Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.15
      1 /*	$NetBSD: zs.c,v 1.15 1996/02/22 10:11:37 leo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/systm.h>
     58 #include <sys/proc.h>
     59 #include <sys/device.h>
     60 #include <sys/conf.h>
     61 #include <sys/file.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/malloc.h>
     64 #include <sys/tty.h>
     65 #include <sys/time.h>
     66 #include <sys/kernel.h>
     67 #include <sys/syslog.h>
     68 
     69 #include <machine/cpu.h>
     70 #include <machine/iomap.h>
     71 #include <machine/scu.h>
     72 #include <machine/mfp.h>
     73 #include <machine/video.h>
     74 
     75 #include <dev/ic/z8530reg.h>
     76 #include <atari/dev/zsvar.h>
     77 #include "zs.h"
     78 #if NZS > 1
     79 #error "This driver supports only 1 85C30!"
     80 #endif
     81 
     82 #if NZS > 0
     83 
     84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
     85 
     86 #define splzs	spl5
     87 
     88 /*
     89  * Software state per found chip.
     90  */
     91 struct zs_softc {
     92     struct	device		zi_dev;    /* base device		  */
     93     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     94     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     95 };
     96 
     97 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
     98 /*
     99  * Define the registers for a closed port
    100  */
    101 static u_char zs_init_regs[16] = {
    102 /*  0 */	0,
    103 /*  1 */	0,
    104 /*  2 */	0x60,
    105 /*  3 */	0,
    106 /*  4 */	0,
    107 /*  5 */	0,
    108 /*  6 */	0,
    109 /*  7 */	0,
    110 /*  8 */	0,
    111 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
    112 /* 10 */	ZSWR10_NRZ,
    113 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    114 /* 12 */	0,
    115 /* 13 */	0,
    116 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    117 /* 15 */	0
    118 };
    119 
    120 /*
    121  * Define the machine dependant clock frequencies
    122  * If BRgen feeds sender/receiver we always use a
    123  * divisor 16, therefor the division by 16 can as
    124  * well be done here.
    125  */
    126 static u_long zs_freqs_tt[] = {
    127 	/*
    128 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    129 	 * which is set to 307.2KHz during initialisation
    130 	 * and never changed afterwards.
    131 	 */
    132 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    133 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    134 	3672000,	/* RTxCA, from PCLK4		*/
    135 	      0,	/* TRxCA, external		*/
    136 
    137 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    138 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    139 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    140 	2457600		/* TRxCB, from BCLK		*/
    141 };
    142 static u_long zs_freqs_falcon[] = {
    143 	/*
    144 	 * Atari Falcon, XXX no specs available, this might be wrong
    145 	 */
    146 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    147 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    148 	3672000,	/* RTxCA, ???			*/
    149 	      0,	/* TRxCA, external		*/
    150 
    151 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    152 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    153 	3672000,	/* RTxCB, ???			*/
    154 	2457600		/* TRxCB, ???			*/
    155 };
    156 static u_long zs_freqs_generic[] = {
    157 	/*
    158 	 * other machines, assume only PCLK is available
    159 	 */
    160 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    161 	      0,	/* BRgen, RTxCA, divisor 16	*/
    162 	      0,	/* RTxCA, unknown		*/
    163 	      0,	/* TRxCA, unknown		*/
    164 
    165 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    166 	      0,	/* BRgen, RTxCB, divisor 16	*/
    167 	      0,	/* RTxCB, unknown		*/
    168 	      0		/* TRxCB, unknown		*/
    169 };
    170 static u_long *zs_frequencies;
    171 
    172 /* Definition of the driver for autoconfig. */
    173 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    174 static void	zsattach __P((struct device *, struct device *, void *));
    175 struct cfdriver zscd = {
    176 	NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
    177 	sizeof(struct zs_softc), NULL, 0 };
    178 
    179 /* {b,c}devsw[] function prototypes */
    180 dev_type_open(zsopen);
    181 dev_type_close(zsclose);
    182 dev_type_read(zsread);
    183 dev_type_write(zswrite);
    184 dev_type_ioctl(zsioctl);
    185 
    186 /* Interrupt handlers. */
    187 int		zshard __P((long));
    188 static int	zssoft __P((long));
    189 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    190 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    191 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    192 
    193 static struct zs_chanstate *zslist;
    194 
    195 /* Routines called from other code. */
    196 static void	zsstart __P((struct tty *));
    197 void		zsstop __P((struct tty *, int));
    198 static int	zsparam __P((struct tty *, struct termios *));
    199 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    200 
    201 /* Routines purely local to this driver. */
    202 static int	zs_modem __P((struct zs_chanstate *, int, int));
    203 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    204 
    205 static int zsshortcuts;	/* number of "shortcut" software interrupts */
    206 
    207 static int
    208 zsmatch(pdp, cfp, auxp)
    209 struct device	*pdp;
    210 struct cfdata	*cfp;
    211 void		*auxp;
    212 {
    213 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
    214 		return(0);
    215 	return(1);
    216 }
    217 
    218 /*
    219  * Attach a found zs.
    220  */
    221 static void
    222 zsattach(parent, dev, aux)
    223 struct device	*parent;
    224 struct device	*dev;
    225 void		*aux;
    226 {
    227 	register struct zs_softc		*zi;
    228 	register struct zs_chanstate		*cs;
    229 	register volatile struct zsdevice	*addr;
    230 		 char				tmp;
    231 
    232 	addr      = (struct zsdevice *)AD_SCC;
    233 	zi        = (struct zs_softc *)dev;
    234 	zi->zi_zs = addr;
    235 	cs        = zi->zi_cs;
    236 
    237 	/*
    238 	 * Get the command register into a known state.
    239 	 */
    240 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    241 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    242 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    243 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    244 
    245 	/*
    246 	 * Do a hardware reset.
    247 	 */
    248 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    249 	delay(50000);	/*enough ? */
    250 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    251 
    252 	/*
    253 	 * Initialize both channels
    254 	 */
    255 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    256 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    257 
    258 	if(machineid & ATARI_TT) {
    259 		/*
    260 		 * ininitialise TT-MFP timer C: 307200Hz
    261 		 * timer C and D share one control register:
    262 		 *	bits 0-2 control timer D
    263 		 *	bits 4-6 control timer C
    264 		 */
    265 		int cr = MFP2->mf_tcdcr & 7;
    266 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    267 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    268 		cr |= T_Q004 << 4;		/* divisor 4     */
    269 		MFP2->mf_tcdcr = cr;		/* start timer C */
    270 		/*
    271 		 * enable scc related interrupts
    272 		 */
    273 		SCU->sys_mask |= SCU_SCC;
    274 
    275 		zs_frequencies = zs_freqs_tt;
    276 	} else if (machineid & ATARI_FALCON) {
    277 		zs_frequencies = zs_freqs_falcon;
    278 	} else {
    279 		zs_frequencies = zs_freqs_generic;
    280 	}
    281 
    282 	/* link into interrupt list with order (A,B) (B=A+1) */
    283 	cs[0].cs_next = &cs[1];
    284 	cs[1].cs_next = zslist;
    285 	zslist        = cs;
    286 
    287 	cs->cs_unit  = 0;
    288 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    289 	cs++;
    290 	cs->cs_unit  = 1;
    291 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    292 
    293 	printf(": serial2 on channel a and modem2 on channel b\n");
    294 }
    295 
    296 /*
    297  * Open a zs serial port.
    298  */
    299 int
    300 zsopen(dev, flags, mode, p)
    301 dev_t		dev;
    302 int		flags;
    303 int		mode;
    304 struct proc	*p;
    305 {
    306 	register struct tty		*tp;
    307 	register struct zs_chanstate	*cs;
    308 		 struct zs_softc	*zi;
    309 		 int			unit = ZS_UNIT(dev);
    310 		 int			zs = unit >> 1;
    311 		 int			error, s;
    312 
    313 	if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
    314 		return (ENXIO);
    315 	cs = &zi->zi_cs[unit & 1];
    316 
    317 	/*
    318 	 * When port A (ser02) is selected on the TT, make sure
    319 	 * the port is enabled.
    320 	 */
    321 	if((machineid & ATARI_TT) && !(unit & 1)) {
    322 		SOUND->sd_selr = YM_IOA;
    323 		SOUND->sd_wdat = SOUND->sd_rdat | PA_SER2;
    324 	}
    325 
    326 	if (cs->cs_rbuf == NULL) {
    327 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
    328 								   M_WAITOK);
    329 	}
    330 
    331 	tp = cs->cs_ttyp;
    332 	if(tp == NULL) {
    333 		cs->cs_ttyp  = tp = ttymalloc();
    334 		tp->t_dev    = dev;
    335 		tp->t_oproc  = zsstart;
    336 		tp->t_param  = zsparam;
    337 	}
    338 
    339 	s  = spltty();
    340 	if((tp->t_state & TS_ISOPEN) == 0) {
    341 		ttychars(tp);
    342 		if(tp->t_ispeed == 0) {
    343 			tp->t_iflag = TTYDEF_IFLAG;
    344 			tp->t_oflag = TTYDEF_OFLAG;
    345 			tp->t_cflag = TTYDEF_CFLAG;
    346 			tp->t_lflag = TTYDEF_LFLAG;
    347 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    348 		}
    349 		(void)zsparam(tp, &tp->t_termios);
    350 		ttsetwater(tp);
    351 	}
    352 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    353 			splx(s);
    354 			return (EBUSY);
    355 	}
    356 	error = 0;
    357 	for(;;) {
    358 		/* loop, turning on the device, until carrier present */
    359 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    360 
    361 		/* May never get a status intr. if DCD already on. -gwr */
    362 		if(cs->cs_zc->zc_csr & ZSRR0_DCD)
    363 			tp->t_state |= TS_CARR_ON;
    364 		if(cs->cs_softcar)
    365 			tp->t_state |= TS_CARR_ON;
    366 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    367 		    tp->t_state & TS_CARR_ON)
    368 			break;
    369 		tp->t_state |= TS_WOPEN;
    370 		if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    371 		    ttopen, 0)) {
    372 			if(!(tp->t_state & TS_ISOPEN)) {
    373 				zs_modem(cs, 0, DMSET);
    374 				tp->t_state &= ~TS_WOPEN;
    375 				ttwakeup(tp);
    376 			}
    377 			splx(s);
    378 			return error;
    379 		}
    380 	}
    381 	splx(s);
    382 	if(error == 0)
    383 		error = linesw[tp->t_line].l_open(dev, tp);
    384 	if(error)
    385 		zs_modem(cs, 0, DMSET);
    386 	return(error);
    387 }
    388 
    389 /*
    390  * Close a zs serial port.
    391  */
    392 int
    393 zsclose(dev, flags, mode, p)
    394 dev_t		dev;
    395 int		flags;
    396 int		mode;
    397 struct proc	*p;
    398 {
    399 	register struct zs_chanstate	*cs;
    400 	register struct tty		*tp;
    401 		 struct zs_softc	*zi;
    402 		 int			unit = ZS_UNIT(dev);
    403 		 int			s;
    404 
    405 	zi = zscd.cd_devs[unit >> 1];
    406 	cs = &zi->zi_cs[unit & 1];
    407 	tp = cs->cs_ttyp;
    408 	linesw[tp->t_line].l_close(tp, flags);
    409 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    410 	    (tp->t_state & TS_ISOPEN) == 0) {
    411 		zs_modem(cs, 0, DMSET);
    412 		/* hold low for 1 second */
    413 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    414 	}
    415 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
    416 		s = splzs();
    417 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    418 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    419 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    420 		splx(s);
    421 	}
    422 	ttyclose(tp);
    423 
    424 	/*
    425 	 * Drop all lines and cancel interrupts
    426 	 */
    427 	s = splzs();
    428 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
    429 	splx(s);
    430 	return (0);
    431 }
    432 
    433 /*
    434  * Read/write zs serial port.
    435  */
    436 int
    437 zsread(dev, uio, flags)
    438 dev_t		dev;
    439 struct uio	*uio;
    440 int		flags;
    441 {
    442 	register struct zs_chanstate	*cs;
    443 	register struct zs_softc	*zi;
    444 	register struct tty		*tp;
    445 		 int			unit;
    446 
    447 	unit = ZS_UNIT(dev);
    448 	zi   = zscd.cd_devs[unit >> 1];
    449 	cs   = &zi->zi_cs[unit & 1];
    450 	tp   = cs->cs_ttyp;
    451 
    452 	return(linesw[tp->t_line].l_read(tp, uio, flags));
    453 }
    454 
    455 int
    456 zswrite(dev, uio, flags)
    457 dev_t		dev;
    458 struct uio	*uio;
    459 int		flags;
    460 {
    461 	register struct zs_chanstate	*cs;
    462 	register struct zs_softc	*zi;
    463 	register struct tty		*tp;
    464 		 int			unit;
    465 
    466 	unit = ZS_UNIT(dev);
    467 	zi   = zscd.cd_devs[unit >> 1];
    468 	cs   = &zi->zi_cs[unit & 1];
    469 	tp   = cs->cs_ttyp;
    470 
    471 	return(linesw[tp->t_line].l_write(tp, uio, flags));
    472 }
    473 
    474 struct tty *
    475 zstty(dev)
    476 dev_t	dev;
    477 {
    478 	register struct zs_chanstate	*cs;
    479 	register struct zs_softc	*zi;
    480 		 int			unit;
    481 
    482 	unit = ZS_UNIT(dev);
    483 	zi   = zscd.cd_devs[unit >> 1];
    484 	cs   = &zi->zi_cs[unit & 1];
    485 	return(cs->cs_ttyp);
    486 }
    487 
    488 /*
    489  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    490  * channels are kept in (A,B) pairs.
    491  *
    492  * Do just a little, then get out; set a software interrupt if more
    493  * work is needed.
    494  *
    495  * We deliberately ignore the vectoring Zilog gives us, and match up
    496  * only the number of `reset interrupt under service' operations, not
    497  * the order.
    498  */
    499 
    500 int
    501 zshard(sr)
    502 long sr;
    503 {
    504 	register struct zs_chanstate	*a;
    505 #define	b (a + 1)
    506 	register volatile struct zschan *zc;
    507 	register int			rr3, intflags = 0, v, i;
    508 
    509 	do {
    510 	    intflags &= ~4;
    511 	    for(a = zslist; a != NULL; a = b->cs_next) {
    512 		rr3 = ZS_READ(a->cs_zc, 3);
    513 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    514 			intflags |= 4|2;
    515 			zc = a->cs_zc;
    516 			i  = a->cs_rbput;
    517 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    518 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    519 				intflags |= 1;
    520 			}
    521 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    522 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    523 				intflags |= 1;
    524 			}
    525 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    526 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    527 				intflags |= 1;
    528 			}
    529 			a->cs_rbput = i;
    530 		}
    531 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    532 			intflags |= 4|2;
    533 			zc = b->cs_zc;
    534 			i  = b->cs_rbput;
    535 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    536 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    537 				intflags |= 1;
    538 			}
    539 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    540 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    541 				intflags |= 1;
    542 			}
    543 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    544 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    545 				intflags |= 1;
    546 			}
    547 			b->cs_rbput = i;
    548 		}
    549 	    }
    550 	} while(intflags & 4);
    551 #undef b
    552 
    553 	if(intflags & 1) {
    554 		if(BASEPRI(sr)) {
    555 			spl1();
    556 			zsshortcuts++;
    557 			return(zssoft(sr));
    558 		}
    559 		else if(!cb_scheduled) {
    560 			cb_scheduled++;
    561 			add_sicallback(zssoft, 0, 0);
    562 		}
    563 	}
    564 	return(intflags & 2);
    565 }
    566 
    567 static int
    568 zsrint(cs, zc)
    569 register struct zs_chanstate	*cs;
    570 register volatile struct zschan	*zc;
    571 {
    572 	register int c;
    573 
    574 	/*
    575 	 * First read the status, because read of the received char
    576 	 * destroy the status of this char.
    577 	 */
    578 	c = ZS_READ(zc, 1);
    579 	c |= (zc->zc_data << 8);
    580 
    581 	/* clear receive error & interrupt condition */
    582 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    583 	zc->zc_csr = ZSWR0_CLR_INTR;
    584 
    585 	return(ZRING_MAKE(ZRING_RINT, c));
    586 }
    587 
    588 static int
    589 zsxint(cs, zc)
    590 register struct zs_chanstate	*cs;
    591 register volatile struct zschan	*zc;
    592 {
    593 	register int i = cs->cs_tbc;
    594 
    595 	if(i == 0) {
    596 		zc->zc_csr = ZSWR0_RESET_TXINT;
    597 		zc->zc_csr = ZSWR0_CLR_INTR;
    598 		return(ZRING_MAKE(ZRING_XINT, 0));
    599 	}
    600 	cs->cs_tbc = i - 1;
    601 	zc->zc_data = *cs->cs_tba++;
    602 	zc->zc_csr = ZSWR0_CLR_INTR;
    603 	return (0);
    604 }
    605 
    606 static int
    607 zssint(cs, zc)
    608 register struct zs_chanstate	*cs;
    609 register volatile struct zschan	*zc;
    610 {
    611 	register int rr0;
    612 
    613 	rr0 = zc->zc_csr;
    614 	zc->zc_csr = ZSWR0_RESET_STATUS;
    615 	zc->zc_csr = ZSWR0_CLR_INTR;
    616 	/*
    617 	 * The chip's hardware flow control is, as noted in zsreg.h,
    618 	 * busted---if the DCD line goes low the chip shuts off the
    619 	 * receiver (!).  If we want hardware CTS flow control but do
    620 	 * not have it, and carrier is now on, turn HFC on; if we have
    621 	 * HFC now but carrier has gone low, turn it off.
    622 	 */
    623 	if(rr0 & ZSRR0_DCD) {
    624 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    625 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    626 			cs->cs_creg[3] |= ZSWR3_HFC;
    627 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    628 		}
    629 	}
    630 	else {
    631 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    632 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    633 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    634 		}
    635 	}
    636 	return(ZRING_MAKE(ZRING_SINT, rr0));
    637 }
    638 
    639 /*
    640  * Print out a ring or fifo overrun error message.
    641  */
    642 static void
    643 zsoverrun(unit, ptime, what)
    644 int	unit;
    645 long	*ptime;
    646 char	*what;
    647 {
    648 
    649 	if(*ptime != time.tv_sec) {
    650 		*ptime = time.tv_sec;
    651 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    652 		    (unit & 1) + 'a', what);
    653 	}
    654 }
    655 
    656 /*
    657  * ZS software interrupt.  Scan all channels for deferred interrupts.
    658  */
    659 int
    660 zssoft(sr)
    661 long sr;
    662 {
    663     register struct zs_chanstate	*cs;
    664     register volatile struct zschan	*zc;
    665     register struct linesw		*line;
    666     register struct tty			*tp;
    667     register int			get, n, c, cc, unit, s;
    668  	     int			retval = 0;
    669 
    670     cb_scheduled = 0;
    671     s = spltty();
    672     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    673 	get = cs->cs_rbget;
    674 again:
    675 	n = cs->cs_rbput;	/* atomic			*/
    676 	if(get == n)		/* nothing more on this line	*/
    677 		continue;
    678 	retval = 1;
    679 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    680 	zc     = cs->cs_zc;
    681 	tp     = cs->cs_ttyp;
    682 	line   = &linesw[tp->t_line];
    683 	/*
    684 	 * Compute the number of interrupts in the receive ring.
    685 	 * If the count is overlarge, we lost some events, and
    686 	 * must advance to the first valid one.  It may get
    687 	 * overwritten if more data are arriving, but this is
    688 	 * too expensive to check and gains nothing (we already
    689 	 * lost out; all we can do at this point is trade one
    690 	 * kind of loss for another).
    691 	 */
    692 	n -= get;
    693 	if(n > ZLRB_RING_SIZE) {
    694 		zsoverrun(unit, &cs->cs_rotime, "ring");
    695 		get += n - ZLRB_RING_SIZE;
    696 		n    = ZLRB_RING_SIZE;
    697 	}
    698 	while(--n >= 0) {
    699 		/* race to keep ahead of incoming interrupts */
    700 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    701 		switch (ZRING_TYPE(c)) {
    702 
    703 		case ZRING_RINT:
    704 			c = ZRING_VALUE(c);
    705 			if(c & ZSRR1_DO)
    706 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    707 			cc = c >> 8;
    708 			if(c & ZSRR1_FE)
    709 				cc |= TTY_FE;
    710 			if(c & ZSRR1_PE)
    711 				cc |= TTY_PE;
    712 			line->l_rint(cc, tp);
    713 			break;
    714 
    715 		case ZRING_XINT:
    716 			/*
    717 			 * Transmit done: change registers and resume,
    718 			 * or clear BUSY.
    719 			 */
    720 			if(cs->cs_heldchange) {
    721 				int sps;
    722 
    723 				sps = splzs();
    724 				c = zc->zc_csr;
    725 				if((c & ZSRR0_DCD) == 0)
    726 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    727 				bcopy((caddr_t)cs->cs_preg,
    728 				    (caddr_t)cs->cs_creg, 16);
    729 				zs_loadchannelregs(zc, cs->cs_creg);
    730 				splx(sps);
    731 				cs->cs_heldchange = 0;
    732 				if(cs->cs_heldtbc
    733 					&& (tp->t_state & TS_TTSTOP) == 0) {
    734 					cs->cs_tbc = cs->cs_heldtbc - 1;
    735 					zc->zc_data = *cs->cs_tba++;
    736 					goto again;
    737 				}
    738 			}
    739 			tp->t_state &= ~TS_BUSY;
    740 			if(tp->t_state & TS_FLUSH)
    741 				tp->t_state &= ~TS_FLUSH;
    742 			else ndflush(&tp->t_outq,cs->cs_tba
    743 						- (caddr_t)tp->t_outq.c_cf);
    744 			line->l_start(tp);
    745 			break;
    746 
    747 		case ZRING_SINT:
    748 			/*
    749 			 * Status line change.  HFC bit is run in
    750 			 * hardware interrupt, to avoid locking
    751 			 * at splzs here.
    752 			 */
    753 			c = ZRING_VALUE(c);
    754 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    755 				cc = (c & ZSRR0_DCD) != 0;
    756 				if(line->l_modem(tp, cc) == 0)
    757 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    758 							cc ? DMBIS : DMBIC);
    759 			}
    760 			cs->cs_rr0 = c;
    761 			break;
    762 
    763 		default:
    764 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    765 			    unit >> 1, (unit & 1) + 'a', c);
    766 			break;
    767 		}
    768 	}
    769 	cs->cs_rbget = get;
    770 	goto again;
    771     }
    772     splx(s);
    773     return (retval);
    774 }
    775 
    776 int
    777 zsioctl(dev, cmd, data, flag, p)
    778 dev_t		dev;
    779 u_long		cmd;
    780 caddr_t		data;
    781 int		flag;
    782 struct proc	*p;
    783 {
    784 		 int			unit = ZS_UNIT(dev);
    785 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    786 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    787 	register int			error, s;
    788 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    789 
    790 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
    791 	if(error >= 0)
    792 		return(error);
    793 	error = ttioctl(tp, cmd, data, flag, p);
    794 	if(error >= 0)
    795 		return (error);
    796 
    797 	switch (cmd) {
    798 	case TIOCSBRK:
    799 		s = splzs();
    800 		cs->cs_preg[5] |= ZSWR5_BREAK;
    801 		cs->cs_creg[5] |= ZSWR5_BREAK;
    802 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    803 		splx(s);
    804 		break;
    805 	case TIOCCBRK:
    806 		s = splzs();
    807 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    808 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    809 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    810 		splx(s);
    811 		break;
    812 	case TIOCGFLAGS: {
    813 		int bits = 0;
    814 
    815 		if(cs->cs_softcar)
    816 			bits |= TIOCFLAG_SOFTCAR;
    817 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    818 			bits |= TIOCFLAG_CLOCAL;
    819 		if(cs->cs_creg[3] & ZSWR3_HFC)
    820 			bits |= TIOCFLAG_CRTSCTS;
    821 		*(int *)data = bits;
    822 		break;
    823 	}
    824 	case TIOCSFLAGS: {
    825 		int userbits = 0;
    826 
    827 		error = suser(p->p_ucred, &p->p_acflag);
    828 		if(error != 0)
    829 			return (EPERM);
    830 
    831 		userbits = *(int *)data;
    832 
    833 		/*
    834 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    835 		 # defaulting to software flow control.
    836 		 */
    837 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    838 			return(EINVAL);
    839 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    840 			return(ENODEV);
    841 
    842 		s = splzs();
    843 		if((userbits & TIOCFLAG_SOFTCAR)) {
    844 			cs->cs_softcar = 1;	/* turn on softcar */
    845 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    846 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    847 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    848 		}
    849 		else if(userbits & TIOCFLAG_CLOCAL) {
    850 			cs->cs_softcar = 0; 	/* turn off softcar */
    851 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    852 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    853 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    854 			tp->t_termios.c_cflag |= CLOCAL;
    855 		}
    856 		if(userbits & TIOCFLAG_CRTSCTS) {
    857 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    858 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    859 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    860 			cs->cs_preg[3] |= ZSWR3_HFC;
    861 			cs->cs_creg[3] |= ZSWR3_HFC;
    862 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    863 			tp->t_termios.c_cflag |= CRTSCTS;
    864 		}
    865 		else {
    866 			/* no mdmbuf, so we must want software flow control */
    867 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    868 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    869 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    870 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    871 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    872 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    873 			tp->t_termios.c_cflag &= ~CRTSCTS;
    874 		}
    875 		splx(s);
    876 		break;
    877 	}
    878 	case TIOCSDTR:
    879 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    880 		break;
    881 	case TIOCCDTR:
    882 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    883 		break;
    884 	case TIOCMGET:
    885 		zs_modem(cs, 0, DMGET);
    886 		break;
    887 	case TIOCMSET:
    888 	case TIOCMBIS:
    889 	case TIOCMBIC:
    890 	default:
    891 		return (ENOTTY);
    892 	}
    893 	return (0);
    894 }
    895 
    896 /*
    897  * Start or restart transmission.
    898  */
    899 static void
    900 zsstart(tp)
    901 register struct tty *tp;
    902 {
    903 	register struct zs_chanstate	*cs;
    904 	register int			s, nch;
    905 		 int			unit = ZS_UNIT(tp->t_dev);
    906 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    907 
    908 	cs = &zi->zi_cs[unit & 1];
    909 	s  = spltty();
    910 
    911 	/*
    912 	 * If currently active or delaying, no need to do anything.
    913 	 */
    914 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    915 		goto out;
    916 
    917 	/*
    918 	 * If there are sleepers, and output has drained below low
    919 	 * water mark, awaken.
    920 	 */
    921 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    922 		if(tp->t_state & TS_ASLEEP) {
    923 			tp->t_state &= ~TS_ASLEEP;
    924 			wakeup((caddr_t)&tp->t_outq);
    925 		}
    926 		selwakeup(&tp->t_wsel);
    927 	}
    928 
    929 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    930 	if(nch) {
    931 		register char *p = tp->t_outq.c_cf;
    932 
    933 		/* mark busy, enable tx done interrupts, & send first byte */
    934 		tp->t_state |= TS_BUSY;
    935 		(void) splzs();
    936 		cs->cs_preg[1] |= ZSWR1_TIE;
    937 		cs->cs_creg[1] |= ZSWR1_TIE;
    938 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    939 		cs->cs_zc->zc_data = *p;
    940 		cs->cs_tba = p + 1;
    941 		cs->cs_tbc = nch - 1;
    942 	} else {
    943 		/*
    944 		 * Nothing to send, turn off transmit done interrupts.
    945 		 * This is useful if something is doing polled output.
    946 		 */
    947 		(void) splzs();
    948 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    949 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    950 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    951 	}
    952 out:
    953 	splx(s);
    954 }
    955 
    956 /*
    957  * Stop output, e.g., for ^S or output flush.
    958  */
    959 void
    960 zsstop(tp, flag)
    961 register struct tty	*tp;
    962 	 int		flag;
    963 {
    964 	register struct zs_chanstate	*cs;
    965 	register int			s, unit = ZS_UNIT(tp->t_dev);
    966 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    967 
    968 	cs = &zi->zi_cs[unit & 1];
    969 	s  = splzs();
    970 	if(tp->t_state & TS_BUSY) {
    971 		/*
    972 		 * Device is transmitting; must stop it.
    973 		 */
    974 		cs->cs_tbc = 0;
    975 		if ((tp->t_state & TS_TTSTOP) == 0)
    976 			tp->t_state |= TS_FLUSH;
    977 	}
    978 	splx(s);
    979 }
    980 
    981 /*
    982  * Set ZS tty parameters from termios.
    983  *
    984  * This routine makes use of the fact that only registers
    985  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
    986  */
    987 static int
    988 zsparam(tp, t)
    989 register struct tty	*tp;
    990 register struct termios	*t;
    991 {
    992 		 int			unit = ZS_UNIT(tp->t_dev);
    993 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    994 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    995 		 int			cdiv, clkm, brgm, tcon;
    996 	register int			tmp, tmp5, cflag, s;
    997 
    998 	tmp  = t->c_ospeed;
    999 	tmp5 = t->c_ispeed;
   1000 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
   1001 		return(EINVAL);
   1002 	if(tmp == 0) {
   1003 		/* stty 0 => drop DTR and RTS */
   1004 		zs_modem(cs, 0, DMSET);
   1005 		return(0);
   1006 	}
   1007 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
   1008 	if (tmp < 0)
   1009 		return(EINVAL);
   1010 	tp->t_ispeed = tp->t_ospeed = tmp;
   1011 
   1012 	cflag = tp->t_cflag = t->c_cflag;
   1013 	if (cflag & CSTOPB)
   1014 		cdiv |= ZSWR4_TWOSB;
   1015 	else
   1016 		cdiv |= ZSWR4_ONESB;
   1017 	if (!(cflag & PARODD))
   1018 		cdiv |= ZSWR4_EVENP;
   1019 	if (cflag & PARENB)
   1020 		cdiv |= ZSWR4_PARENB;
   1021 
   1022 	switch(cflag & CSIZE) {
   1023 	case CS5:
   1024 		tmp  = ZSWR3_RX_5;
   1025 		tmp5 = ZSWR5_TX_5;
   1026 		break;
   1027 	case CS6:
   1028 		tmp  = ZSWR3_RX_6;
   1029 		tmp5 = ZSWR5_TX_6;
   1030 		break;
   1031 	case CS7:
   1032 		tmp  = ZSWR3_RX_7;
   1033 		tmp5 = ZSWR5_TX_7;
   1034 		break;
   1035 	case CS8:
   1036 	default:
   1037 		tmp  = ZSWR3_RX_8;
   1038 		tmp5 = ZSWR5_TX_8;
   1039 		break;
   1040 	}
   1041 	tmp  |= ZSWR3_RX_ENABLE;
   1042 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1043 
   1044 	/*
   1045 	 * Block interrupts so that state will not
   1046 	 * be altered until we are done setting it up.
   1047 	 */
   1048 	s = splzs();
   1049 	cs->cs_preg[4]  = cdiv;
   1050 	cs->cs_preg[11] = clkm;
   1051 	cs->cs_preg[12] = tcon;
   1052 	cs->cs_preg[13] = tcon >> 8;
   1053 	cs->cs_preg[14] = brgm;
   1054 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1055 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1056 	cs->cs_preg[10] = ZSWR10_NRZ;
   1057 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1058 
   1059 	/*
   1060 	 * Output hardware flow control on the chip is horrendous: if
   1061 	 * carrier detect drops, the receiver is disabled.  Hence we
   1062 	 * can only do this when the carrier is on.
   1063 	 */
   1064 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1065 		tmp |= ZSWR3_HFC;
   1066 	cs->cs_preg[3] = tmp;
   1067 	cs->cs_preg[5] = tmp5;
   1068 
   1069 	/*
   1070 	 * If nothing is being transmitted, set up new current values,
   1071 	 * else mark them as pending.
   1072 	 */
   1073 	if(cs->cs_heldchange == 0) {
   1074 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1075 			cs->cs_heldtbc = cs->cs_tbc;
   1076 			cs->cs_tbc = 0;
   1077 			cs->cs_heldchange = 1;
   1078 		} else {
   1079 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1080 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1081 		}
   1082 	}
   1083 	splx(s);
   1084 	return (0);
   1085 }
   1086 
   1087 /*
   1088  * search for the best matching baudrate
   1089  */
   1090 static int
   1091 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1092 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1093 {
   1094 	int	bestdiff, bestbps, source;
   1095 
   1096 	unit = (unit & 1) << 2;
   1097 	for (source = 0; source < 4; ++source) {
   1098 		long	freq = zs_frequencies[unit + source];
   1099 		int	diff, bps, div, clkm, brgm, tcon;
   1100 		switch (source) {
   1101 			case 0:	/* BRgen, PCLK */
   1102 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1103 				break;
   1104 			case 1:	/* BRgen, RTxC */
   1105 				brgm = ZSWR14_BAUD_ENA;
   1106 				break;
   1107 			case 2: /* RTxC */
   1108 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1109 				break;
   1110 			case 3: /* TRxC */
   1111 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1112 				break;
   1113 		}
   1114 		switch (source) {
   1115 			case 0:
   1116 			case 1:
   1117 				div  = ZSWR4_CLK_X16;
   1118 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1119 				tcon = BPS_TO_TCONST(freq, wanted);
   1120 				if (tcon < 0)
   1121 					tcon = 0;
   1122 				bps  = TCONST_TO_BPS(freq, tcon);
   1123 				break;
   1124 			case 2:
   1125 			case 3:
   1126 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1127 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1128 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1129 
   1130 				if (d1 < d2 && d1 < d3) {
   1131 					div = ZSWR4_CLK_X16;
   1132 					bps = b1;
   1133 				} else if (d2 < d3 && d2 < d1) {
   1134 					div = ZSWR4_CLK_X32;
   1135 					bps = b2;
   1136 				} else {
   1137 					div = ZSWR4_CLK_X64;
   1138 					bps = b3;
   1139 				}
   1140 				brgm = tcon = 0;
   1141 				break;
   1142 			}
   1143 		}
   1144 		diff = abs(bps - wanted);
   1145 		if (!source || diff < bestdiff) {
   1146 			*divisor   = div;
   1147 			*clockmode = clkm;
   1148 			*brgenmode = brgm;
   1149 			*timeconst = tcon;
   1150 			bestbps    = bps;
   1151 			bestdiff   = diff;
   1152 			if (diff == 0)
   1153 				break;
   1154 		}
   1155 	}
   1156 	/* Allow deviations upto 5% */
   1157 	if (20 * bestdiff > wanted)
   1158 		return -1;
   1159 	return bestbps;
   1160 }
   1161 
   1162 /*
   1163  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1164  * in transmission, the change is deferred.
   1165  */
   1166 static int
   1167 zs_modem(cs, bits, how)
   1168 struct zs_chanstate	*cs;
   1169 int			bits, how;
   1170 {
   1171 	int s, mbits;
   1172 
   1173 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1174 
   1175 	s = splzs();
   1176 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1177 
   1178 	switch(how) {
   1179 		case DMSET:
   1180 				mbits  = bits;
   1181 				break;
   1182 		case DMBIS:
   1183 				mbits |= bits;
   1184 				break;
   1185 		case DMBIC:
   1186 				mbits &= ~bits;
   1187 				break;
   1188 		case DMGET:
   1189 				splx(s);
   1190 				return(mbits);
   1191 	}
   1192 
   1193 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1194 	if(cs->cs_heldchange == 0) {
   1195 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1196 			cs->cs_heldtbc = cs->cs_tbc;
   1197 			cs->cs_tbc = 0;
   1198 			cs->cs_heldchange = 1;
   1199 		}
   1200 		else {
   1201 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1202 		}
   1203 	}
   1204 	splx(s);
   1205 	return(0);
   1206 }
   1207 
   1208 /*
   1209  * Write the given register set to the given zs channel in the proper order.
   1210  * The channel must not be transmitting at the time.  The receiver will
   1211  * be disabled for the time it takes to write all the registers.
   1212  */
   1213 static void
   1214 zs_loadchannelregs(zc, reg)
   1215 volatile struct zschan	*zc;
   1216 u_char			*reg;
   1217 {
   1218 	int i;
   1219 
   1220 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1221 	i = zc->zc_data;		/* drain fifo */
   1222 	i = zc->zc_data;
   1223 	i = zc->zc_data;
   1224 	ZS_WRITE(zc,  4, reg[4]);
   1225 	ZS_WRITE(zc, 10, reg[10]);
   1226 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1227 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1228 	ZS_WRITE(zc,  1, reg[1]);
   1229 	ZS_WRITE(zc,  9, reg[9]);
   1230 	ZS_WRITE(zc, 11, reg[11]);
   1231 	ZS_WRITE(zc, 12, reg[12]);
   1232 	ZS_WRITE(zc, 13, reg[13]);
   1233 	ZS_WRITE(zc, 14, reg[14]);
   1234 	ZS_WRITE(zc, 15, reg[15]);
   1235 	ZS_WRITE(zc,  3, reg[3]);
   1236 	ZS_WRITE(zc,  5, reg[5]);
   1237 }
   1238 #endif /* NZS > 1 */
   1239