
371 }
372 splx(s);
373 return error;
374 }
375 }
376 splx(s);
377 if(error == 0)
378 error = linesw[tp->t_line].l_open(dev, tp);
379 if(error)
380 zs_modem(cs, 0, DMSET);
381 return(error);
382 }
383
384 /*
385 * Close a zs serial port.
386 */
387 int
388 zsclose(dev, flags, mode, p)
389 dev_t dev;
390 int flags;
391 int mode;
392 struct proc *p;
393 {
394 register struct zs_chanstate *cs;
395 register struct tty *tp;
396 struct zs_softc *zi;
397 int unit = ZS_UNIT(dev);
398 int s;
399
400 zi = zscd.cd_devs[unit >> 1];
401 cs = &zi->zi_cs[unit & 1];
402 tp = cs->cs_ttyp;
403 linesw[tp->t_line].l_close(tp, flags);
404 if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
405 (tp->t_state & TS_ISOPEN) == 0) {
406 zs_modem(cs, 0, DMSET);
407 /* hold low for 1 second */
408 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
409 }
410 if(cs->cs_creg[5] & ZSWR5_BREAK) {
411 s = splzs();
412 cs->cs_preg[5] &= ~ZSWR5_BREAK;
413 cs->cs_creg[5] &= ~ZSWR5_BREAK;
414 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
415 splx(s);
416 }
417 ttyclose(tp);
418
419 /*
420 * Drop all lines and cancel interrupts
421 */
422 s = splzs();
423 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
424 splx(s);
425 return (0);
426 }
427
428 /*
429 * Read/write zs serial port.
430 */
431 int
432 zsread(dev, uio, flags)
433 dev_t dev;
434 struct uio *uio;
435 int flags;
436 {
437 register struct zs_chanstate *cs;
438 register struct zs_softc *zi;
439 register struct tty *tp;
440 int unit;
441
442 unit = ZS_UNIT(dev);
443 zi = zscd.cd_devs[unit >> 1];
444 cs = &zi->zi_cs[unit & 1];
445 tp = cs->cs_ttyp;
446
447 return(linesw[tp->t_line].l_read(tp, uio, flags));
448 }
449
450 int
451 zswrite(dev, uio, flags)
452 dev_t dev;
453 struct uio *uio;
454 int flags;
455 {
456 register struct zs_chanstate *cs;
457 register struct zs_softc *zi;
458 register struct tty *tp;
459 int unit;
460
461 unit = ZS_UNIT(dev);
462 zi = zscd.cd_devs[unit >> 1];
463 cs = &zi->zi_cs[unit & 1];
464 tp = cs->cs_ttyp;
465
466 return(linesw[tp->t_line].l_write(tp, uio, flags));
467 }
468
469 struct tty *
470 zstty(dev)
471 dev_t dev;
472 {
473 register struct zs_chanstate *cs;
474 register struct zs_softc *zi;
475 int unit;
476
477 unit = ZS_UNIT(dev);
478 zi = zscd.cd_devs[unit >> 1];
479 cs = &zi->zi_cs[unit & 1];
480 return(cs->cs_ttyp);
481 }
482
483 /*
484 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
485 * channels are kept in (A,B) pairs.
486 *
487 * Do just a little, then get out; set a software interrupt if more
488 * work is needed.
489 *
490 * We deliberately ignore the vectoring Zilog gives us, and match up
491 * only the number of `reset interrupt under service' operations, not
492 * the order.
493 */
494
495 int
496 zshard(sr)
497 long sr;
498 {
499 register struct zs_chanstate *a;
500 #define b (a + 1)
501 register volatile struct zschan *zc;
502 register int rr3, intflags = 0, v, i;
503
504 do {
505 intflags &= ~4;
506 for(a = zslist; a != NULL; a = b->cs_next) {
507 rr3 = ZS_READ(a->cs_zc, 3);
508 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
509 intflags |= 4|2;
510 zc = a->cs_zc;
511 i = a->cs_rbput;
512 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
513 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
514 intflags |= 1;
515 }
516 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
517 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
518 intflags |= 1;
519 }
520 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
521 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
522 intflags |= 1;
523 }
524 a->cs_rbput = i;
525 }
526 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
527 intflags |= 4|2;
528 zc = b->cs_zc;
529 i = b->cs_rbput;
530 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
531 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
532 intflags |= 1;
533 }
534 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
535 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
536 intflags |= 1;
537 }
538 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
539 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
540 intflags |= 1;
541 }
542 b->cs_rbput = i;
543 }
544 }
545 } while(intflags & 4);
546 #undef b
547
548 if(intflags & 1) {
549 if(BASEPRI(sr)) {
550 spl1();
551 zsshortcuts++;
552 return(zssoft(sr));
553 }
554 else if(!cb_scheduled) {
555 cb_scheduled++;
556 add_sicallback(zssoft, 0, 0);
557 }
558 }
559 return(intflags & 2);
560 }
561
562 static int
563 zsrint(cs, zc)
564 register struct zs_chanstate *cs;
565 register volatile struct zschan *zc;
566 {
567 register int c;
568
569 /*
570 * First read the status, because read of the received char
571 * destroy the status of this char.
572 */
573 c = ZS_READ(zc, 1);
574 c |= (zc->zc_data << 8);
575
576 /* clear receive error & interrupt condition */
577 zc->zc_csr = ZSWR0_RESET_ERRORS;
578 zc->zc_csr = ZSWR0_CLR_INTR;
579
580 return(ZRING_MAKE(ZRING_RINT, c));
581 }
582
583 static int
584 zsxint(cs, zc)
585 register struct zs_chanstate *cs;
586 register volatile struct zschan *zc;
587 {
588 register int i = cs->cs_tbc;
589
590 if(i == 0) {
591 zc->zc_csr = ZSWR0_RESET_TXINT;
592 zc->zc_csr = ZSWR0_CLR_INTR;
593 return(ZRING_MAKE(ZRING_XINT, 0));
594 }
595 cs->cs_tbc = i - 1;
596 zc->zc_data = *cs->cs_tba++;
597 zc->zc_csr = ZSWR0_CLR_INTR;
598 return (0);
599 }
600
601 static int
602 zssint(cs, zc)
603 register struct zs_chanstate *cs;
604 register volatile struct zschan *zc;
605 {
606 register int rr0;
607
608 rr0 = zc->zc_csr;
609 zc->zc_csr = ZSWR0_RESET_STATUS;
610 zc->zc_csr = ZSWR0_CLR_INTR;
611 /*
612 * The chip's hardware flow control is, as noted in zsreg.h,
613 * busted---if the DCD line goes low the chip shuts off the
614 * receiver (!). If we want hardware CTS flow control but do
615 * not have it, and carrier is now on, turn HFC on; if we have
616 * HFC now but carrier has gone low, turn it off.
617 */
618 if(rr0 & ZSRR0_DCD) {
619 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
620 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
621 cs->cs_creg[3] |= ZSWR3_HFC;
622 ZS_WRITE(zc, 3, cs->cs_creg[3]);
623 }
624 }
625 else {
626 if (cs->cs_creg[3] & ZSWR3_HFC) {
627 cs->cs_creg[3] &= ~ZSWR3_HFC;
628 ZS_WRITE(zc, 3, cs->cs_creg[3]);
629 }
630 }
631 return(ZRING_MAKE(ZRING_SINT, rr0));
632 }
633
634 /*
635 * Print out a ring or fifo overrun error message.
636 */
637 static void
638 zsoverrun(unit, ptime, what)
639 int unit;
640 long *ptime;
641 char *what;
642 {
643
644 if(*ptime != time.tv_sec) {
645 *ptime = time.tv_sec;
646 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
647 (unit & 1) + 'a', what);
648 }
649 }
650
651 /*
652 * ZS software interrupt. Scan all channels for deferred interrupts.
653 */
654 int
655 zssoft(sr)
656 long sr;
657 {
658 register struct zs_chanstate *cs;
659 register volatile struct zschan *zc;
660 register struct linesw *line;
661 register struct tty *tp;
662 register int get, n, c, cc, unit, s;
663 int retval = 0;
664
665 cb_scheduled = 0;
666 s = spltty();
667 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
668 get = cs->cs_rbget;
669 again:
670 n = cs->cs_rbput; /* atomic */
671 if(get == n) /* nothing more on this line */
672 continue;
673 retval = 1;
674 unit = cs->cs_unit; /* set up to handle interrupts */
675 zc = cs->cs_zc;
676 tp = cs->cs_ttyp;
677 line = &linesw[tp->t_line];
678 /*
679 * Compute the number of interrupts in the receive ring.
680 * If the count is overlarge, we lost some events, and
681 * must advance to the first valid one. It may get
682 * overwritten if more data are arriving, but this is
683 * too expensive to check and gains nothing (we already
684 * lost out; all we can do at this point is trade one
685 * kind of loss for another).
686 */
687 n -= get;
688 if(n > ZLRB_RING_SIZE) {
689 zsoverrun(unit, &cs->cs_rotime, "ring");
690 get += n - ZLRB_RING_SIZE;
691 n = ZLRB_RING_SIZE;
692 }
693 while(--n >= 0) {
694 /* race to keep ahead of incoming interrupts */
695 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
696 switch (ZRING_TYPE(c)) {
697
698 case ZRING_RINT:
699 c = ZRING_VALUE(c);
700 if(c & ZSRR1_DO)
701 zsoverrun(unit, &cs->cs_fotime, "fifo");
702 cc = c >> 8;
703 if(c & ZSRR1_FE)
704 cc |= TTY_FE;
705 if(c & ZSRR1_PE)
706 cc |= TTY_PE;
707 line->l_rint(cc, tp);
708 break;
709
710 case ZRING_XINT:
711 /*
712 * Transmit done: change registers and resume,
713 * or clear BUSY.
714 */
715 if(cs->cs_heldchange) {
716 int sps;
717
718 sps = splzs();
719 c = zc->zc_csr;
720 if((c & ZSRR0_DCD) == 0)
721 cs->cs_preg[3] &= ~ZSWR3_HFC;
722 bcopy((caddr_t)cs->cs_preg,
723 (caddr_t)cs->cs_creg, 16);
724 zs_loadchannelregs(zc, cs->cs_creg);
725 splx(sps);
726 cs->cs_heldchange = 0;
727 if(cs->cs_heldtbc
728 && (tp->t_state & TS_TTSTOP) == 0) {
729 cs->cs_tbc = cs->cs_heldtbc - 1;
730 zc->zc_data = *cs->cs_tba++;
731 goto again;
732 }
733 }
734 tp->t_state &= ~TS_BUSY;
735 if(tp->t_state & TS_FLUSH)
736 tp->t_state &= ~TS_FLUSH;
737 else ndflush(&tp->t_outq,cs->cs_tba
738 - (caddr_t)tp->t_outq.c_cf);
739 line->l_start(tp);
740 break;
741
742 case ZRING_SINT:
743 /*
744 * Status line change. HFC bit is run in
745 * hardware interrupt, to avoid locking
746 * at splzs here.
747 */
748 c = ZRING_VALUE(c);
749 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
750 cc = (c & ZSRR0_DCD) != 0;
751 if(line->l_modem(tp, cc) == 0)
752 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
753 cc ? DMBIS : DMBIC);
754 }
755 cs->cs_rr0 = c;
756 break;
757
758 default:
759 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
760 unit >> 1, (unit & 1) + 'a', c);
761 break;
762 }
763 }
764 cs->cs_rbget = get;
765 goto again;
766 }
767 splx(s);
768 return (retval);
769 }
770
771 int
772 zsioctl(dev, cmd, data, flag, p)
773 dev_t dev;
774 u_long cmd;
775 caddr_t data;
776 int flag;
777 struct proc *p;
778 {
779 int unit = ZS_UNIT(dev);
780 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
781 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
782 register int error, s;
783 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
784
785 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
786 if(error >= 0)
787 return(error);
788 error = ttioctl(tp, cmd, data, flag, p);
789 if(error >= 0)
790 return (error);
791
792 switch (cmd) {
793 case TIOCSBRK:
794 s = splzs();
795 cs->cs_preg[5] |= ZSWR5_BREAK;
796 cs->cs_creg[5] |= ZSWR5_BREAK;
797 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
798 splx(s);
799 break;
800 case TIOCCBRK:
801 s = splzs();
802 cs->cs_preg[5] &= ~ZSWR5_BREAK;
803 cs->cs_creg[5] &= ~ZSWR5_BREAK;
804 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
805 splx(s);
806 break;
807 case TIOCGFLAGS: {
808 int bits = 0;
809
810 if(cs->cs_softcar)
811 bits |= TIOCFLAG_SOFTCAR;
812 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
813 bits |= TIOCFLAG_CLOCAL;
814 if(cs->cs_creg[3] & ZSWR3_HFC)
815 bits |= TIOCFLAG_CRTSCTS;
816 *(int *)data = bits;
817 break;
818 }
819 case TIOCSFLAGS: {
820 int userbits, driverbits = 0;
821
822 error = suser(p->p_ucred, &p->p_acflag);
823 if(error != 0)
824 return (EPERM);
825
826 userbits = *(int *)data;
827
828 /*
829 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
830 # defaulting to software flow control.
831 */
832 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
833 return(EINVAL);
834 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
835 return(ENODEV);
836
837 s = splzs();
838 if((userbits & TIOCFLAG_SOFTCAR)) {
839 cs->cs_softcar = 1; /* turn on softcar */
840 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
841 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
842 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
843 }
844 else if(userbits & TIOCFLAG_CLOCAL) {
845 cs->cs_softcar = 0; /* turn off softcar */
846 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
847 cs->cs_creg[15] |= ZSWR15_DCD_IE;
848 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
849 tp->t_termios.c_cflag |= CLOCAL;
850 }
851 if(userbits & TIOCFLAG_CRTSCTS) {
852 cs->cs_preg[15] |= ZSWR15_CTS_IE;
853 cs->cs_creg[15] |= ZSWR15_CTS_IE;
854 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
855 cs->cs_preg[3] |= ZSWR3_HFC;
856 cs->cs_creg[3] |= ZSWR3_HFC;
857 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
858 tp->t_termios.c_cflag |= CRTSCTS;
859 }
860 else {
861 /* no mdmbuf, so we must want software flow control */
862 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
863 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
864 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
865 cs->cs_preg[3] &= ~ZSWR3_HFC;
866 cs->cs_creg[3] &= ~ZSWR3_HFC;
867 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
868 tp->t_termios.c_cflag &= ~CRTSCTS;
869 }
870 splx(s);
871 break;
872 }
873 case TIOCSDTR:
874 zs_modem(cs, ZSWR5_DTR, DMBIS);
875 break;
876 case TIOCCDTR:
877 zs_modem(cs, ZSWR5_DTR, DMBIC);
878 break;
879 case TIOCMGET:
880 zs_modem(cs, 0, DMGET);
881 break;
882 case TIOCMSET:
883 case TIOCMBIS:
884 case TIOCMBIC:
885 default:
886 return (ENOTTY);
887 }
888 return (0);
889 }
890
891 /*
892 * Start or restart transmission.
893 */
894 static void
895 zsstart(tp)
896 register struct tty *tp;
897 {
898 register struct zs_chanstate *cs;
899 register int s, nch;
900 int unit = ZS_UNIT(tp->t_dev);
901 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
902
903 cs = &zi->zi_cs[unit & 1];
904 s = spltty();
905
906 /*
907 * If currently active or delaying, no need to do anything.
908 */
909 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
910 goto out;
911
912 /*
913 * If there are sleepers, and output has drained below low
914 * water mark, awaken.
915 */
916 if(tp->t_outq.c_cc <= tp->t_lowat) {
917 if(tp->t_state & TS_ASLEEP) {
918 tp->t_state &= ~TS_ASLEEP;
919 wakeup((caddr_t)&tp->t_outq);
920 }
921 selwakeup(&tp->t_wsel);
922 }
923
924 nch = ndqb(&tp->t_outq, 0); /* XXX */
925 if(nch) {
926 register char *p = tp->t_outq.c_cf;
927
928 /* mark busy, enable tx done interrupts, & send first byte */
929 tp->t_state |= TS_BUSY;
930 (void) splzs();
931 cs->cs_preg[1] |= ZSWR1_TIE;
932 cs->cs_creg[1] |= ZSWR1_TIE;
933 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
934 cs->cs_zc->zc_data = *p;
935 cs->cs_tba = p + 1;
936 cs->cs_tbc = nch - 1;
937 } else {
938 /*
939 * Nothing to send, turn off transmit done interrupts.
940 * This is useful if something is doing polled output.
941 */
942 (void) splzs();
943 cs->cs_preg[1] &= ~ZSWR1_TIE;
944 cs->cs_creg[1] &= ~ZSWR1_TIE;
945 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
946 }
947 out:
948 splx(s);
949 }
950
951 /*
952 * Stop output, e.g., for ^S or output flush.
953 */
954 void
955 zsstop(tp, flag)
956 register struct tty *tp;
957 int flag;
958 {
959 register struct zs_chanstate *cs;
960 register int s, unit = ZS_UNIT(tp->t_dev);
961 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
962
963 cs = &zi->zi_cs[unit & 1];
964 s = splzs();
965 if(tp->t_state & TS_BUSY) {
966 /*
967 * Device is transmitting; must stop it.
968 */
969 cs->cs_tbc = 0;
970 if ((tp->t_state & TS_TTSTOP) == 0)
971 tp->t_state |= TS_FLUSH;
972 }
973 splx(s);
974 }
975
976 /*
977 * Set ZS tty parameters from termios.
978 *
979 * This routine makes use of the fact that only registers
980 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
981 */
982 static int
983 zsparam(tp, t)
984 register struct tty *tp;
985 register struct termios *t;
986 {
987 int unit = ZS_UNIT(tp->t_dev);
988 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
989 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
990 int cdiv, clkm, brgm, tcon;
991 register int tmp, tmp5, cflag, s;
992
993 tmp = t->c_ospeed;
994 tmp5 = t->c_ispeed;
995 if(tmp < 0 || (tmp5 && tmp5 != tmp))
996 return(EINVAL);
997 if(tmp == 0) {
998 /* stty 0 => drop DTR and RTS */
999 zs_modem(cs, 0, DMSET);
1000 return(0);
1001 }
1002 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1003 if (tmp < 0)
1004 return(EINVAL);
1005 tp->t_ispeed = tp->t_ospeed = tmp;
1006
1007 cflag = tp->t_cflag = t->c_cflag;
1008 if (cflag & CSTOPB)
1009 cdiv |= ZSWR4_TWOSB;
1010 else
1011 cdiv |= ZSWR4_ONESB;
1012 if (!(cflag & PARODD))
1013 cdiv |= ZSWR4_EVENP;
1014 if (cflag & PARENB)
1015 cdiv |= ZSWR4_PARENB;
1016
1017 switch(cflag & CSIZE) {
1018 case CS5:
1019 tmp = ZSWR3_RX_5;
1020 tmp5 = ZSWR5_TX_5;
1021 break;
1022 case CS6:
1023 tmp = ZSWR3_RX_6;
1024 tmp5 = ZSWR5_TX_6;
1025 break;
1026 case CS7:
1027 tmp = ZSWR3_RX_7;
1028 tmp5 = ZSWR5_TX_7;
1029 break;
1030 case CS8:
1031 default:
1032 tmp = ZSWR3_RX_8;
1033 tmp5 = ZSWR5_TX_8;
1034 break;
1035 }
1036 tmp |= ZSWR3_RX_ENABLE;
1037 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1038
1039 /*
1040 * Block interrupts so that state will not
1041 * be altered until we are done setting it up.
1042 */
1043 s = splzs();
1044 cs->cs_preg[4] = cdiv;
1045 cs->cs_preg[11] = clkm;
1046 cs->cs_preg[12] = tcon;
1047 cs->cs_preg[13] = tcon >> 8;
1048 cs->cs_preg[14] = brgm;
1049 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1050 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1051 cs->cs_preg[10] = ZSWR10_NRZ;
1052 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1053
1054 /*
1055 * Output hardware flow control on the chip is horrendous: if
1056 * carrier detect drops, the receiver is disabled. Hence we
1057 * can only do this when the carrier is on.
1058 */
1059 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1060 tmp |= ZSWR3_HFC;
1061 cs->cs_preg[3] = tmp;
1062 cs->cs_preg[5] = tmp5;
1063
1064 /*
1065 * If nothing is being transmitted, set up new current values,
1066 * else mark them as pending.
1067 */
1068 if(cs->cs_heldchange == 0) {
1069 if (cs->cs_ttyp->t_state & TS_BUSY) {
1070 cs->cs_heldtbc = cs->cs_tbc;
1071 cs->cs_tbc = 0;
1072 cs->cs_heldchange = 1;
1073 } else {
1074 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1075 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1076 }
1077 }
1078 splx(s);
1079 return (0);
1080 }
1081
1082 /*
1083 * search for the best matching baudrate
1084 */
1085 static int
1086 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1087 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1088 {
1089 int bestdiff, bestbps, source;
1090
1091 unit = (unit & 1) << 2;
1092 for (source = 0; source < 4; ++source) {
1093 long freq = zs_frequencies[unit + source];
1094 int diff, bps, div, clkm, brgm, tcon;
1095 switch (source) {
1096 case 0: /* BRgen, PCLK */
1097 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1098 break;
1099 case 1: /* BRgen, RTxC */
1100 brgm = ZSWR14_BAUD_ENA;
1101 break;
1102 case 2: /* RTxC */
1103 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1104 break;
1105 case 3: /* TRxC */
1106 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1107 break;
1108 }
1109 switch (source) {
1110 case 0:
1111 case 1:
1112 div = ZSWR4_CLK_X16;
1113 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1114 tcon = BPS_TO_TCONST(freq, wanted);
1115 if (tcon < 0)
1116 tcon = 0;
1117 bps = TCONST_TO_BPS(freq, tcon);
1118 break;
1119 case 2:
1120 case 3:
1121 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1122 int b2 = freq / 32, d2 = abs(b2 - wanted);
1123 int b3 = freq / 64, d3 = abs(b3 - wanted);
1124
1125 if (d1 < d2 && d1 < d3) {
1126 div = ZSWR4_CLK_X16;
1127 bps = b1;
1128 } else if (d2 < d3 && d2 < d1) {
1129 div = ZSWR4_CLK_X32;
1130 bps = b2;
1131 } else {
1132 div = ZSWR4_CLK_X64;
1133 bps = b3;
1134 }
1135 brgm = tcon = 0;
1136 break;
1137 }
1138 }
1139 diff = abs(bps - wanted);
1140 if (!source || diff < bestdiff) {
1141 *divisor = div;
1142 *clockmode = clkm;
1143 *brgenmode = brgm;
1144 *timeconst = tcon;
1145 bestbps = bps;
1146 bestdiff = diff;
1147 if (diff == 0)
1148 break;
1149 }
1150 }
1151 /* Allow deviations upto 5% */
1152 if (20 * bestdiff > wanted)
1153 return -1;
1154 return bestbps;
1155 }
1156
1157 /*
1158 * Raise or lower modem control (DTR/RTS) signals. If a character is
1159 * in transmission, the change is deferred.
1160 */
1161 static int
1162 zs_modem(cs, bits, how)
1163 struct zs_chanstate *cs;
1164 int bits, how;
1165 {
1166 int s, mbits;
1167
1168 bits &= ZSWR5_DTR | ZSWR5_RTS;
1169
1170 s = splzs();
1171 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1172
1173 switch(how) {
1174 case DMSET:
1175 mbits = bits;
1176 break;
1177 case DMBIS:
1178 mbits |= bits;
1179 break;
1180 case DMBIC:
1181 mbits &= ~bits;
1182 break;
1183 case DMGET:
1184 splx(s);
1185 return(mbits);
1186 }
1187
1188 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1189 if(cs->cs_heldchange == 0) {
1190 if(cs->cs_ttyp->t_state & TS_BUSY) {
1191 cs->cs_heldtbc = cs->cs_tbc;
1192 cs->cs_tbc = 0;
1193 cs->cs_heldchange = 1;
1194 }
1195 else {
1196 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1197 }
1198 }
1199 splx(s);
1200 return(0);
1201 }
1202
1203 /*
1204 * Write the given register set to the given zs channel in the proper order.
1205 * The channel must not be transmitting at the time. The receiver will
1206 * be disabled for the time it takes to write all the registers.
1207 */
1208 static void
1209 zs_loadchannelregs(zc, reg)
1210 volatile struct zschan *zc;
1211 u_char *reg;
1212 {
1213 int i;
1214
1215 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1216 i = zc->zc_data; /* drain fifo */
1217 i = zc->zc_data;
1218 i = zc->zc_data;
1219 ZS_WRITE(zc, 4, reg[4]);
1220 ZS_WRITE(zc, 10, reg[10]);
1221 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1222 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1223 ZS_WRITE(zc, 1, reg[1]);
1224 ZS_WRITE(zc, 9, reg[9]);
1225 ZS_WRITE(zc, 11, reg[11]);
1226 ZS_WRITE(zc, 12, reg[12]);
1227 ZS_WRITE(zc, 13, reg[13]);
1228 ZS_WRITE(zc, 14, reg[14]);
1229 ZS_WRITE(zc, 15, reg[15]);
1230 ZS_WRITE(zc, 3, reg[3]);
1231 ZS_WRITE(zc, 5, reg[5]);
1232 }
1233 #endif /* NZS > 1 */
1234