Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.16
      1 /*	$NetBSD: zs.c,v 1.16 1996/03/08 21:50:40 leo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/systm.h>
     58 #include <sys/proc.h>
     59 #include <sys/device.h>
     60 #include <sys/conf.h>
     61 #include <sys/file.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/malloc.h>
     64 #include <sys/tty.h>
     65 #include <sys/time.h>
     66 #include <sys/kernel.h>
     67 #include <sys/syslog.h>
     68 
     69 #include <machine/cpu.h>
     70 #include <machine/iomap.h>
     71 #include <machine/scu.h>
     72 #include <machine/mfp.h>
     73 #include <machine/video.h>
     74 
     75 #include <dev/ic/z8530reg.h>
     76 #include <atari/dev/zsvar.h>
     77 #include "zs.h"
     78 #if NZS > 1
     79 #error "This driver supports only 1 85C30!"
     80 #endif
     81 
     82 #if NZS > 0
     83 
     84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
     85 
     86 #define splzs	spl5
     87 
     88 /*
     89  * Software state per found chip.
     90  */
     91 struct zs_softc {
     92     struct	device		zi_dev;    /* base device		  */
     93     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     94     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     95 };
     96 
     97 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
     98 /*
     99  * Define the registers for a closed port
    100  */
    101 static u_char zs_init_regs[16] = {
    102 /*  0 */	0,
    103 /*  1 */	0,
    104 /*  2 */	0x60,
    105 /*  3 */	0,
    106 /*  4 */	0,
    107 /*  5 */	0,
    108 /*  6 */	0,
    109 /*  7 */	0,
    110 /*  8 */	0,
    111 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
    112 /* 10 */	ZSWR10_NRZ,
    113 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    114 /* 12 */	0,
    115 /* 13 */	0,
    116 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    117 /* 15 */	0
    118 };
    119 
    120 /*
    121  * Define the machine dependant clock frequencies
    122  * If BRgen feeds sender/receiver we always use a
    123  * divisor 16, therefor the division by 16 can as
    124  * well be done here.
    125  */
    126 static u_long zs_freqs_tt[] = {
    127 	/*
    128 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    129 	 * which is set to 307.2KHz during initialisation
    130 	 * and never changed afterwards.
    131 	 */
    132 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    133 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    134 	3672000,	/* RTxCA, from PCLK4		*/
    135 	      0,	/* TRxCA, external		*/
    136 
    137 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    138 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    139 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    140 	2457600		/* TRxCB, from BCLK		*/
    141 };
    142 static u_long zs_freqs_falcon[] = {
    143 	/*
    144 	 * Atari Falcon, XXX no specs available, this might be wrong
    145 	 */
    146 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    147 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    148 	3672000,	/* RTxCA, ???			*/
    149 	      0,	/* TRxCA, external		*/
    150 
    151 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    152 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    153 	3672000,	/* RTxCB, ???			*/
    154 	2457600		/* TRxCB, ???			*/
    155 };
    156 static u_long zs_freqs_generic[] = {
    157 	/*
    158 	 * other machines, assume only PCLK is available
    159 	 */
    160 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    161 	      0,	/* BRgen, RTxCA, divisor 16	*/
    162 	      0,	/* RTxCA, unknown		*/
    163 	      0,	/* TRxCA, unknown		*/
    164 
    165 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    166 	      0,	/* BRgen, RTxCB, divisor 16	*/
    167 	      0,	/* RTxCB, unknown		*/
    168 	      0		/* TRxCB, unknown		*/
    169 };
    170 static u_long *zs_frequencies;
    171 
    172 /* Definition of the driver for autoconfig. */
    173 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    174 static void	zsattach __P((struct device *, struct device *, void *));
    175 struct cfdriver zscd = {
    176 	NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
    177 	sizeof(struct zs_softc), NULL, 0 };
    178 
    179 /* {b,c}devsw[] function prototypes */
    180 dev_type_open(zsopen);
    181 dev_type_close(zsclose);
    182 dev_type_read(zsread);
    183 dev_type_write(zswrite);
    184 dev_type_ioctl(zsioctl);
    185 dev_type_tty(zstty);
    186 
    187 /* Interrupt handlers. */
    188 int		zshard __P((long));
    189 static int	zssoft __P((long));
    190 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    191 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    192 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    193 
    194 static struct zs_chanstate *zslist;
    195 
    196 /* Routines called from other code. */
    197 static void	zsstart __P((struct tty *));
    198 void		zsstop __P((struct tty *, int));
    199 
    200 /* Routines purely local to this driver. */
    201 static void	zsoverrun __P((int, long *, char *));
    202 static int	zsparam __P((struct tty *, struct termios *));
    203 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    204 static int	zs_modem __P((struct zs_chanstate *, int, int));
    205 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    206 
    207 static int zsshortcuts;	/* number of "shortcut" software interrupts */
    208 
    209 static int
    210 zsmatch(pdp, cfp, auxp)
    211 struct device	*pdp;
    212 struct cfdata	*cfp;
    213 void		*auxp;
    214 {
    215 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
    216 		return(0);
    217 	return(1);
    218 }
    219 
    220 /*
    221  * Attach a found zs.
    222  */
    223 static void
    224 zsattach(parent, dev, aux)
    225 struct device	*parent;
    226 struct device	*dev;
    227 void		*aux;
    228 {
    229 	register struct zs_softc		*zi;
    230 	register struct zs_chanstate		*cs;
    231 	register volatile struct zsdevice	*addr;
    232 		 char				tmp;
    233 
    234 	addr      = (struct zsdevice *)AD_SCC;
    235 	zi        = (struct zs_softc *)dev;
    236 	zi->zi_zs = addr;
    237 	cs        = zi->zi_cs;
    238 
    239 	/*
    240 	 * Get the command register into a known state.
    241 	 */
    242 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    243 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    244 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    245 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    246 
    247 	/*
    248 	 * Do a hardware reset.
    249 	 */
    250 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    251 	delay(50000);	/*enough ? */
    252 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    253 
    254 	/*
    255 	 * Initialize both channels
    256 	 */
    257 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    258 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    259 
    260 	if(machineid & ATARI_TT) {
    261 		/*
    262 		 * ininitialise TT-MFP timer C: 307200Hz
    263 		 * timer C and D share one control register:
    264 		 *	bits 0-2 control timer D
    265 		 *	bits 4-6 control timer C
    266 		 */
    267 		int cr = MFP2->mf_tcdcr & 7;
    268 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    269 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    270 		cr |= T_Q004 << 4;		/* divisor 4     */
    271 		MFP2->mf_tcdcr = cr;		/* start timer C */
    272 		/*
    273 		 * enable scc related interrupts
    274 		 */
    275 		SCU->sys_mask |= SCU_SCC;
    276 
    277 		zs_frequencies = zs_freqs_tt;
    278 	} else if (machineid & ATARI_FALCON) {
    279 		zs_frequencies = zs_freqs_falcon;
    280 	} else {
    281 		zs_frequencies = zs_freqs_generic;
    282 	}
    283 
    284 	/* link into interrupt list with order (A,B) (B=A+1) */
    285 	cs[0].cs_next = &cs[1];
    286 	cs[1].cs_next = zslist;
    287 	zslist        = cs;
    288 
    289 	cs->cs_unit  = 0;
    290 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    291 	cs++;
    292 	cs->cs_unit  = 1;
    293 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    294 
    295 	printf(": serial2 on channel a and modem2 on channel b\n");
    296 }
    297 
    298 /*
    299  * Open a zs serial port.
    300  */
    301 int
    302 zsopen(dev, flags, mode, p)
    303 dev_t		dev;
    304 int		flags;
    305 int		mode;
    306 struct proc	*p;
    307 {
    308 	register struct tty		*tp;
    309 	register struct zs_chanstate	*cs;
    310 		 struct zs_softc	*zi;
    311 		 int			unit = ZS_UNIT(dev);
    312 		 int			zs = unit >> 1;
    313 		 int			error, s;
    314 
    315 	if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
    316 		return (ENXIO);
    317 	cs = &zi->zi_cs[unit & 1];
    318 
    319 	/*
    320 	 * When port A (ser02) is selected on the TT, make sure
    321 	 * the port is enabled.
    322 	 */
    323 	if((machineid & ATARI_TT) && !(unit & 1)) {
    324 		SOUND->sd_selr = YM_IOA;
    325 		SOUND->sd_wdat = SOUND->sd_rdat | PA_SER2;
    326 	}
    327 
    328 	if (cs->cs_rbuf == NULL) {
    329 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
    330 								   M_WAITOK);
    331 	}
    332 
    333 	tp = cs->cs_ttyp;
    334 	if(tp == NULL) {
    335 		cs->cs_ttyp  = tp = ttymalloc();
    336 		tp->t_dev    = dev;
    337 		tp->t_oproc  = zsstart;
    338 		tp->t_param  = zsparam;
    339 	}
    340 
    341 	s  = spltty();
    342 	if((tp->t_state & TS_ISOPEN) == 0) {
    343 		ttychars(tp);
    344 		if(tp->t_ispeed == 0) {
    345 			tp->t_iflag = TTYDEF_IFLAG;
    346 			tp->t_oflag = TTYDEF_OFLAG;
    347 			tp->t_cflag = TTYDEF_CFLAG;
    348 			tp->t_lflag = TTYDEF_LFLAG;
    349 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    350 		}
    351 		(void)zsparam(tp, &tp->t_termios);
    352 		ttsetwater(tp);
    353 	}
    354 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    355 			splx(s);
    356 			return (EBUSY);
    357 	}
    358 	error = 0;
    359 	for(;;) {
    360 		/* loop, turning on the device, until carrier present */
    361 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    362 
    363 		/* May never get a status intr. if DCD already on. -gwr */
    364 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
    365 			tp->t_state |= TS_CARR_ON;
    366 		if(cs->cs_softcar)
    367 			tp->t_state |= TS_CARR_ON;
    368 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    369 		    tp->t_state & TS_CARR_ON)
    370 			break;
    371 		tp->t_state |= TS_WOPEN;
    372 		if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    373 		    ttopen, 0)) {
    374 			if(!(tp->t_state & TS_ISOPEN)) {
    375 				zs_modem(cs, 0, DMSET);
    376 				tp->t_state &= ~TS_WOPEN;
    377 				ttwakeup(tp);
    378 			}
    379 			splx(s);
    380 			return error;
    381 		}
    382 	}
    383 	splx(s);
    384 	if(error == 0)
    385 		error = linesw[tp->t_line].l_open(dev, tp);
    386 	if(error)
    387 		zs_modem(cs, 0, DMSET);
    388 	return(error);
    389 }
    390 
    391 /*
    392  * Close a zs serial port.
    393  */
    394 int
    395 zsclose(dev, flags, mode, p)
    396 dev_t		dev;
    397 int		flags;
    398 int		mode;
    399 struct proc	*p;
    400 {
    401 	register struct zs_chanstate	*cs;
    402 	register struct tty		*tp;
    403 		 struct zs_softc	*zi;
    404 		 int			unit = ZS_UNIT(dev);
    405 		 int			s;
    406 
    407 	zi = zscd.cd_devs[unit >> 1];
    408 	cs = &zi->zi_cs[unit & 1];
    409 	tp = cs->cs_ttyp;
    410 	linesw[tp->t_line].l_close(tp, flags);
    411 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    412 	    (tp->t_state & TS_ISOPEN) == 0) {
    413 		zs_modem(cs, 0, DMSET);
    414 		/* hold low for 1 second */
    415 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    416 	}
    417 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
    418 		s = splzs();
    419 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    420 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    421 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    422 		splx(s);
    423 	}
    424 	ttyclose(tp);
    425 
    426 	/*
    427 	 * Drop all lines and cancel interrupts
    428 	 */
    429 	s = splzs();
    430 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
    431 	splx(s);
    432 	return (0);
    433 }
    434 
    435 /*
    436  * Read/write zs serial port.
    437  */
    438 int
    439 zsread(dev, uio, flags)
    440 dev_t		dev;
    441 struct uio	*uio;
    442 int		flags;
    443 {
    444 	register struct zs_chanstate	*cs;
    445 	register struct zs_softc	*zi;
    446 	register struct tty		*tp;
    447 		 int			unit;
    448 
    449 	unit = ZS_UNIT(dev);
    450 	zi   = zscd.cd_devs[unit >> 1];
    451 	cs   = &zi->zi_cs[unit & 1];
    452 	tp   = cs->cs_ttyp;
    453 
    454 	return(linesw[tp->t_line].l_read(tp, uio, flags));
    455 }
    456 
    457 int
    458 zswrite(dev, uio, flags)
    459 dev_t		dev;
    460 struct uio	*uio;
    461 int		flags;
    462 {
    463 	register struct zs_chanstate	*cs;
    464 	register struct zs_softc	*zi;
    465 	register struct tty		*tp;
    466 		 int			unit;
    467 
    468 	unit = ZS_UNIT(dev);
    469 	zi   = zscd.cd_devs[unit >> 1];
    470 	cs   = &zi->zi_cs[unit & 1];
    471 	tp   = cs->cs_ttyp;
    472 
    473 	return(linesw[tp->t_line].l_write(tp, uio, flags));
    474 }
    475 
    476 struct tty *
    477 zstty(dev)
    478 dev_t	dev;
    479 {
    480 	register struct zs_chanstate	*cs;
    481 	register struct zs_softc	*zi;
    482 		 int			unit;
    483 
    484 	unit = ZS_UNIT(dev);
    485 	zi   = zscd.cd_devs[unit >> 1];
    486 	cs   = &zi->zi_cs[unit & 1];
    487 	return(cs->cs_ttyp);
    488 }
    489 
    490 /*
    491  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    492  * channels are kept in (A,B) pairs.
    493  *
    494  * Do just a little, then get out; set a software interrupt if more
    495  * work is needed.
    496  *
    497  * We deliberately ignore the vectoring Zilog gives us, and match up
    498  * only the number of `reset interrupt under service' operations, not
    499  * the order.
    500  */
    501 
    502 int
    503 zshard(sr)
    504 long sr;
    505 {
    506 	register struct zs_chanstate	*a;
    507 #define	b (a + 1)
    508 	register volatile struct zschan *zc;
    509 	register int			rr3, intflags = 0, v, i;
    510 
    511 	do {
    512 	    intflags &= ~4;
    513 	    for(a = zslist; a != NULL; a = b->cs_next) {
    514 		rr3 = ZS_READ(a->cs_zc, 3);
    515 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    516 			intflags |= 4|2;
    517 			zc = a->cs_zc;
    518 			i  = a->cs_rbput;
    519 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    520 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    521 				intflags |= 1;
    522 			}
    523 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    524 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    525 				intflags |= 1;
    526 			}
    527 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    528 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    529 				intflags |= 1;
    530 			}
    531 			a->cs_rbput = i;
    532 		}
    533 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    534 			intflags |= 4|2;
    535 			zc = b->cs_zc;
    536 			i  = b->cs_rbput;
    537 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    538 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    539 				intflags |= 1;
    540 			}
    541 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    542 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    543 				intflags |= 1;
    544 			}
    545 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    546 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    547 				intflags |= 1;
    548 			}
    549 			b->cs_rbput = i;
    550 		}
    551 	    }
    552 	} while(intflags & 4);
    553 #undef b
    554 
    555 	if(intflags & 1) {
    556 		if(BASEPRI(sr)) {
    557 			spl1();
    558 			zsshortcuts++;
    559 			return(zssoft(sr));
    560 		}
    561 		else if(!cb_scheduled) {
    562 			cb_scheduled++;
    563 			add_sicallback(zssoft, 0, 0);
    564 		}
    565 	}
    566 	return(intflags & 2);
    567 }
    568 
    569 static int
    570 zsrint(cs, zc)
    571 register struct zs_chanstate	*cs;
    572 register volatile struct zschan	*zc;
    573 {
    574 	register int c;
    575 
    576 	/*
    577 	 * First read the status, because read of the received char
    578 	 * destroy the status of this char.
    579 	 */
    580 	c = ZS_READ(zc, 1);
    581 	c |= (zc->zc_data << 8);
    582 
    583 	/* clear receive error & interrupt condition */
    584 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    585 	zc->zc_csr = ZSWR0_CLR_INTR;
    586 
    587 	return(ZRING_MAKE(ZRING_RINT, c));
    588 }
    589 
    590 static int
    591 zsxint(cs, zc)
    592 register struct zs_chanstate	*cs;
    593 register volatile struct zschan	*zc;
    594 {
    595 	register int i = cs->cs_tbc;
    596 
    597 	if(i == 0) {
    598 		zc->zc_csr = ZSWR0_RESET_TXINT;
    599 		zc->zc_csr = ZSWR0_CLR_INTR;
    600 		return(ZRING_MAKE(ZRING_XINT, 0));
    601 	}
    602 	cs->cs_tbc = i - 1;
    603 	zc->zc_data = *cs->cs_tba++;
    604 	zc->zc_csr = ZSWR0_CLR_INTR;
    605 	return (0);
    606 }
    607 
    608 static int
    609 zssint(cs, zc)
    610 register struct zs_chanstate	*cs;
    611 register volatile struct zschan	*zc;
    612 {
    613 	register int rr0;
    614 
    615 	rr0 = zc->zc_csr;
    616 	zc->zc_csr = ZSWR0_RESET_STATUS;
    617 	zc->zc_csr = ZSWR0_CLR_INTR;
    618 	/*
    619 	 * The chip's hardware flow control is, as noted in zsreg.h,
    620 	 * busted---if the DCD line goes low the chip shuts off the
    621 	 * receiver (!).  If we want hardware CTS flow control but do
    622 	 * not have it, and carrier is now on, turn HFC on; if we have
    623 	 * HFC now but carrier has gone low, turn it off.
    624 	 */
    625 	if(rr0 & ZSRR0_DCD) {
    626 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    627 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    628 			cs->cs_creg[3] |= ZSWR3_HFC;
    629 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    630 		}
    631 	}
    632 	else {
    633 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    634 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    635 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    636 		}
    637 	}
    638 	return(ZRING_MAKE(ZRING_SINT, rr0));
    639 }
    640 
    641 /*
    642  * Print out a ring or fifo overrun error message.
    643  */
    644 static void
    645 zsoverrun(unit, ptime, what)
    646 int	unit;
    647 long	*ptime;
    648 char	*what;
    649 {
    650 
    651 	if(*ptime != time.tv_sec) {
    652 		*ptime = time.tv_sec;
    653 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    654 		    (unit & 1) + 'a', what);
    655 	}
    656 }
    657 
    658 /*
    659  * ZS software interrupt.  Scan all channels for deferred interrupts.
    660  */
    661 int
    662 zssoft(sr)
    663 long sr;
    664 {
    665     register struct zs_chanstate	*cs;
    666     register volatile struct zschan	*zc;
    667     register struct linesw		*line;
    668     register struct tty			*tp;
    669     register int			get, n, c, cc, unit, s;
    670  	     int			retval = 0;
    671 
    672     cb_scheduled = 0;
    673     s = spltty();
    674     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    675 	get = cs->cs_rbget;
    676 again:
    677 	n = cs->cs_rbput;	/* atomic			*/
    678 	if(get == n)		/* nothing more on this line	*/
    679 		continue;
    680 	retval = 1;
    681 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    682 	zc     = cs->cs_zc;
    683 	tp     = cs->cs_ttyp;
    684 	line   = &linesw[tp->t_line];
    685 	/*
    686 	 * Compute the number of interrupts in the receive ring.
    687 	 * If the count is overlarge, we lost some events, and
    688 	 * must advance to the first valid one.  It may get
    689 	 * overwritten if more data are arriving, but this is
    690 	 * too expensive to check and gains nothing (we already
    691 	 * lost out; all we can do at this point is trade one
    692 	 * kind of loss for another).
    693 	 */
    694 	n -= get;
    695 	if(n > ZLRB_RING_SIZE) {
    696 		zsoverrun(unit, &cs->cs_rotime, "ring");
    697 		get += n - ZLRB_RING_SIZE;
    698 		n    = ZLRB_RING_SIZE;
    699 	}
    700 	while(--n >= 0) {
    701 		/* race to keep ahead of incoming interrupts */
    702 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    703 		switch (ZRING_TYPE(c)) {
    704 
    705 		case ZRING_RINT:
    706 			c = ZRING_VALUE(c);
    707 			if(c & ZSRR1_DO)
    708 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    709 			cc = c >> 8;
    710 			if(c & ZSRR1_FE)
    711 				cc |= TTY_FE;
    712 			if(c & ZSRR1_PE)
    713 				cc |= TTY_PE;
    714 			line->l_rint(cc, tp);
    715 			break;
    716 
    717 		case ZRING_XINT:
    718 			/*
    719 			 * Transmit done: change registers and resume,
    720 			 * or clear BUSY.
    721 			 */
    722 			if(cs->cs_heldchange) {
    723 				int sps;
    724 
    725 				sps = splzs();
    726 				c = zc->zc_csr;
    727 				if((c & ZSRR0_DCD) == 0)
    728 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    729 				bcopy((caddr_t)cs->cs_preg,
    730 				    (caddr_t)cs->cs_creg, 16);
    731 				zs_loadchannelregs(zc, cs->cs_creg);
    732 				splx(sps);
    733 				cs->cs_heldchange = 0;
    734 				if(cs->cs_heldtbc
    735 					&& (tp->t_state & TS_TTSTOP) == 0) {
    736 					cs->cs_tbc = cs->cs_heldtbc - 1;
    737 					zc->zc_data = *cs->cs_tba++;
    738 					goto again;
    739 				}
    740 			}
    741 			tp->t_state &= ~TS_BUSY;
    742 			if(tp->t_state & TS_FLUSH)
    743 				tp->t_state &= ~TS_FLUSH;
    744 			else ndflush(&tp->t_outq,cs->cs_tba
    745 						- (caddr_t)tp->t_outq.c_cf);
    746 			line->l_start(tp);
    747 			break;
    748 
    749 		case ZRING_SINT:
    750 			/*
    751 			 * Status line change.  HFC bit is run in
    752 			 * hardware interrupt, to avoid locking
    753 			 * at splzs here.
    754 			 */
    755 			c = ZRING_VALUE(c);
    756 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    757 				cc = (c & ZSRR0_DCD) != 0;
    758 				if(line->l_modem(tp, cc) == 0)
    759 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    760 							cc ? DMBIS : DMBIC);
    761 			}
    762 			cs->cs_rr0 = c;
    763 			break;
    764 
    765 		default:
    766 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    767 			    unit >> 1, (unit & 1) + 'a', c);
    768 			break;
    769 		}
    770 	}
    771 	cs->cs_rbget = get;
    772 	goto again;
    773     }
    774     splx(s);
    775     return (retval);
    776 }
    777 
    778 int
    779 zsioctl(dev, cmd, data, flag, p)
    780 dev_t		dev;
    781 u_long		cmd;
    782 caddr_t		data;
    783 int		flag;
    784 struct proc	*p;
    785 {
    786 		 int			unit = ZS_UNIT(dev);
    787 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    788 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    789 	register int			error, s;
    790 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    791 
    792 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
    793 	if(error >= 0)
    794 		return(error);
    795 	error = ttioctl(tp, cmd, data, flag, p);
    796 	if(error >= 0)
    797 		return (error);
    798 
    799 	switch (cmd) {
    800 	case TIOCSBRK:
    801 		s = splzs();
    802 		cs->cs_preg[5] |= ZSWR5_BREAK;
    803 		cs->cs_creg[5] |= ZSWR5_BREAK;
    804 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    805 		splx(s);
    806 		break;
    807 	case TIOCCBRK:
    808 		s = splzs();
    809 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    810 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    811 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    812 		splx(s);
    813 		break;
    814 	case TIOCGFLAGS: {
    815 		int bits = 0;
    816 
    817 		if(cs->cs_softcar)
    818 			bits |= TIOCFLAG_SOFTCAR;
    819 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    820 			bits |= TIOCFLAG_CLOCAL;
    821 		if(cs->cs_creg[3] & ZSWR3_HFC)
    822 			bits |= TIOCFLAG_CRTSCTS;
    823 		*(int *)data = bits;
    824 		break;
    825 	}
    826 	case TIOCSFLAGS: {
    827 		int userbits = 0;
    828 
    829 		error = suser(p->p_ucred, &p->p_acflag);
    830 		if(error != 0)
    831 			return (EPERM);
    832 
    833 		userbits = *(int *)data;
    834 
    835 		/*
    836 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    837 		 # defaulting to software flow control.
    838 		 */
    839 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    840 			return(EINVAL);
    841 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    842 			return(ENODEV);
    843 
    844 		s = splzs();
    845 		if((userbits & TIOCFLAG_SOFTCAR)) {
    846 			cs->cs_softcar = 1;	/* turn on softcar */
    847 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    848 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    849 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    850 		}
    851 		else if(userbits & TIOCFLAG_CLOCAL) {
    852 			cs->cs_softcar = 0; 	/* turn off softcar */
    853 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    854 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    855 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    856 			tp->t_termios.c_cflag |= CLOCAL;
    857 		}
    858 		if(userbits & TIOCFLAG_CRTSCTS) {
    859 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    860 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    861 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    862 			cs->cs_preg[3] |= ZSWR3_HFC;
    863 			cs->cs_creg[3] |= ZSWR3_HFC;
    864 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    865 			tp->t_termios.c_cflag |= CRTSCTS;
    866 		}
    867 		else {
    868 			/* no mdmbuf, so we must want software flow control */
    869 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    870 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    871 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    872 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    873 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    874 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    875 			tp->t_termios.c_cflag &= ~CRTSCTS;
    876 		}
    877 		splx(s);
    878 		break;
    879 	}
    880 	case TIOCSDTR:
    881 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    882 		break;
    883 	case TIOCCDTR:
    884 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    885 		break;
    886 	case TIOCMGET:
    887 		zs_modem(cs, 0, DMGET);
    888 		break;
    889 	case TIOCMSET:
    890 	case TIOCMBIS:
    891 	case TIOCMBIC:
    892 	default:
    893 		return (ENOTTY);
    894 	}
    895 	return (0);
    896 }
    897 
    898 /*
    899  * Start or restart transmission.
    900  */
    901 static void
    902 zsstart(tp)
    903 register struct tty *tp;
    904 {
    905 	register struct zs_chanstate	*cs;
    906 	register int			s, nch;
    907 		 int			unit = ZS_UNIT(tp->t_dev);
    908 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    909 
    910 	cs = &zi->zi_cs[unit & 1];
    911 	s  = spltty();
    912 
    913 	/*
    914 	 * If currently active or delaying, no need to do anything.
    915 	 */
    916 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    917 		goto out;
    918 
    919 	/*
    920 	 * If there are sleepers, and output has drained below low
    921 	 * water mark, awaken.
    922 	 */
    923 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    924 		if(tp->t_state & TS_ASLEEP) {
    925 			tp->t_state &= ~TS_ASLEEP;
    926 			wakeup((caddr_t)&tp->t_outq);
    927 		}
    928 		selwakeup(&tp->t_wsel);
    929 	}
    930 
    931 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    932 	if(nch) {
    933 		register char *p = tp->t_outq.c_cf;
    934 
    935 		/* mark busy, enable tx done interrupts, & send first byte */
    936 		tp->t_state |= TS_BUSY;
    937 		(void) splzs();
    938 		cs->cs_preg[1] |= ZSWR1_TIE;
    939 		cs->cs_creg[1] |= ZSWR1_TIE;
    940 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    941 		cs->cs_zc->zc_data = *p;
    942 		cs->cs_tba = p + 1;
    943 		cs->cs_tbc = nch - 1;
    944 	} else {
    945 		/*
    946 		 * Nothing to send, turn off transmit done interrupts.
    947 		 * This is useful if something is doing polled output.
    948 		 */
    949 		(void) splzs();
    950 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    951 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    952 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    953 	}
    954 out:
    955 	splx(s);
    956 }
    957 
    958 /*
    959  * Stop output, e.g., for ^S or output flush.
    960  */
    961 void
    962 zsstop(tp, flag)
    963 register struct tty	*tp;
    964 	 int		flag;
    965 {
    966 	register struct zs_chanstate	*cs;
    967 	register int			s, unit = ZS_UNIT(tp->t_dev);
    968 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    969 
    970 	cs = &zi->zi_cs[unit & 1];
    971 	s  = splzs();
    972 	if(tp->t_state & TS_BUSY) {
    973 		/*
    974 		 * Device is transmitting; must stop it.
    975 		 */
    976 		cs->cs_tbc = 0;
    977 		if ((tp->t_state & TS_TTSTOP) == 0)
    978 			tp->t_state |= TS_FLUSH;
    979 	}
    980 	splx(s);
    981 }
    982 
    983 /*
    984  * Set ZS tty parameters from termios.
    985  *
    986  * This routine makes use of the fact that only registers
    987  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
    988  */
    989 static int
    990 zsparam(tp, t)
    991 register struct tty	*tp;
    992 register struct termios	*t;
    993 {
    994 		 int			unit = ZS_UNIT(tp->t_dev);
    995 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    996 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    997 		 int			cdiv, clkm, brgm, tcon;
    998 	register int			tmp, tmp5, cflag, s;
    999 
   1000 	tmp  = t->c_ospeed;
   1001 	tmp5 = t->c_ispeed;
   1002 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
   1003 		return(EINVAL);
   1004 	if(tmp == 0) {
   1005 		/* stty 0 => drop DTR and RTS */
   1006 		zs_modem(cs, 0, DMSET);
   1007 		return(0);
   1008 	}
   1009 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
   1010 	if (tmp < 0)
   1011 		return(EINVAL);
   1012 	tp->t_ispeed = tp->t_ospeed = tmp;
   1013 
   1014 	cflag = tp->t_cflag = t->c_cflag;
   1015 	if (cflag & CSTOPB)
   1016 		cdiv |= ZSWR4_TWOSB;
   1017 	else
   1018 		cdiv |= ZSWR4_ONESB;
   1019 	if (!(cflag & PARODD))
   1020 		cdiv |= ZSWR4_EVENP;
   1021 	if (cflag & PARENB)
   1022 		cdiv |= ZSWR4_PARENB;
   1023 
   1024 	switch(cflag & CSIZE) {
   1025 	case CS5:
   1026 		tmp  = ZSWR3_RX_5;
   1027 		tmp5 = ZSWR5_TX_5;
   1028 		break;
   1029 	case CS6:
   1030 		tmp  = ZSWR3_RX_6;
   1031 		tmp5 = ZSWR5_TX_6;
   1032 		break;
   1033 	case CS7:
   1034 		tmp  = ZSWR3_RX_7;
   1035 		tmp5 = ZSWR5_TX_7;
   1036 		break;
   1037 	case CS8:
   1038 	default:
   1039 		tmp  = ZSWR3_RX_8;
   1040 		tmp5 = ZSWR5_TX_8;
   1041 		break;
   1042 	}
   1043 	tmp  |= ZSWR3_RX_ENABLE;
   1044 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1045 
   1046 	/*
   1047 	 * Block interrupts so that state will not
   1048 	 * be altered until we are done setting it up.
   1049 	 */
   1050 	s = splzs();
   1051 	cs->cs_preg[4]  = cdiv;
   1052 	cs->cs_preg[11] = clkm;
   1053 	cs->cs_preg[12] = tcon;
   1054 	cs->cs_preg[13] = tcon >> 8;
   1055 	cs->cs_preg[14] = brgm;
   1056 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1057 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1058 	cs->cs_preg[10] = ZSWR10_NRZ;
   1059 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1060 
   1061 	/*
   1062 	 * Output hardware flow control on the chip is horrendous: if
   1063 	 * carrier detect drops, the receiver is disabled.  Hence we
   1064 	 * can only do this when the carrier is on.
   1065 	 */
   1066 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1067 		tmp |= ZSWR3_HFC;
   1068 	cs->cs_preg[3] = tmp;
   1069 	cs->cs_preg[5] = tmp5;
   1070 
   1071 	/*
   1072 	 * If nothing is being transmitted, set up new current values,
   1073 	 * else mark them as pending.
   1074 	 */
   1075 	if(cs->cs_heldchange == 0) {
   1076 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1077 			cs->cs_heldtbc = cs->cs_tbc;
   1078 			cs->cs_tbc = 0;
   1079 			cs->cs_heldchange = 1;
   1080 		} else {
   1081 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1082 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1083 		}
   1084 	}
   1085 	splx(s);
   1086 	return (0);
   1087 }
   1088 
   1089 /*
   1090  * search for the best matching baudrate
   1091  */
   1092 static int
   1093 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1094 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1095 {
   1096 	int	bestdiff, bestbps, source;
   1097 
   1098 	unit = (unit & 1) << 2;
   1099 	for (source = 0; source < 4; ++source) {
   1100 		long	freq = zs_frequencies[unit + source];
   1101 		int	diff, bps, div, clkm, brgm, tcon;
   1102 		switch (source) {
   1103 			case 0:	/* BRgen, PCLK */
   1104 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1105 				break;
   1106 			case 1:	/* BRgen, RTxC */
   1107 				brgm = ZSWR14_BAUD_ENA;
   1108 				break;
   1109 			case 2: /* RTxC */
   1110 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1111 				break;
   1112 			case 3: /* TRxC */
   1113 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1114 				break;
   1115 		}
   1116 		switch (source) {
   1117 			case 0:
   1118 			case 1:
   1119 				div  = ZSWR4_CLK_X16;
   1120 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1121 				tcon = BPS_TO_TCONST(freq, wanted);
   1122 				if (tcon < 0)
   1123 					tcon = 0;
   1124 				bps  = TCONST_TO_BPS(freq, tcon);
   1125 				break;
   1126 			case 2:
   1127 			case 3:
   1128 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1129 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1130 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1131 
   1132 				if (d1 < d2 && d1 < d3) {
   1133 					div = ZSWR4_CLK_X16;
   1134 					bps = b1;
   1135 				} else if (d2 < d3 && d2 < d1) {
   1136 					div = ZSWR4_CLK_X32;
   1137 					bps = b2;
   1138 				} else {
   1139 					div = ZSWR4_CLK_X64;
   1140 					bps = b3;
   1141 				}
   1142 				brgm = tcon = 0;
   1143 				break;
   1144 			}
   1145 		}
   1146 		diff = abs(bps - wanted);
   1147 		if (!source || diff < bestdiff) {
   1148 			*divisor   = div;
   1149 			*clockmode = clkm;
   1150 			*brgenmode = brgm;
   1151 			*timeconst = tcon;
   1152 			bestbps    = bps;
   1153 			bestdiff   = diff;
   1154 			if (diff == 0)
   1155 				break;
   1156 		}
   1157 	}
   1158 	/* Allow deviations upto 5% */
   1159 	if (20 * bestdiff > wanted)
   1160 		return -1;
   1161 	return bestbps;
   1162 }
   1163 
   1164 /*
   1165  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1166  * in transmission, the change is deferred.
   1167  */
   1168 static int
   1169 zs_modem(cs, bits, how)
   1170 struct zs_chanstate	*cs;
   1171 int			bits, how;
   1172 {
   1173 	int s, mbits;
   1174 
   1175 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1176 
   1177 	s = splzs();
   1178 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1179 
   1180 	switch(how) {
   1181 		case DMSET:
   1182 				mbits  = bits;
   1183 				break;
   1184 		case DMBIS:
   1185 				mbits |= bits;
   1186 				break;
   1187 		case DMBIC:
   1188 				mbits &= ~bits;
   1189 				break;
   1190 		case DMGET:
   1191 				splx(s);
   1192 				return(mbits);
   1193 	}
   1194 
   1195 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1196 	if(cs->cs_heldchange == 0) {
   1197 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1198 			cs->cs_heldtbc = cs->cs_tbc;
   1199 			cs->cs_tbc = 0;
   1200 			cs->cs_heldchange = 1;
   1201 		}
   1202 		else {
   1203 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1204 		}
   1205 	}
   1206 	splx(s);
   1207 	return(0);
   1208 }
   1209 
   1210 /*
   1211  * Write the given register set to the given zs channel in the proper order.
   1212  * The channel must not be transmitting at the time.  The receiver will
   1213  * be disabled for the time it takes to write all the registers.
   1214  */
   1215 static void
   1216 zs_loadchannelregs(zc, reg)
   1217 volatile struct zschan	*zc;
   1218 u_char			*reg;
   1219 {
   1220 	int i;
   1221 
   1222 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1223 	i = zc->zc_data;		/* drain fifo */
   1224 	i = zc->zc_data;
   1225 	i = zc->zc_data;
   1226 	ZS_WRITE(zc,  4, reg[4]);
   1227 	ZS_WRITE(zc, 10, reg[10]);
   1228 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1229 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1230 	ZS_WRITE(zc,  1, reg[1]);
   1231 	ZS_WRITE(zc,  9, reg[9]);
   1232 	ZS_WRITE(zc, 11, reg[11]);
   1233 	ZS_WRITE(zc, 12, reg[12]);
   1234 	ZS_WRITE(zc, 13, reg[13]);
   1235 	ZS_WRITE(zc, 14, reg[14]);
   1236 	ZS_WRITE(zc, 15, reg[15]);
   1237 	ZS_WRITE(zc,  3, reg[3]);
   1238 	ZS_WRITE(zc,  5, reg[5]);
   1239 }
   1240 #endif /* NZS > 1 */
   1241