zs.c revision 1.18 1 /* $NetBSD: zs.c,v 1.18 1996/03/27 10:08:35 leo Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81
82 #if NZS > 0
83
84 #define PCLK (8053976) /* PCLK pin input clock rate */
85
86 #define splzs spl5
87
88 /*
89 * Software state per found chip.
90 */
91 struct zs_softc {
92 struct device zi_dev; /* base device */
93 volatile struct zsdevice *zi_zs; /* chip registers */
94 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
95 };
96
97 static u_char cb_scheduled = 0; /* Already asked for callback? */
98 /*
99 * Define the registers for a closed port
100 */
101 static u_char zs_init_regs[16] = {
102 /* 0 */ 0,
103 /* 1 */ 0,
104 /* 2 */ 0x60,
105 /* 3 */ 0,
106 /* 4 */ 0,
107 /* 5 */ 0,
108 /* 6 */ 0,
109 /* 7 */ 0,
110 /* 8 */ 0,
111 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
112 /* 10 */ ZSWR10_NRZ,
113 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
114 /* 12 */ 0,
115 /* 13 */ 0,
116 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
117 /* 15 */ 0
118 };
119
120 /*
121 * Define the machine dependant clock frequencies
122 * If BRgen feeds sender/receiver we always use a
123 * divisor 16, therefor the division by 16 can as
124 * well be done here.
125 */
126 static u_long zs_freqs_tt[] = {
127 /*
128 * Atari TT, RTxCB is generated by TT-MFP timer C,
129 * which is set to 307.2KHz during initialisation
130 * and never changed afterwards.
131 */
132 PCLK/16, /* BRgen, PCLK, divisor 16 */
133 229500, /* BRgen, RTxCA, divisor 16 */
134 3672000, /* RTxCA, from PCLK4 */
135 0, /* TRxCA, external */
136
137 PCLK/16, /* BRgen, PCLK, divisor 16 */
138 19200, /* BRgen, RTxCB, divisor 16 */
139 307200, /* RTxCB, from TT-MFP TCO */
140 2457600 /* TRxCB, from BCLK */
141 };
142 static u_long zs_freqs_falcon[] = {
143 /*
144 * Atari Falcon, XXX no specs available, this might be wrong
145 */
146 PCLK/16, /* BRgen, PCLK, divisor 16 */
147 229500, /* BRgen, RTxCA, divisor 16 */
148 3672000, /* RTxCA, ??? */
149 0, /* TRxCA, external */
150
151 PCLK/16, /* BRgen, PCLK, divisor 16 */
152 229500, /* BRgen, RTxCB, divisor 16 */
153 3672000, /* RTxCB, ??? */
154 2457600 /* TRxCB, ??? */
155 };
156 static u_long zs_freqs_generic[] = {
157 /*
158 * other machines, assume only PCLK is available
159 */
160 PCLK/16, /* BRgen, PCLK, divisor 16 */
161 0, /* BRgen, RTxCA, divisor 16 */
162 0, /* RTxCA, unknown */
163 0, /* TRxCA, unknown */
164
165 PCLK/16, /* BRgen, PCLK, divisor 16 */
166 0, /* BRgen, RTxCB, divisor 16 */
167 0, /* RTxCB, unknown */
168 0 /* TRxCB, unknown */
169 };
170 static u_long *zs_frequencies;
171
172 /* Definition of the driver for autoconfig. */
173 static int zsmatch __P((struct device *, void *, void *));
174 static void zsattach __P((struct device *, struct device *, void *));
175
176 struct cfattach zs_ca = {
177 sizeof(struct zs_softc), zsmatch, zsattach
178 };
179
180 struct cfdriver zs_cd = {
181 NULL, "zs", DV_TTY, NULL, 0
182 };
183
184 /* {b,c}devsw[] function prototypes */
185 dev_type_open(zsopen);
186 dev_type_close(zsclose);
187 dev_type_read(zsread);
188 dev_type_write(zswrite);
189 dev_type_ioctl(zsioctl);
190 dev_type_tty(zstty);
191
192 /* Interrupt handlers. */
193 int zshard __P((long));
194 static int zssoft __P((long));
195 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
196 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
197 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
198
199 static struct zs_chanstate *zslist;
200
201 /* Routines called from other code. */
202 static void zsstart __P((struct tty *));
203 void zsstop __P((struct tty *, int));
204
205 /* Routines purely local to this driver. */
206 static void zsoverrun __P((int, long *, char *));
207 static int zsparam __P((struct tty *, struct termios *));
208 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
209 static int zs_modem __P((struct zs_chanstate *, int, int));
210 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
211
212 static int zsshortcuts; /* number of "shortcut" software interrupts */
213
214 static int
215 zsmatch(pdp, match, auxp)
216 struct device *pdp;
217 void *match, *auxp;
218 {
219 struct cfdata *cfp = match;
220
221 if(strcmp("zs", auxp) || cfp->cf_unit != 0)
222 return(0);
223 return(1);
224 }
225
226 /*
227 * Attach a found zs.
228 */
229 static void
230 zsattach(parent, dev, aux)
231 struct device *parent;
232 struct device *dev;
233 void *aux;
234 {
235 register struct zs_softc *zi;
236 register struct zs_chanstate *cs;
237 register volatile struct zsdevice *addr;
238 char tmp;
239
240 addr = (struct zsdevice *)AD_SCC;
241 zi = (struct zs_softc *)dev;
242 zi->zi_zs = addr;
243 cs = zi->zi_cs;
244
245 /*
246 * Get the command register into a known state.
247 */
248 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
249 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
250 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
251 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
252
253 /*
254 * Do a hardware reset.
255 */
256 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
257 delay(50000); /*enough ? */
258 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
259
260 /*
261 * Initialize both channels
262 */
263 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
264 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
265
266 if(machineid & ATARI_TT) {
267 /*
268 * ininitialise TT-MFP timer C: 307200Hz
269 * timer C and D share one control register:
270 * bits 0-2 control timer D
271 * bits 4-6 control timer C
272 */
273 int cr = MFP2->mf_tcdcr & 7;
274 MFP2->mf_tcdcr = cr; /* stop timer C */
275 MFP2->mf_tcdr = 1; /* counter 1 */
276 cr |= T_Q004 << 4; /* divisor 4 */
277 MFP2->mf_tcdcr = cr; /* start timer C */
278 /*
279 * enable scc related interrupts
280 */
281 SCU->sys_mask |= SCU_SCC;
282
283 zs_frequencies = zs_freqs_tt;
284 } else if (machineid & ATARI_FALCON) {
285 zs_frequencies = zs_freqs_falcon;
286 } else {
287 zs_frequencies = zs_freqs_generic;
288 }
289
290 /* link into interrupt list with order (A,B) (B=A+1) */
291 cs[0].cs_next = &cs[1];
292 cs[1].cs_next = zslist;
293 zslist = cs;
294
295 cs->cs_unit = 0;
296 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
297 cs++;
298 cs->cs_unit = 1;
299 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
300
301 printf(": serial2 on channel a and modem2 on channel b\n");
302 }
303
304 /*
305 * Open a zs serial port.
306 */
307 int
308 zsopen(dev, flags, mode, p)
309 dev_t dev;
310 int flags;
311 int mode;
312 struct proc *p;
313 {
314 register struct tty *tp;
315 register struct zs_chanstate *cs;
316 struct zs_softc *zi;
317 int unit = ZS_UNIT(dev);
318 int zs = unit >> 1;
319 int error, s;
320
321 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
322 return (ENXIO);
323 cs = &zi->zi_cs[unit & 1];
324
325 /*
326 * When port A (ser02) is selected on the TT, make sure
327 * the port is enabled.
328 */
329 if((machineid & ATARI_TT) && !(unit & 1))
330 ym2149_ser2_select();
331
332 if (cs->cs_rbuf == NULL) {
333 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
334 M_WAITOK);
335 }
336
337 tp = cs->cs_ttyp;
338 if(tp == NULL) {
339 cs->cs_ttyp = tp = ttymalloc();
340 tp->t_dev = dev;
341 tp->t_oproc = zsstart;
342 tp->t_param = zsparam;
343 }
344
345 s = spltty();
346 if((tp->t_state & TS_ISOPEN) == 0) {
347 ttychars(tp);
348 if(tp->t_ispeed == 0) {
349 tp->t_iflag = TTYDEF_IFLAG;
350 tp->t_oflag = TTYDEF_OFLAG;
351 tp->t_cflag = TTYDEF_CFLAG;
352 tp->t_lflag = TTYDEF_LFLAG;
353 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
354 }
355 (void)zsparam(tp, &tp->t_termios);
356 ttsetwater(tp);
357 }
358 else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
359 splx(s);
360 return (EBUSY);
361 }
362 error = 0;
363 for(;;) {
364 /* loop, turning on the device, until carrier present */
365 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
366
367 /* May never get a status intr. if DCD already on. -gwr */
368 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
369 tp->t_state |= TS_CARR_ON;
370 if(cs->cs_softcar)
371 tp->t_state |= TS_CARR_ON;
372 if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
373 tp->t_state & TS_CARR_ON)
374 break;
375 tp->t_state |= TS_WOPEN;
376 if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
377 ttopen, 0)) {
378 if(!(tp->t_state & TS_ISOPEN)) {
379 zs_modem(cs, 0, DMSET);
380 tp->t_state &= ~TS_WOPEN;
381 ttwakeup(tp);
382 }
383 splx(s);
384 return error;
385 }
386 }
387 splx(s);
388 if(error == 0)
389 error = linesw[tp->t_line].l_open(dev, tp);
390 if(error)
391 zs_modem(cs, 0, DMSET);
392 return(error);
393 }
394
395 /*
396 * Close a zs serial port.
397 */
398 int
399 zsclose(dev, flags, mode, p)
400 dev_t dev;
401 int flags;
402 int mode;
403 struct proc *p;
404 {
405 register struct zs_chanstate *cs;
406 register struct tty *tp;
407 struct zs_softc *zi;
408 int unit = ZS_UNIT(dev);
409 int s;
410
411 zi = zs_cd.cd_devs[unit >> 1];
412 cs = &zi->zi_cs[unit & 1];
413 tp = cs->cs_ttyp;
414 linesw[tp->t_line].l_close(tp, flags);
415 if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
416 (tp->t_state & TS_ISOPEN) == 0) {
417 zs_modem(cs, 0, DMSET);
418 /* hold low for 1 second */
419 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
420 }
421 if(cs->cs_creg[5] & ZSWR5_BREAK) {
422 s = splzs();
423 cs->cs_preg[5] &= ~ZSWR5_BREAK;
424 cs->cs_creg[5] &= ~ZSWR5_BREAK;
425 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
426 splx(s);
427 }
428 ttyclose(tp);
429
430 /*
431 * Drop all lines and cancel interrupts
432 */
433 s = splzs();
434 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
435 splx(s);
436 return (0);
437 }
438
439 /*
440 * Read/write zs serial port.
441 */
442 int
443 zsread(dev, uio, flags)
444 dev_t dev;
445 struct uio *uio;
446 int flags;
447 {
448 register struct zs_chanstate *cs;
449 register struct zs_softc *zi;
450 register struct tty *tp;
451 int unit;
452
453 unit = ZS_UNIT(dev);
454 zi = zs_cd.cd_devs[unit >> 1];
455 cs = &zi->zi_cs[unit & 1];
456 tp = cs->cs_ttyp;
457
458 return(linesw[tp->t_line].l_read(tp, uio, flags));
459 }
460
461 int
462 zswrite(dev, uio, flags)
463 dev_t dev;
464 struct uio *uio;
465 int flags;
466 {
467 register struct zs_chanstate *cs;
468 register struct zs_softc *zi;
469 register struct tty *tp;
470 int unit;
471
472 unit = ZS_UNIT(dev);
473 zi = zs_cd.cd_devs[unit >> 1];
474 cs = &zi->zi_cs[unit & 1];
475 tp = cs->cs_ttyp;
476
477 return(linesw[tp->t_line].l_write(tp, uio, flags));
478 }
479
480 struct tty *
481 zstty(dev)
482 dev_t dev;
483 {
484 register struct zs_chanstate *cs;
485 register struct zs_softc *zi;
486 int unit;
487
488 unit = ZS_UNIT(dev);
489 zi = zs_cd.cd_devs[unit >> 1];
490 cs = &zi->zi_cs[unit & 1];
491 return(cs->cs_ttyp);
492 }
493
494 /*
495 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
496 * channels are kept in (A,B) pairs.
497 *
498 * Do just a little, then get out; set a software interrupt if more
499 * work is needed.
500 *
501 * We deliberately ignore the vectoring Zilog gives us, and match up
502 * only the number of `reset interrupt under service' operations, not
503 * the order.
504 */
505
506 int
507 zshard(sr)
508 long sr;
509 {
510 register struct zs_chanstate *a;
511 #define b (a + 1)
512 register volatile struct zschan *zc;
513 register int rr3, intflags = 0, v, i;
514
515 do {
516 intflags &= ~4;
517 for(a = zslist; a != NULL; a = b->cs_next) {
518 rr3 = ZS_READ(a->cs_zc, 3);
519 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
520 intflags |= 4|2;
521 zc = a->cs_zc;
522 i = a->cs_rbput;
523 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
524 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
525 intflags |= 1;
526 }
527 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
528 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
529 intflags |= 1;
530 }
531 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
532 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
533 intflags |= 1;
534 }
535 a->cs_rbput = i;
536 }
537 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
538 intflags |= 4|2;
539 zc = b->cs_zc;
540 i = b->cs_rbput;
541 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
542 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
543 intflags |= 1;
544 }
545 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
546 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
547 intflags |= 1;
548 }
549 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
550 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
551 intflags |= 1;
552 }
553 b->cs_rbput = i;
554 }
555 }
556 } while(intflags & 4);
557 #undef b
558
559 if(intflags & 1) {
560 if(BASEPRI(sr)) {
561 spl1();
562 zsshortcuts++;
563 return(zssoft(sr));
564 }
565 else if(!cb_scheduled) {
566 cb_scheduled++;
567 add_sicallback(zssoft, 0, 0);
568 }
569 }
570 return(intflags & 2);
571 }
572
573 static int
574 zsrint(cs, zc)
575 register struct zs_chanstate *cs;
576 register volatile struct zschan *zc;
577 {
578 register int c;
579
580 /*
581 * First read the status, because read of the received char
582 * destroy the status of this char.
583 */
584 c = ZS_READ(zc, 1);
585 c |= (zc->zc_data << 8);
586
587 /* clear receive error & interrupt condition */
588 zc->zc_csr = ZSWR0_RESET_ERRORS;
589 zc->zc_csr = ZSWR0_CLR_INTR;
590
591 return(ZRING_MAKE(ZRING_RINT, c));
592 }
593
594 static int
595 zsxint(cs, zc)
596 register struct zs_chanstate *cs;
597 register volatile struct zschan *zc;
598 {
599 register int i = cs->cs_tbc;
600
601 if(i == 0) {
602 zc->zc_csr = ZSWR0_RESET_TXINT;
603 zc->zc_csr = ZSWR0_CLR_INTR;
604 return(ZRING_MAKE(ZRING_XINT, 0));
605 }
606 cs->cs_tbc = i - 1;
607 zc->zc_data = *cs->cs_tba++;
608 zc->zc_csr = ZSWR0_CLR_INTR;
609 return (0);
610 }
611
612 static int
613 zssint(cs, zc)
614 register struct zs_chanstate *cs;
615 register volatile struct zschan *zc;
616 {
617 register int rr0;
618
619 rr0 = zc->zc_csr;
620 zc->zc_csr = ZSWR0_RESET_STATUS;
621 zc->zc_csr = ZSWR0_CLR_INTR;
622 /*
623 * The chip's hardware flow control is, as noted in zsreg.h,
624 * busted---if the DCD line goes low the chip shuts off the
625 * receiver (!). If we want hardware CTS flow control but do
626 * not have it, and carrier is now on, turn HFC on; if we have
627 * HFC now but carrier has gone low, turn it off.
628 */
629 if(rr0 & ZSRR0_DCD) {
630 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
631 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
632 cs->cs_creg[3] |= ZSWR3_HFC;
633 ZS_WRITE(zc, 3, cs->cs_creg[3]);
634 }
635 }
636 else {
637 if (cs->cs_creg[3] & ZSWR3_HFC) {
638 cs->cs_creg[3] &= ~ZSWR3_HFC;
639 ZS_WRITE(zc, 3, cs->cs_creg[3]);
640 }
641 }
642 return(ZRING_MAKE(ZRING_SINT, rr0));
643 }
644
645 /*
646 * Print out a ring or fifo overrun error message.
647 */
648 static void
649 zsoverrun(unit, ptime, what)
650 int unit;
651 long *ptime;
652 char *what;
653 {
654
655 if(*ptime != time.tv_sec) {
656 *ptime = time.tv_sec;
657 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
658 (unit & 1) + 'a', what);
659 }
660 }
661
662 /*
663 * ZS software interrupt. Scan all channels for deferred interrupts.
664 */
665 int
666 zssoft(sr)
667 long sr;
668 {
669 register struct zs_chanstate *cs;
670 register volatile struct zschan *zc;
671 register struct linesw *line;
672 register struct tty *tp;
673 register int get, n, c, cc, unit, s;
674 int retval = 0;
675
676 cb_scheduled = 0;
677 s = spltty();
678 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
679 get = cs->cs_rbget;
680 again:
681 n = cs->cs_rbput; /* atomic */
682 if(get == n) /* nothing more on this line */
683 continue;
684 retval = 1;
685 unit = cs->cs_unit; /* set up to handle interrupts */
686 zc = cs->cs_zc;
687 tp = cs->cs_ttyp;
688 line = &linesw[tp->t_line];
689 /*
690 * Compute the number of interrupts in the receive ring.
691 * If the count is overlarge, we lost some events, and
692 * must advance to the first valid one. It may get
693 * overwritten if more data are arriving, but this is
694 * too expensive to check and gains nothing (we already
695 * lost out; all we can do at this point is trade one
696 * kind of loss for another).
697 */
698 n -= get;
699 if(n > ZLRB_RING_SIZE) {
700 zsoverrun(unit, &cs->cs_rotime, "ring");
701 get += n - ZLRB_RING_SIZE;
702 n = ZLRB_RING_SIZE;
703 }
704 while(--n >= 0) {
705 /* race to keep ahead of incoming interrupts */
706 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
707 switch (ZRING_TYPE(c)) {
708
709 case ZRING_RINT:
710 c = ZRING_VALUE(c);
711 if(c & ZSRR1_DO)
712 zsoverrun(unit, &cs->cs_fotime, "fifo");
713 cc = c >> 8;
714 if(c & ZSRR1_FE)
715 cc |= TTY_FE;
716 if(c & ZSRR1_PE)
717 cc |= TTY_PE;
718 line->l_rint(cc, tp);
719 break;
720
721 case ZRING_XINT:
722 /*
723 * Transmit done: change registers and resume,
724 * or clear BUSY.
725 */
726 if(cs->cs_heldchange) {
727 int sps;
728
729 sps = splzs();
730 c = zc->zc_csr;
731 if((c & ZSRR0_DCD) == 0)
732 cs->cs_preg[3] &= ~ZSWR3_HFC;
733 bcopy((caddr_t)cs->cs_preg,
734 (caddr_t)cs->cs_creg, 16);
735 zs_loadchannelregs(zc, cs->cs_creg);
736 splx(sps);
737 cs->cs_heldchange = 0;
738 if(cs->cs_heldtbc
739 && (tp->t_state & TS_TTSTOP) == 0) {
740 cs->cs_tbc = cs->cs_heldtbc - 1;
741 zc->zc_data = *cs->cs_tba++;
742 goto again;
743 }
744 }
745 tp->t_state &= ~TS_BUSY;
746 if(tp->t_state & TS_FLUSH)
747 tp->t_state &= ~TS_FLUSH;
748 else ndflush(&tp->t_outq,cs->cs_tba
749 - (caddr_t)tp->t_outq.c_cf);
750 line->l_start(tp);
751 break;
752
753 case ZRING_SINT:
754 /*
755 * Status line change. HFC bit is run in
756 * hardware interrupt, to avoid locking
757 * at splzs here.
758 */
759 c = ZRING_VALUE(c);
760 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
761 cc = (c & ZSRR0_DCD) != 0;
762 if(line->l_modem(tp, cc) == 0)
763 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
764 cc ? DMBIS : DMBIC);
765 }
766 cs->cs_rr0 = c;
767 break;
768
769 default:
770 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
771 unit >> 1, (unit & 1) + 'a', c);
772 break;
773 }
774 }
775 cs->cs_rbget = get;
776 goto again;
777 }
778 splx(s);
779 return (retval);
780 }
781
782 int
783 zsioctl(dev, cmd, data, flag, p)
784 dev_t dev;
785 u_long cmd;
786 caddr_t data;
787 int flag;
788 struct proc *p;
789 {
790 int unit = ZS_UNIT(dev);
791 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
792 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
793 register int error, s;
794 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
795
796 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
797 if(error >= 0)
798 return(error);
799 error = ttioctl(tp, cmd, data, flag, p);
800 if(error >= 0)
801 return (error);
802
803 switch (cmd) {
804 case TIOCSBRK:
805 s = splzs();
806 cs->cs_preg[5] |= ZSWR5_BREAK;
807 cs->cs_creg[5] |= ZSWR5_BREAK;
808 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
809 splx(s);
810 break;
811 case TIOCCBRK:
812 s = splzs();
813 cs->cs_preg[5] &= ~ZSWR5_BREAK;
814 cs->cs_creg[5] &= ~ZSWR5_BREAK;
815 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
816 splx(s);
817 break;
818 case TIOCGFLAGS: {
819 int bits = 0;
820
821 if(cs->cs_softcar)
822 bits |= TIOCFLAG_SOFTCAR;
823 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
824 bits |= TIOCFLAG_CLOCAL;
825 if(cs->cs_creg[3] & ZSWR3_HFC)
826 bits |= TIOCFLAG_CRTSCTS;
827 *(int *)data = bits;
828 break;
829 }
830 case TIOCSFLAGS: {
831 int userbits = 0;
832
833 error = suser(p->p_ucred, &p->p_acflag);
834 if(error != 0)
835 return (EPERM);
836
837 userbits = *(int *)data;
838
839 /*
840 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
841 # defaulting to software flow control.
842 */
843 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
844 return(EINVAL);
845 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
846 return(ENODEV);
847
848 s = splzs();
849 if((userbits & TIOCFLAG_SOFTCAR)) {
850 cs->cs_softcar = 1; /* turn on softcar */
851 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
852 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
853 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
854 }
855 else if(userbits & TIOCFLAG_CLOCAL) {
856 cs->cs_softcar = 0; /* turn off softcar */
857 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
858 cs->cs_creg[15] |= ZSWR15_DCD_IE;
859 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
860 tp->t_termios.c_cflag |= CLOCAL;
861 }
862 if(userbits & TIOCFLAG_CRTSCTS) {
863 cs->cs_preg[15] |= ZSWR15_CTS_IE;
864 cs->cs_creg[15] |= ZSWR15_CTS_IE;
865 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
866 cs->cs_preg[3] |= ZSWR3_HFC;
867 cs->cs_creg[3] |= ZSWR3_HFC;
868 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
869 tp->t_termios.c_cflag |= CRTSCTS;
870 }
871 else {
872 /* no mdmbuf, so we must want software flow control */
873 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
874 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
875 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
876 cs->cs_preg[3] &= ~ZSWR3_HFC;
877 cs->cs_creg[3] &= ~ZSWR3_HFC;
878 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
879 tp->t_termios.c_cflag &= ~CRTSCTS;
880 }
881 splx(s);
882 break;
883 }
884 case TIOCSDTR:
885 zs_modem(cs, ZSWR5_DTR, DMBIS);
886 break;
887 case TIOCCDTR:
888 zs_modem(cs, ZSWR5_DTR, DMBIC);
889 break;
890 case TIOCMGET:
891 zs_modem(cs, 0, DMGET);
892 break;
893 case TIOCMSET:
894 case TIOCMBIS:
895 case TIOCMBIC:
896 default:
897 return (ENOTTY);
898 }
899 return (0);
900 }
901
902 /*
903 * Start or restart transmission.
904 */
905 static void
906 zsstart(tp)
907 register struct tty *tp;
908 {
909 register struct zs_chanstate *cs;
910 register int s, nch;
911 int unit = ZS_UNIT(tp->t_dev);
912 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
913
914 cs = &zi->zi_cs[unit & 1];
915 s = spltty();
916
917 /*
918 * If currently active or delaying, no need to do anything.
919 */
920 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
921 goto out;
922
923 /*
924 * If there are sleepers, and output has drained below low
925 * water mark, awaken.
926 */
927 if(tp->t_outq.c_cc <= tp->t_lowat) {
928 if(tp->t_state & TS_ASLEEP) {
929 tp->t_state &= ~TS_ASLEEP;
930 wakeup((caddr_t)&tp->t_outq);
931 }
932 selwakeup(&tp->t_wsel);
933 }
934
935 nch = ndqb(&tp->t_outq, 0); /* XXX */
936 if(nch) {
937 register char *p = tp->t_outq.c_cf;
938
939 /* mark busy, enable tx done interrupts, & send first byte */
940 tp->t_state |= TS_BUSY;
941 (void) splzs();
942 cs->cs_preg[1] |= ZSWR1_TIE;
943 cs->cs_creg[1] |= ZSWR1_TIE;
944 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
945 cs->cs_zc->zc_data = *p;
946 cs->cs_tba = p + 1;
947 cs->cs_tbc = nch - 1;
948 } else {
949 /*
950 * Nothing to send, turn off transmit done interrupts.
951 * This is useful if something is doing polled output.
952 */
953 (void) splzs();
954 cs->cs_preg[1] &= ~ZSWR1_TIE;
955 cs->cs_creg[1] &= ~ZSWR1_TIE;
956 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
957 }
958 out:
959 splx(s);
960 }
961
962 /*
963 * Stop output, e.g., for ^S or output flush.
964 */
965 void
966 zsstop(tp, flag)
967 register struct tty *tp;
968 int flag;
969 {
970 register struct zs_chanstate *cs;
971 register int s, unit = ZS_UNIT(tp->t_dev);
972 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
973
974 cs = &zi->zi_cs[unit & 1];
975 s = splzs();
976 if(tp->t_state & TS_BUSY) {
977 /*
978 * Device is transmitting; must stop it.
979 */
980 cs->cs_tbc = 0;
981 if ((tp->t_state & TS_TTSTOP) == 0)
982 tp->t_state |= TS_FLUSH;
983 }
984 splx(s);
985 }
986
987 /*
988 * Set ZS tty parameters from termios.
989 *
990 * This routine makes use of the fact that only registers
991 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
992 */
993 static int
994 zsparam(tp, t)
995 register struct tty *tp;
996 register struct termios *t;
997 {
998 int unit = ZS_UNIT(tp->t_dev);
999 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1000 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1001 int cdiv, clkm, brgm, tcon;
1002 register int tmp, tmp5, cflag, s;
1003
1004 tmp = t->c_ospeed;
1005 tmp5 = t->c_ispeed;
1006 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1007 return(EINVAL);
1008 if(tmp == 0) {
1009 /* stty 0 => drop DTR and RTS */
1010 zs_modem(cs, 0, DMSET);
1011 return(0);
1012 }
1013 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1014 if (tmp < 0)
1015 return(EINVAL);
1016 tp->t_ispeed = tp->t_ospeed = tmp;
1017
1018 cflag = tp->t_cflag = t->c_cflag;
1019 if (cflag & CSTOPB)
1020 cdiv |= ZSWR4_TWOSB;
1021 else
1022 cdiv |= ZSWR4_ONESB;
1023 if (!(cflag & PARODD))
1024 cdiv |= ZSWR4_EVENP;
1025 if (cflag & PARENB)
1026 cdiv |= ZSWR4_PARENB;
1027
1028 switch(cflag & CSIZE) {
1029 case CS5:
1030 tmp = ZSWR3_RX_5;
1031 tmp5 = ZSWR5_TX_5;
1032 break;
1033 case CS6:
1034 tmp = ZSWR3_RX_6;
1035 tmp5 = ZSWR5_TX_6;
1036 break;
1037 case CS7:
1038 tmp = ZSWR3_RX_7;
1039 tmp5 = ZSWR5_TX_7;
1040 break;
1041 case CS8:
1042 default:
1043 tmp = ZSWR3_RX_8;
1044 tmp5 = ZSWR5_TX_8;
1045 break;
1046 }
1047 tmp |= ZSWR3_RX_ENABLE;
1048 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1049
1050 /*
1051 * Block interrupts so that state will not
1052 * be altered until we are done setting it up.
1053 */
1054 s = splzs();
1055 cs->cs_preg[4] = cdiv;
1056 cs->cs_preg[11] = clkm;
1057 cs->cs_preg[12] = tcon;
1058 cs->cs_preg[13] = tcon >> 8;
1059 cs->cs_preg[14] = brgm;
1060 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1061 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1062 cs->cs_preg[10] = ZSWR10_NRZ;
1063 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1064
1065 /*
1066 * Output hardware flow control on the chip is horrendous: if
1067 * carrier detect drops, the receiver is disabled. Hence we
1068 * can only do this when the carrier is on.
1069 */
1070 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1071 tmp |= ZSWR3_HFC;
1072 cs->cs_preg[3] = tmp;
1073 cs->cs_preg[5] = tmp5;
1074
1075 /*
1076 * If nothing is being transmitted, set up new current values,
1077 * else mark them as pending.
1078 */
1079 if(cs->cs_heldchange == 0) {
1080 if (cs->cs_ttyp->t_state & TS_BUSY) {
1081 cs->cs_heldtbc = cs->cs_tbc;
1082 cs->cs_tbc = 0;
1083 cs->cs_heldchange = 1;
1084 } else {
1085 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1086 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1087 }
1088 }
1089 splx(s);
1090 return (0);
1091 }
1092
1093 /*
1094 * search for the best matching baudrate
1095 */
1096 static int
1097 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1098 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1099 {
1100 int bestdiff, bestbps, source;
1101
1102 unit = (unit & 1) << 2;
1103 for (source = 0; source < 4; ++source) {
1104 long freq = zs_frequencies[unit + source];
1105 int diff, bps, div, clkm, brgm, tcon;
1106 switch (source) {
1107 case 0: /* BRgen, PCLK */
1108 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1109 break;
1110 case 1: /* BRgen, RTxC */
1111 brgm = ZSWR14_BAUD_ENA;
1112 break;
1113 case 2: /* RTxC */
1114 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1115 break;
1116 case 3: /* TRxC */
1117 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1118 break;
1119 }
1120 switch (source) {
1121 case 0:
1122 case 1:
1123 div = ZSWR4_CLK_X16;
1124 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1125 tcon = BPS_TO_TCONST(freq, wanted);
1126 if (tcon < 0)
1127 tcon = 0;
1128 bps = TCONST_TO_BPS(freq, tcon);
1129 break;
1130 case 2:
1131 case 3:
1132 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1133 int b2 = freq / 32, d2 = abs(b2 - wanted);
1134 int b3 = freq / 64, d3 = abs(b3 - wanted);
1135
1136 if (d1 < d2 && d1 < d3) {
1137 div = ZSWR4_CLK_X16;
1138 bps = b1;
1139 } else if (d2 < d3 && d2 < d1) {
1140 div = ZSWR4_CLK_X32;
1141 bps = b2;
1142 } else {
1143 div = ZSWR4_CLK_X64;
1144 bps = b3;
1145 }
1146 brgm = tcon = 0;
1147 break;
1148 }
1149 }
1150 diff = abs(bps - wanted);
1151 if (!source || diff < bestdiff) {
1152 *divisor = div;
1153 *clockmode = clkm;
1154 *brgenmode = brgm;
1155 *timeconst = tcon;
1156 bestbps = bps;
1157 bestdiff = diff;
1158 if (diff == 0)
1159 break;
1160 }
1161 }
1162 /* Allow deviations upto 5% */
1163 if (20 * bestdiff > wanted)
1164 return -1;
1165 return bestbps;
1166 }
1167
1168 /*
1169 * Raise or lower modem control (DTR/RTS) signals. If a character is
1170 * in transmission, the change is deferred.
1171 */
1172 static int
1173 zs_modem(cs, bits, how)
1174 struct zs_chanstate *cs;
1175 int bits, how;
1176 {
1177 int s, mbits;
1178
1179 bits &= ZSWR5_DTR | ZSWR5_RTS;
1180
1181 s = splzs();
1182 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1183
1184 switch(how) {
1185 case DMSET:
1186 mbits = bits;
1187 break;
1188 case DMBIS:
1189 mbits |= bits;
1190 break;
1191 case DMBIC:
1192 mbits &= ~bits;
1193 break;
1194 case DMGET:
1195 splx(s);
1196 return(mbits);
1197 }
1198
1199 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1200 if(cs->cs_heldchange == 0) {
1201 if(cs->cs_ttyp->t_state & TS_BUSY) {
1202 cs->cs_heldtbc = cs->cs_tbc;
1203 cs->cs_tbc = 0;
1204 cs->cs_heldchange = 1;
1205 }
1206 else {
1207 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1208 }
1209 }
1210 splx(s);
1211 return(0);
1212 }
1213
1214 /*
1215 * Write the given register set to the given zs channel in the proper order.
1216 * The channel must not be transmitting at the time. The receiver will
1217 * be disabled for the time it takes to write all the registers.
1218 */
1219 static void
1220 zs_loadchannelregs(zc, reg)
1221 volatile struct zschan *zc;
1222 u_char *reg;
1223 {
1224 int i;
1225
1226 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1227 i = zc->zc_data; /* drain fifo */
1228 i = zc->zc_data;
1229 i = zc->zc_data;
1230 ZS_WRITE(zc, 4, reg[4]);
1231 ZS_WRITE(zc, 10, reg[10]);
1232 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1233 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1234 ZS_WRITE(zc, 1, reg[1]);
1235 ZS_WRITE(zc, 9, reg[9]);
1236 ZS_WRITE(zc, 11, reg[11]);
1237 ZS_WRITE(zc, 12, reg[12]);
1238 ZS_WRITE(zc, 13, reg[13]);
1239 ZS_WRITE(zc, 14, reg[14]);
1240 ZS_WRITE(zc, 15, reg[15]);
1241 ZS_WRITE(zc, 3, reg[3]);
1242 ZS_WRITE(zc, 5, reg[5]);
1243 }
1244 #endif /* NZS > 1 */
1245