zs.c revision 1.15 1 /* $NetBSD: zs.c,v 1.15 1996/02/22 10:11:37 leo Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <machine/video.h>
74
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81
82 #if NZS > 0
83
84 #define PCLK (8053976) /* PCLK pin input clock rate */
85
86 #define splzs spl5
87
88 /*
89 * Software state per found chip.
90 */
91 struct zs_softc {
92 struct device zi_dev; /* base device */
93 volatile struct zsdevice *zi_zs; /* chip registers */
94 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
95 };
96
97 static u_char cb_scheduled = 0; /* Already asked for callback? */
98 /*
99 * Define the registers for a closed port
100 */
101 static u_char zs_init_regs[16] = {
102 /* 0 */ 0,
103 /* 1 */ 0,
104 /* 2 */ 0x60,
105 /* 3 */ 0,
106 /* 4 */ 0,
107 /* 5 */ 0,
108 /* 6 */ 0,
109 /* 7 */ 0,
110 /* 8 */ 0,
111 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
112 /* 10 */ ZSWR10_NRZ,
113 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
114 /* 12 */ 0,
115 /* 13 */ 0,
116 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
117 /* 15 */ 0
118 };
119
120 /*
121 * Define the machine dependant clock frequencies
122 * If BRgen feeds sender/receiver we always use a
123 * divisor 16, therefor the division by 16 can as
124 * well be done here.
125 */
126 static u_long zs_freqs_tt[] = {
127 /*
128 * Atari TT, RTxCB is generated by TT-MFP timer C,
129 * which is set to 307.2KHz during initialisation
130 * and never changed afterwards.
131 */
132 PCLK/16, /* BRgen, PCLK, divisor 16 */
133 229500, /* BRgen, RTxCA, divisor 16 */
134 3672000, /* RTxCA, from PCLK4 */
135 0, /* TRxCA, external */
136
137 PCLK/16, /* BRgen, PCLK, divisor 16 */
138 19200, /* BRgen, RTxCB, divisor 16 */
139 307200, /* RTxCB, from TT-MFP TCO */
140 2457600 /* TRxCB, from BCLK */
141 };
142 static u_long zs_freqs_falcon[] = {
143 /*
144 * Atari Falcon, XXX no specs available, this might be wrong
145 */
146 PCLK/16, /* BRgen, PCLK, divisor 16 */
147 229500, /* BRgen, RTxCA, divisor 16 */
148 3672000, /* RTxCA, ??? */
149 0, /* TRxCA, external */
150
151 PCLK/16, /* BRgen, PCLK, divisor 16 */
152 229500, /* BRgen, RTxCB, divisor 16 */
153 3672000, /* RTxCB, ??? */
154 2457600 /* TRxCB, ??? */
155 };
156 static u_long zs_freqs_generic[] = {
157 /*
158 * other machines, assume only PCLK is available
159 */
160 PCLK/16, /* BRgen, PCLK, divisor 16 */
161 0, /* BRgen, RTxCA, divisor 16 */
162 0, /* RTxCA, unknown */
163 0, /* TRxCA, unknown */
164
165 PCLK/16, /* BRgen, PCLK, divisor 16 */
166 0, /* BRgen, RTxCB, divisor 16 */
167 0, /* RTxCB, unknown */
168 0 /* TRxCB, unknown */
169 };
170 static u_long *zs_frequencies;
171
172 /* Definition of the driver for autoconfig. */
173 static int zsmatch __P((struct device *, struct cfdata *, void *));
174 static void zsattach __P((struct device *, struct device *, void *));
175 struct cfdriver zscd = {
176 NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
177 sizeof(struct zs_softc), NULL, 0 };
178
179 /* {b,c}devsw[] function prototypes */
180 dev_type_open(zsopen);
181 dev_type_close(zsclose);
182 dev_type_read(zsread);
183 dev_type_write(zswrite);
184 dev_type_ioctl(zsioctl);
185
186 /* Interrupt handlers. */
187 int zshard __P((long));
188 static int zssoft __P((long));
189 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
190 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
191 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
192
193 static struct zs_chanstate *zslist;
194
195 /* Routines called from other code. */
196 static void zsstart __P((struct tty *));
197 void zsstop __P((struct tty *, int));
198 static int zsparam __P((struct tty *, struct termios *));
199 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
200
201 /* Routines purely local to this driver. */
202 static int zs_modem __P((struct zs_chanstate *, int, int));
203 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
204
205 static int zsshortcuts; /* number of "shortcut" software interrupts */
206
207 static int
208 zsmatch(pdp, cfp, auxp)
209 struct device *pdp;
210 struct cfdata *cfp;
211 void *auxp;
212 {
213 if(strcmp("zs", auxp) || cfp->cf_unit != 0)
214 return(0);
215 return(1);
216 }
217
218 /*
219 * Attach a found zs.
220 */
221 static void
222 zsattach(parent, dev, aux)
223 struct device *parent;
224 struct device *dev;
225 void *aux;
226 {
227 register struct zs_softc *zi;
228 register struct zs_chanstate *cs;
229 register volatile struct zsdevice *addr;
230 char tmp;
231
232 addr = (struct zsdevice *)AD_SCC;
233 zi = (struct zs_softc *)dev;
234 zi->zi_zs = addr;
235 cs = zi->zi_cs;
236
237 /*
238 * Get the command register into a known state.
239 */
240 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
241 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
242 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
243 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
244
245 /*
246 * Do a hardware reset.
247 */
248 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
249 delay(50000); /*enough ? */
250 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
251
252 /*
253 * Initialize both channels
254 */
255 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
256 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
257
258 if(machineid & ATARI_TT) {
259 /*
260 * ininitialise TT-MFP timer C: 307200Hz
261 * timer C and D share one control register:
262 * bits 0-2 control timer D
263 * bits 4-6 control timer C
264 */
265 int cr = MFP2->mf_tcdcr & 7;
266 MFP2->mf_tcdcr = cr; /* stop timer C */
267 MFP2->mf_tcdr = 1; /* counter 1 */
268 cr |= T_Q004 << 4; /* divisor 4 */
269 MFP2->mf_tcdcr = cr; /* start timer C */
270 /*
271 * enable scc related interrupts
272 */
273 SCU->sys_mask |= SCU_SCC;
274
275 zs_frequencies = zs_freqs_tt;
276 } else if (machineid & ATARI_FALCON) {
277 zs_frequencies = zs_freqs_falcon;
278 } else {
279 zs_frequencies = zs_freqs_generic;
280 }
281
282 /* link into interrupt list with order (A,B) (B=A+1) */
283 cs[0].cs_next = &cs[1];
284 cs[1].cs_next = zslist;
285 zslist = cs;
286
287 cs->cs_unit = 0;
288 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
289 cs++;
290 cs->cs_unit = 1;
291 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
292
293 printf(": serial2 on channel a and modem2 on channel b\n");
294 }
295
296 /*
297 * Open a zs serial port.
298 */
299 int
300 zsopen(dev, flags, mode, p)
301 dev_t dev;
302 int flags;
303 int mode;
304 struct proc *p;
305 {
306 register struct tty *tp;
307 register struct zs_chanstate *cs;
308 struct zs_softc *zi;
309 int unit = ZS_UNIT(dev);
310 int zs = unit >> 1;
311 int error, s;
312
313 if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
314 return (ENXIO);
315 cs = &zi->zi_cs[unit & 1];
316
317 /*
318 * When port A (ser02) is selected on the TT, make sure
319 * the port is enabled.
320 */
321 if((machineid & ATARI_TT) && !(unit & 1)) {
322 SOUND->sd_selr = YM_IOA;
323 SOUND->sd_wdat = SOUND->sd_rdat | PA_SER2;
324 }
325
326 if (cs->cs_rbuf == NULL) {
327 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
328 M_WAITOK);
329 }
330
331 tp = cs->cs_ttyp;
332 if(tp == NULL) {
333 cs->cs_ttyp = tp = ttymalloc();
334 tp->t_dev = dev;
335 tp->t_oproc = zsstart;
336 tp->t_param = zsparam;
337 }
338
339 s = spltty();
340 if((tp->t_state & TS_ISOPEN) == 0) {
341 ttychars(tp);
342 if(tp->t_ispeed == 0) {
343 tp->t_iflag = TTYDEF_IFLAG;
344 tp->t_oflag = TTYDEF_OFLAG;
345 tp->t_cflag = TTYDEF_CFLAG;
346 tp->t_lflag = TTYDEF_LFLAG;
347 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
348 }
349 (void)zsparam(tp, &tp->t_termios);
350 ttsetwater(tp);
351 }
352 else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
353 splx(s);
354 return (EBUSY);
355 }
356 error = 0;
357 for(;;) {
358 /* loop, turning on the device, until carrier present */
359 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
360
361 /* May never get a status intr. if DCD already on. -gwr */
362 if(cs->cs_zc->zc_csr & ZSRR0_DCD)
363 tp->t_state |= TS_CARR_ON;
364 if(cs->cs_softcar)
365 tp->t_state |= TS_CARR_ON;
366 if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
367 tp->t_state & TS_CARR_ON)
368 break;
369 tp->t_state |= TS_WOPEN;
370 if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
371 ttopen, 0)) {
372 if(!(tp->t_state & TS_ISOPEN)) {
373 zs_modem(cs, 0, DMSET);
374 tp->t_state &= ~TS_WOPEN;
375 ttwakeup(tp);
376 }
377 splx(s);
378 return error;
379 }
380 }
381 splx(s);
382 if(error == 0)
383 error = linesw[tp->t_line].l_open(dev, tp);
384 if(error)
385 zs_modem(cs, 0, DMSET);
386 return(error);
387 }
388
389 /*
390 * Close a zs serial port.
391 */
392 int
393 zsclose(dev, flags, mode, p)
394 dev_t dev;
395 int flags;
396 int mode;
397 struct proc *p;
398 {
399 register struct zs_chanstate *cs;
400 register struct tty *tp;
401 struct zs_softc *zi;
402 int unit = ZS_UNIT(dev);
403 int s;
404
405 zi = zscd.cd_devs[unit >> 1];
406 cs = &zi->zi_cs[unit & 1];
407 tp = cs->cs_ttyp;
408 linesw[tp->t_line].l_close(tp, flags);
409 if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
410 (tp->t_state & TS_ISOPEN) == 0) {
411 zs_modem(cs, 0, DMSET);
412 /* hold low for 1 second */
413 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
414 }
415 if(cs->cs_creg[5] & ZSWR5_BREAK) {
416 s = splzs();
417 cs->cs_preg[5] &= ~ZSWR5_BREAK;
418 cs->cs_creg[5] &= ~ZSWR5_BREAK;
419 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
420 splx(s);
421 }
422 ttyclose(tp);
423
424 /*
425 * Drop all lines and cancel interrupts
426 */
427 s = splzs();
428 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
429 splx(s);
430 return (0);
431 }
432
433 /*
434 * Read/write zs serial port.
435 */
436 int
437 zsread(dev, uio, flags)
438 dev_t dev;
439 struct uio *uio;
440 int flags;
441 {
442 register struct zs_chanstate *cs;
443 register struct zs_softc *zi;
444 register struct tty *tp;
445 int unit;
446
447 unit = ZS_UNIT(dev);
448 zi = zscd.cd_devs[unit >> 1];
449 cs = &zi->zi_cs[unit & 1];
450 tp = cs->cs_ttyp;
451
452 return(linesw[tp->t_line].l_read(tp, uio, flags));
453 }
454
455 int
456 zswrite(dev, uio, flags)
457 dev_t dev;
458 struct uio *uio;
459 int flags;
460 {
461 register struct zs_chanstate *cs;
462 register struct zs_softc *zi;
463 register struct tty *tp;
464 int unit;
465
466 unit = ZS_UNIT(dev);
467 zi = zscd.cd_devs[unit >> 1];
468 cs = &zi->zi_cs[unit & 1];
469 tp = cs->cs_ttyp;
470
471 return(linesw[tp->t_line].l_write(tp, uio, flags));
472 }
473
474 struct tty *
475 zstty(dev)
476 dev_t dev;
477 {
478 register struct zs_chanstate *cs;
479 register struct zs_softc *zi;
480 int unit;
481
482 unit = ZS_UNIT(dev);
483 zi = zscd.cd_devs[unit >> 1];
484 cs = &zi->zi_cs[unit & 1];
485 return(cs->cs_ttyp);
486 }
487
488 /*
489 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
490 * channels are kept in (A,B) pairs.
491 *
492 * Do just a little, then get out; set a software interrupt if more
493 * work is needed.
494 *
495 * We deliberately ignore the vectoring Zilog gives us, and match up
496 * only the number of `reset interrupt under service' operations, not
497 * the order.
498 */
499
500 int
501 zshard(sr)
502 long sr;
503 {
504 register struct zs_chanstate *a;
505 #define b (a + 1)
506 register volatile struct zschan *zc;
507 register int rr3, intflags = 0, v, i;
508
509 do {
510 intflags &= ~4;
511 for(a = zslist; a != NULL; a = b->cs_next) {
512 rr3 = ZS_READ(a->cs_zc, 3);
513 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
514 intflags |= 4|2;
515 zc = a->cs_zc;
516 i = a->cs_rbput;
517 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
518 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
519 intflags |= 1;
520 }
521 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
522 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
523 intflags |= 1;
524 }
525 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
526 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
527 intflags |= 1;
528 }
529 a->cs_rbput = i;
530 }
531 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
532 intflags |= 4|2;
533 zc = b->cs_zc;
534 i = b->cs_rbput;
535 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
536 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
537 intflags |= 1;
538 }
539 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
540 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
541 intflags |= 1;
542 }
543 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
544 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
545 intflags |= 1;
546 }
547 b->cs_rbput = i;
548 }
549 }
550 } while(intflags & 4);
551 #undef b
552
553 if(intflags & 1) {
554 if(BASEPRI(sr)) {
555 spl1();
556 zsshortcuts++;
557 return(zssoft(sr));
558 }
559 else if(!cb_scheduled) {
560 cb_scheduled++;
561 add_sicallback(zssoft, 0, 0);
562 }
563 }
564 return(intflags & 2);
565 }
566
567 static int
568 zsrint(cs, zc)
569 register struct zs_chanstate *cs;
570 register volatile struct zschan *zc;
571 {
572 register int c;
573
574 /*
575 * First read the status, because read of the received char
576 * destroy the status of this char.
577 */
578 c = ZS_READ(zc, 1);
579 c |= (zc->zc_data << 8);
580
581 /* clear receive error & interrupt condition */
582 zc->zc_csr = ZSWR0_RESET_ERRORS;
583 zc->zc_csr = ZSWR0_CLR_INTR;
584
585 return(ZRING_MAKE(ZRING_RINT, c));
586 }
587
588 static int
589 zsxint(cs, zc)
590 register struct zs_chanstate *cs;
591 register volatile struct zschan *zc;
592 {
593 register int i = cs->cs_tbc;
594
595 if(i == 0) {
596 zc->zc_csr = ZSWR0_RESET_TXINT;
597 zc->zc_csr = ZSWR0_CLR_INTR;
598 return(ZRING_MAKE(ZRING_XINT, 0));
599 }
600 cs->cs_tbc = i - 1;
601 zc->zc_data = *cs->cs_tba++;
602 zc->zc_csr = ZSWR0_CLR_INTR;
603 return (0);
604 }
605
606 static int
607 zssint(cs, zc)
608 register struct zs_chanstate *cs;
609 register volatile struct zschan *zc;
610 {
611 register int rr0;
612
613 rr0 = zc->zc_csr;
614 zc->zc_csr = ZSWR0_RESET_STATUS;
615 zc->zc_csr = ZSWR0_CLR_INTR;
616 /*
617 * The chip's hardware flow control is, as noted in zsreg.h,
618 * busted---if the DCD line goes low the chip shuts off the
619 * receiver (!). If we want hardware CTS flow control but do
620 * not have it, and carrier is now on, turn HFC on; if we have
621 * HFC now but carrier has gone low, turn it off.
622 */
623 if(rr0 & ZSRR0_DCD) {
624 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
625 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
626 cs->cs_creg[3] |= ZSWR3_HFC;
627 ZS_WRITE(zc, 3, cs->cs_creg[3]);
628 }
629 }
630 else {
631 if (cs->cs_creg[3] & ZSWR3_HFC) {
632 cs->cs_creg[3] &= ~ZSWR3_HFC;
633 ZS_WRITE(zc, 3, cs->cs_creg[3]);
634 }
635 }
636 return(ZRING_MAKE(ZRING_SINT, rr0));
637 }
638
639 /*
640 * Print out a ring or fifo overrun error message.
641 */
642 static void
643 zsoverrun(unit, ptime, what)
644 int unit;
645 long *ptime;
646 char *what;
647 {
648
649 if(*ptime != time.tv_sec) {
650 *ptime = time.tv_sec;
651 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
652 (unit & 1) + 'a', what);
653 }
654 }
655
656 /*
657 * ZS software interrupt. Scan all channels for deferred interrupts.
658 */
659 int
660 zssoft(sr)
661 long sr;
662 {
663 register struct zs_chanstate *cs;
664 register volatile struct zschan *zc;
665 register struct linesw *line;
666 register struct tty *tp;
667 register int get, n, c, cc, unit, s;
668 int retval = 0;
669
670 cb_scheduled = 0;
671 s = spltty();
672 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
673 get = cs->cs_rbget;
674 again:
675 n = cs->cs_rbput; /* atomic */
676 if(get == n) /* nothing more on this line */
677 continue;
678 retval = 1;
679 unit = cs->cs_unit; /* set up to handle interrupts */
680 zc = cs->cs_zc;
681 tp = cs->cs_ttyp;
682 line = &linesw[tp->t_line];
683 /*
684 * Compute the number of interrupts in the receive ring.
685 * If the count is overlarge, we lost some events, and
686 * must advance to the first valid one. It may get
687 * overwritten if more data are arriving, but this is
688 * too expensive to check and gains nothing (we already
689 * lost out; all we can do at this point is trade one
690 * kind of loss for another).
691 */
692 n -= get;
693 if(n > ZLRB_RING_SIZE) {
694 zsoverrun(unit, &cs->cs_rotime, "ring");
695 get += n - ZLRB_RING_SIZE;
696 n = ZLRB_RING_SIZE;
697 }
698 while(--n >= 0) {
699 /* race to keep ahead of incoming interrupts */
700 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
701 switch (ZRING_TYPE(c)) {
702
703 case ZRING_RINT:
704 c = ZRING_VALUE(c);
705 if(c & ZSRR1_DO)
706 zsoverrun(unit, &cs->cs_fotime, "fifo");
707 cc = c >> 8;
708 if(c & ZSRR1_FE)
709 cc |= TTY_FE;
710 if(c & ZSRR1_PE)
711 cc |= TTY_PE;
712 line->l_rint(cc, tp);
713 break;
714
715 case ZRING_XINT:
716 /*
717 * Transmit done: change registers and resume,
718 * or clear BUSY.
719 */
720 if(cs->cs_heldchange) {
721 int sps;
722
723 sps = splzs();
724 c = zc->zc_csr;
725 if((c & ZSRR0_DCD) == 0)
726 cs->cs_preg[3] &= ~ZSWR3_HFC;
727 bcopy((caddr_t)cs->cs_preg,
728 (caddr_t)cs->cs_creg, 16);
729 zs_loadchannelregs(zc, cs->cs_creg);
730 splx(sps);
731 cs->cs_heldchange = 0;
732 if(cs->cs_heldtbc
733 && (tp->t_state & TS_TTSTOP) == 0) {
734 cs->cs_tbc = cs->cs_heldtbc - 1;
735 zc->zc_data = *cs->cs_tba++;
736 goto again;
737 }
738 }
739 tp->t_state &= ~TS_BUSY;
740 if(tp->t_state & TS_FLUSH)
741 tp->t_state &= ~TS_FLUSH;
742 else ndflush(&tp->t_outq,cs->cs_tba
743 - (caddr_t)tp->t_outq.c_cf);
744 line->l_start(tp);
745 break;
746
747 case ZRING_SINT:
748 /*
749 * Status line change. HFC bit is run in
750 * hardware interrupt, to avoid locking
751 * at splzs here.
752 */
753 c = ZRING_VALUE(c);
754 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
755 cc = (c & ZSRR0_DCD) != 0;
756 if(line->l_modem(tp, cc) == 0)
757 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
758 cc ? DMBIS : DMBIC);
759 }
760 cs->cs_rr0 = c;
761 break;
762
763 default:
764 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
765 unit >> 1, (unit & 1) + 'a', c);
766 break;
767 }
768 }
769 cs->cs_rbget = get;
770 goto again;
771 }
772 splx(s);
773 return (retval);
774 }
775
776 int
777 zsioctl(dev, cmd, data, flag, p)
778 dev_t dev;
779 u_long cmd;
780 caddr_t data;
781 int flag;
782 struct proc *p;
783 {
784 int unit = ZS_UNIT(dev);
785 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
786 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
787 register int error, s;
788 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
789
790 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
791 if(error >= 0)
792 return(error);
793 error = ttioctl(tp, cmd, data, flag, p);
794 if(error >= 0)
795 return (error);
796
797 switch (cmd) {
798 case TIOCSBRK:
799 s = splzs();
800 cs->cs_preg[5] |= ZSWR5_BREAK;
801 cs->cs_creg[5] |= ZSWR5_BREAK;
802 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
803 splx(s);
804 break;
805 case TIOCCBRK:
806 s = splzs();
807 cs->cs_preg[5] &= ~ZSWR5_BREAK;
808 cs->cs_creg[5] &= ~ZSWR5_BREAK;
809 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
810 splx(s);
811 break;
812 case TIOCGFLAGS: {
813 int bits = 0;
814
815 if(cs->cs_softcar)
816 bits |= TIOCFLAG_SOFTCAR;
817 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
818 bits |= TIOCFLAG_CLOCAL;
819 if(cs->cs_creg[3] & ZSWR3_HFC)
820 bits |= TIOCFLAG_CRTSCTS;
821 *(int *)data = bits;
822 break;
823 }
824 case TIOCSFLAGS: {
825 int userbits = 0;
826
827 error = suser(p->p_ucred, &p->p_acflag);
828 if(error != 0)
829 return (EPERM);
830
831 userbits = *(int *)data;
832
833 /*
834 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
835 # defaulting to software flow control.
836 */
837 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
838 return(EINVAL);
839 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
840 return(ENODEV);
841
842 s = splzs();
843 if((userbits & TIOCFLAG_SOFTCAR)) {
844 cs->cs_softcar = 1; /* turn on softcar */
845 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
846 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
847 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
848 }
849 else if(userbits & TIOCFLAG_CLOCAL) {
850 cs->cs_softcar = 0; /* turn off softcar */
851 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
852 cs->cs_creg[15] |= ZSWR15_DCD_IE;
853 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
854 tp->t_termios.c_cflag |= CLOCAL;
855 }
856 if(userbits & TIOCFLAG_CRTSCTS) {
857 cs->cs_preg[15] |= ZSWR15_CTS_IE;
858 cs->cs_creg[15] |= ZSWR15_CTS_IE;
859 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
860 cs->cs_preg[3] |= ZSWR3_HFC;
861 cs->cs_creg[3] |= ZSWR3_HFC;
862 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
863 tp->t_termios.c_cflag |= CRTSCTS;
864 }
865 else {
866 /* no mdmbuf, so we must want software flow control */
867 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
868 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
869 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
870 cs->cs_preg[3] &= ~ZSWR3_HFC;
871 cs->cs_creg[3] &= ~ZSWR3_HFC;
872 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
873 tp->t_termios.c_cflag &= ~CRTSCTS;
874 }
875 splx(s);
876 break;
877 }
878 case TIOCSDTR:
879 zs_modem(cs, ZSWR5_DTR, DMBIS);
880 break;
881 case TIOCCDTR:
882 zs_modem(cs, ZSWR5_DTR, DMBIC);
883 break;
884 case TIOCMGET:
885 zs_modem(cs, 0, DMGET);
886 break;
887 case TIOCMSET:
888 case TIOCMBIS:
889 case TIOCMBIC:
890 default:
891 return (ENOTTY);
892 }
893 return (0);
894 }
895
896 /*
897 * Start or restart transmission.
898 */
899 static void
900 zsstart(tp)
901 register struct tty *tp;
902 {
903 register struct zs_chanstate *cs;
904 register int s, nch;
905 int unit = ZS_UNIT(tp->t_dev);
906 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
907
908 cs = &zi->zi_cs[unit & 1];
909 s = spltty();
910
911 /*
912 * If currently active or delaying, no need to do anything.
913 */
914 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
915 goto out;
916
917 /*
918 * If there are sleepers, and output has drained below low
919 * water mark, awaken.
920 */
921 if(tp->t_outq.c_cc <= tp->t_lowat) {
922 if(tp->t_state & TS_ASLEEP) {
923 tp->t_state &= ~TS_ASLEEP;
924 wakeup((caddr_t)&tp->t_outq);
925 }
926 selwakeup(&tp->t_wsel);
927 }
928
929 nch = ndqb(&tp->t_outq, 0); /* XXX */
930 if(nch) {
931 register char *p = tp->t_outq.c_cf;
932
933 /* mark busy, enable tx done interrupts, & send first byte */
934 tp->t_state |= TS_BUSY;
935 (void) splzs();
936 cs->cs_preg[1] |= ZSWR1_TIE;
937 cs->cs_creg[1] |= ZSWR1_TIE;
938 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
939 cs->cs_zc->zc_data = *p;
940 cs->cs_tba = p + 1;
941 cs->cs_tbc = nch - 1;
942 } else {
943 /*
944 * Nothing to send, turn off transmit done interrupts.
945 * This is useful if something is doing polled output.
946 */
947 (void) splzs();
948 cs->cs_preg[1] &= ~ZSWR1_TIE;
949 cs->cs_creg[1] &= ~ZSWR1_TIE;
950 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
951 }
952 out:
953 splx(s);
954 }
955
956 /*
957 * Stop output, e.g., for ^S or output flush.
958 */
959 void
960 zsstop(tp, flag)
961 register struct tty *tp;
962 int flag;
963 {
964 register struct zs_chanstate *cs;
965 register int s, unit = ZS_UNIT(tp->t_dev);
966 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
967
968 cs = &zi->zi_cs[unit & 1];
969 s = splzs();
970 if(tp->t_state & TS_BUSY) {
971 /*
972 * Device is transmitting; must stop it.
973 */
974 cs->cs_tbc = 0;
975 if ((tp->t_state & TS_TTSTOP) == 0)
976 tp->t_state |= TS_FLUSH;
977 }
978 splx(s);
979 }
980
981 /*
982 * Set ZS tty parameters from termios.
983 *
984 * This routine makes use of the fact that only registers
985 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
986 */
987 static int
988 zsparam(tp, t)
989 register struct tty *tp;
990 register struct termios *t;
991 {
992 int unit = ZS_UNIT(tp->t_dev);
993 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
994 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
995 int cdiv, clkm, brgm, tcon;
996 register int tmp, tmp5, cflag, s;
997
998 tmp = t->c_ospeed;
999 tmp5 = t->c_ispeed;
1000 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1001 return(EINVAL);
1002 if(tmp == 0) {
1003 /* stty 0 => drop DTR and RTS */
1004 zs_modem(cs, 0, DMSET);
1005 return(0);
1006 }
1007 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1008 if (tmp < 0)
1009 return(EINVAL);
1010 tp->t_ispeed = tp->t_ospeed = tmp;
1011
1012 cflag = tp->t_cflag = t->c_cflag;
1013 if (cflag & CSTOPB)
1014 cdiv |= ZSWR4_TWOSB;
1015 else
1016 cdiv |= ZSWR4_ONESB;
1017 if (!(cflag & PARODD))
1018 cdiv |= ZSWR4_EVENP;
1019 if (cflag & PARENB)
1020 cdiv |= ZSWR4_PARENB;
1021
1022 switch(cflag & CSIZE) {
1023 case CS5:
1024 tmp = ZSWR3_RX_5;
1025 tmp5 = ZSWR5_TX_5;
1026 break;
1027 case CS6:
1028 tmp = ZSWR3_RX_6;
1029 tmp5 = ZSWR5_TX_6;
1030 break;
1031 case CS7:
1032 tmp = ZSWR3_RX_7;
1033 tmp5 = ZSWR5_TX_7;
1034 break;
1035 case CS8:
1036 default:
1037 tmp = ZSWR3_RX_8;
1038 tmp5 = ZSWR5_TX_8;
1039 break;
1040 }
1041 tmp |= ZSWR3_RX_ENABLE;
1042 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1043
1044 /*
1045 * Block interrupts so that state will not
1046 * be altered until we are done setting it up.
1047 */
1048 s = splzs();
1049 cs->cs_preg[4] = cdiv;
1050 cs->cs_preg[11] = clkm;
1051 cs->cs_preg[12] = tcon;
1052 cs->cs_preg[13] = tcon >> 8;
1053 cs->cs_preg[14] = brgm;
1054 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1055 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1056 cs->cs_preg[10] = ZSWR10_NRZ;
1057 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1058
1059 /*
1060 * Output hardware flow control on the chip is horrendous: if
1061 * carrier detect drops, the receiver is disabled. Hence we
1062 * can only do this when the carrier is on.
1063 */
1064 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1065 tmp |= ZSWR3_HFC;
1066 cs->cs_preg[3] = tmp;
1067 cs->cs_preg[5] = tmp5;
1068
1069 /*
1070 * If nothing is being transmitted, set up new current values,
1071 * else mark them as pending.
1072 */
1073 if(cs->cs_heldchange == 0) {
1074 if (cs->cs_ttyp->t_state & TS_BUSY) {
1075 cs->cs_heldtbc = cs->cs_tbc;
1076 cs->cs_tbc = 0;
1077 cs->cs_heldchange = 1;
1078 } else {
1079 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1080 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1081 }
1082 }
1083 splx(s);
1084 return (0);
1085 }
1086
1087 /*
1088 * search for the best matching baudrate
1089 */
1090 static int
1091 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1092 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1093 {
1094 int bestdiff, bestbps, source;
1095
1096 unit = (unit & 1) << 2;
1097 for (source = 0; source < 4; ++source) {
1098 long freq = zs_frequencies[unit + source];
1099 int diff, bps, div, clkm, brgm, tcon;
1100 switch (source) {
1101 case 0: /* BRgen, PCLK */
1102 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1103 break;
1104 case 1: /* BRgen, RTxC */
1105 brgm = ZSWR14_BAUD_ENA;
1106 break;
1107 case 2: /* RTxC */
1108 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1109 break;
1110 case 3: /* TRxC */
1111 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1112 break;
1113 }
1114 switch (source) {
1115 case 0:
1116 case 1:
1117 div = ZSWR4_CLK_X16;
1118 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1119 tcon = BPS_TO_TCONST(freq, wanted);
1120 if (tcon < 0)
1121 tcon = 0;
1122 bps = TCONST_TO_BPS(freq, tcon);
1123 break;
1124 case 2:
1125 case 3:
1126 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1127 int b2 = freq / 32, d2 = abs(b2 - wanted);
1128 int b3 = freq / 64, d3 = abs(b3 - wanted);
1129
1130 if (d1 < d2 && d1 < d3) {
1131 div = ZSWR4_CLK_X16;
1132 bps = b1;
1133 } else if (d2 < d3 && d2 < d1) {
1134 div = ZSWR4_CLK_X32;
1135 bps = b2;
1136 } else {
1137 div = ZSWR4_CLK_X64;
1138 bps = b3;
1139 }
1140 brgm = tcon = 0;
1141 break;
1142 }
1143 }
1144 diff = abs(bps - wanted);
1145 if (!source || diff < bestdiff) {
1146 *divisor = div;
1147 *clockmode = clkm;
1148 *brgenmode = brgm;
1149 *timeconst = tcon;
1150 bestbps = bps;
1151 bestdiff = diff;
1152 if (diff == 0)
1153 break;
1154 }
1155 }
1156 /* Allow deviations upto 5% */
1157 if (20 * bestdiff > wanted)
1158 return -1;
1159 return bestbps;
1160 }
1161
1162 /*
1163 * Raise or lower modem control (DTR/RTS) signals. If a character is
1164 * in transmission, the change is deferred.
1165 */
1166 static int
1167 zs_modem(cs, bits, how)
1168 struct zs_chanstate *cs;
1169 int bits, how;
1170 {
1171 int s, mbits;
1172
1173 bits &= ZSWR5_DTR | ZSWR5_RTS;
1174
1175 s = splzs();
1176 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1177
1178 switch(how) {
1179 case DMSET:
1180 mbits = bits;
1181 break;
1182 case DMBIS:
1183 mbits |= bits;
1184 break;
1185 case DMBIC:
1186 mbits &= ~bits;
1187 break;
1188 case DMGET:
1189 splx(s);
1190 return(mbits);
1191 }
1192
1193 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1194 if(cs->cs_heldchange == 0) {
1195 if(cs->cs_ttyp->t_state & TS_BUSY) {
1196 cs->cs_heldtbc = cs->cs_tbc;
1197 cs->cs_tbc = 0;
1198 cs->cs_heldchange = 1;
1199 }
1200 else {
1201 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1202 }
1203 }
1204 splx(s);
1205 return(0);
1206 }
1207
1208 /*
1209 * Write the given register set to the given zs channel in the proper order.
1210 * The channel must not be transmitting at the time. The receiver will
1211 * be disabled for the time it takes to write all the registers.
1212 */
1213 static void
1214 zs_loadchannelregs(zc, reg)
1215 volatile struct zschan *zc;
1216 u_char *reg;
1217 {
1218 int i;
1219
1220 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1221 i = zc->zc_data; /* drain fifo */
1222 i = zc->zc_data;
1223 i = zc->zc_data;
1224 ZS_WRITE(zc, 4, reg[4]);
1225 ZS_WRITE(zc, 10, reg[10]);
1226 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1227 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1228 ZS_WRITE(zc, 1, reg[1]);
1229 ZS_WRITE(zc, 9, reg[9]);
1230 ZS_WRITE(zc, 11, reg[11]);
1231 ZS_WRITE(zc, 12, reg[12]);
1232 ZS_WRITE(zc, 13, reg[13]);
1233 ZS_WRITE(zc, 14, reg[14]);
1234 ZS_WRITE(zc, 15, reg[15]);
1235 ZS_WRITE(zc, 3, reg[3]);
1236 ZS_WRITE(zc, 5, reg[5]);
1237 }
1238 #endif /* NZS > 1 */
1239