zs.c revision 1.20.4.1 1 /* $NetBSD: zs.c,v 1.20.4.1 1996/06/18 06:19:50 leo Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81
82 #if NZS > 0
83
84 #define PCLK (8053976) /* PCLK pin input clock rate */
85
86 #define splzs spl5
87
88 /*
89 * Software state per found chip.
90 */
91 struct zs_softc {
92 struct device zi_dev; /* base device */
93 volatile struct zsdevice *zi_zs; /* chip registers */
94 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
95 };
96
97 static u_char cb_scheduled = 0; /* Already asked for callback? */
98 /*
99 * Define the registers for a closed port
100 */
101 static u_char zs_init_regs[16] = {
102 /* 0 */ 0,
103 /* 1 */ 0,
104 /* 2 */ 0x60,
105 /* 3 */ 0,
106 /* 4 */ 0,
107 /* 5 */ 0,
108 /* 6 */ 0,
109 /* 7 */ 0,
110 /* 8 */ 0,
111 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
112 /* 10 */ ZSWR10_NRZ,
113 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
114 /* 12 */ 0,
115 /* 13 */ 0,
116 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
117 /* 15 */ 0
118 };
119
120 /*
121 * Define the machine dependant clock frequencies
122 * If BRgen feeds sender/receiver we always use a
123 * divisor 16, therefor the division by 16 can as
124 * well be done here.
125 */
126 static u_long zs_freqs_tt[] = {
127 /*
128 * Atari TT, RTxCB is generated by TT-MFP timer C,
129 * which is set to 307.2KHz during initialisation
130 * and never changed afterwards.
131 */
132 PCLK/16, /* BRgen, PCLK, divisor 16 */
133 229500, /* BRgen, RTxCA, divisor 16 */
134 3672000, /* RTxCA, from PCLK4 */
135 0, /* TRxCA, external */
136
137 PCLK/16, /* BRgen, PCLK, divisor 16 */
138 19200, /* BRgen, RTxCB, divisor 16 */
139 307200, /* RTxCB, from TT-MFP TCO */
140 2457600 /* TRxCB, from BCLK */
141 };
142 static u_long zs_freqs_falcon[] = {
143 /*
144 * Atari Falcon, XXX no specs available, this might be wrong
145 */
146 PCLK/16, /* BRgen, PCLK, divisor 16 */
147 229500, /* BRgen, RTxCA, divisor 16 */
148 3672000, /* RTxCA, ??? */
149 0, /* TRxCA, external */
150
151 PCLK/16, /* BRgen, PCLK, divisor 16 */
152 229500, /* BRgen, RTxCB, divisor 16 */
153 3672000, /* RTxCB, ??? */
154 2457600 /* TRxCB, ??? */
155 };
156 static u_long zs_freqs_generic[] = {
157 /*
158 * other machines, assume only PCLK is available
159 */
160 PCLK/16, /* BRgen, PCLK, divisor 16 */
161 0, /* BRgen, RTxCA, divisor 16 */
162 0, /* RTxCA, unknown */
163 0, /* TRxCA, unknown */
164
165 PCLK/16, /* BRgen, PCLK, divisor 16 */
166 0, /* BRgen, RTxCB, divisor 16 */
167 0, /* RTxCB, unknown */
168 0 /* TRxCB, unknown */
169 };
170 static u_long *zs_frequencies;
171
172 /* Definition of the driver for autoconfig. */
173 static int zsmatch __P((struct device *, void *, void *));
174 static void zsattach __P((struct device *, struct device *, void *));
175
176 struct cfattach zs_ca = {
177 sizeof(struct zs_softc), zsmatch, zsattach
178 };
179
180 struct cfdriver zs_cd = {
181 NULL, "zs", DV_TTY, NULL, 0
182 };
183
184 /* {b,c}devsw[] function prototypes */
185 dev_type_open(zsopen);
186 dev_type_close(zsclose);
187 dev_type_read(zsread);
188 dev_type_write(zswrite);
189 dev_type_ioctl(zsioctl);
190 dev_type_tty(zstty);
191
192 /* Interrupt handlers. */
193 int zshard __P((long));
194 static int zssoft __P((long));
195 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
196 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
197 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
198
199 static struct zs_chanstate *zslist;
200
201 /* Routines called from other code. */
202 static void zsstart __P((struct tty *));
203 void zsstop __P((struct tty *, int));
204
205 /* Routines purely local to this driver. */
206 static void zsoverrun __P((int, long *, char *));
207 static int zsparam __P((struct tty *, struct termios *));
208 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
209 static int zs_modem __P((struct zs_chanstate *, int, int));
210 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
211
212 static int zsshortcuts; /* number of "shortcut" software interrupts */
213
214 static int
215 zsmatch(pdp, match, auxp)
216 struct device *pdp;
217 void *match, *auxp;
218 {
219 struct cfdata *cfp = match;
220
221 if(strcmp("zs", auxp) || cfp->cf_unit != 0)
222 return(0);
223 return(1);
224 }
225
226 /*
227 * Attach a found zs.
228 */
229 static void
230 zsattach(parent, dev, aux)
231 struct device *parent;
232 struct device *dev;
233 void *aux;
234 {
235 register struct zs_softc *zi;
236 register struct zs_chanstate *cs;
237 register volatile struct zsdevice *addr;
238 char tmp;
239
240 addr = (struct zsdevice *)AD_SCC;
241 zi = (struct zs_softc *)dev;
242 zi->zi_zs = addr;
243 cs = zi->zi_cs;
244
245 /*
246 * Get the command register into a known state.
247 */
248 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
249 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
250 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
251 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
252
253 /*
254 * Do a hardware reset.
255 */
256 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
257 delay(50000); /*enough ? */
258 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
259
260 /*
261 * Initialize both channels
262 */
263 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
264 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
265
266 if(machineid & ATARI_TT) {
267 /*
268 * ininitialise TT-MFP timer C: 307200Hz
269 * timer C and D share one control register:
270 * bits 0-2 control timer D
271 * bits 4-6 control timer C
272 */
273 int cr = MFP2->mf_tcdcr & 7;
274 MFP2->mf_tcdcr = cr; /* stop timer C */
275 MFP2->mf_tcdr = 1; /* counter 1 */
276 cr |= T_Q004 << 4; /* divisor 4 */
277 MFP2->mf_tcdcr = cr; /* start timer C */
278 /*
279 * enable scc related interrupts
280 */
281 SCU->sys_mask |= SCU_SCC;
282
283 zs_frequencies = zs_freqs_tt;
284 } else if (machineid & ATARI_FALCON) {
285 zs_frequencies = zs_freqs_falcon;
286 } else {
287 zs_frequencies = zs_freqs_generic;
288 }
289
290 /* link into interrupt list with order (A,B) (B=A+1) */
291 cs[0].cs_next = &cs[1];
292 cs[1].cs_next = zslist;
293 zslist = cs;
294
295 cs->cs_unit = 0;
296 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
297 cs++;
298 cs->cs_unit = 1;
299 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
300
301 printf(": serial2 on channel a and modem2 on channel b\n");
302 }
303
304 /*
305 * Open a zs serial port.
306 */
307 int
308 zsopen(dev, flags, mode, p)
309 dev_t dev;
310 int flags;
311 int mode;
312 struct proc *p;
313 {
314 register struct tty *tp;
315 register struct zs_chanstate *cs;
316 struct zs_softc *zi;
317 int unit = ZS_UNIT(dev);
318 int zs = unit >> 1;
319 int error, s;
320
321 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
322 return (ENXIO);
323 cs = &zi->zi_cs[unit & 1];
324
325 /*
326 * When port A (ser02) is selected on the TT, make sure
327 * the port is enabled.
328 */
329 if((machineid & ATARI_TT) && !(unit & 1))
330 ym2149_ser2_select();
331
332 if (cs->cs_rbuf == NULL) {
333 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
334 M_WAITOK);
335 }
336
337 tp = cs->cs_ttyp;
338 if(tp == NULL) {
339 cs->cs_ttyp = tp = ttymalloc();
340 tty_attach(tp);
341 tp->t_dev = dev;
342 tp->t_oproc = zsstart;
343 tp->t_param = zsparam;
344 }
345
346 s = spltty();
347 if((tp->t_state & TS_ISOPEN) == 0) {
348 ttychars(tp);
349 if(tp->t_ispeed == 0) {
350 tp->t_iflag = TTYDEF_IFLAG;
351 tp->t_oflag = TTYDEF_OFLAG;
352 tp->t_cflag = TTYDEF_CFLAG;
353 tp->t_lflag = TTYDEF_LFLAG;
354 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
355 }
356 (void)zsparam(tp, &tp->t_termios);
357 ttsetwater(tp);
358 }
359 else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
360 splx(s);
361 return (EBUSY);
362 }
363 error = 0;
364 for(;;) {
365 /* loop, turning on the device, until carrier present */
366 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
367
368 /* May never get a status intr. if DCD already on. -gwr */
369 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
370 tp->t_state |= TS_CARR_ON;
371 if(cs->cs_softcar)
372 tp->t_state |= TS_CARR_ON;
373 if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
374 tp->t_state & TS_CARR_ON)
375 break;
376 tp->t_state |= TS_WOPEN;
377 if((error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
378 ttopen, 0)) != 0) {
379 if(!(tp->t_state & TS_ISOPEN)) {
380 zs_modem(cs, 0, DMSET);
381 tp->t_state &= ~TS_WOPEN;
382 ttwakeup(tp);
383 }
384 splx(s);
385 return error;
386 }
387 }
388 splx(s);
389 if(error == 0)
390 error = linesw[tp->t_line].l_open(dev, tp);
391 if(error)
392 zs_modem(cs, 0, DMSET);
393 return(error);
394 }
395
396 /*
397 * Close a zs serial port.
398 */
399 int
400 zsclose(dev, flags, mode, p)
401 dev_t dev;
402 int flags;
403 int mode;
404 struct proc *p;
405 {
406 register struct zs_chanstate *cs;
407 register struct tty *tp;
408 struct zs_softc *zi;
409 int unit = ZS_UNIT(dev);
410 int s;
411
412 zi = zs_cd.cd_devs[unit >> 1];
413 cs = &zi->zi_cs[unit & 1];
414 tp = cs->cs_ttyp;
415 linesw[tp->t_line].l_close(tp, flags);
416 if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
417 (tp->t_state & TS_ISOPEN) == 0) {
418 zs_modem(cs, 0, DMSET);
419 /* hold low for 1 second */
420 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
421 }
422 if(cs->cs_creg[5] & ZSWR5_BREAK) {
423 s = splzs();
424 cs->cs_preg[5] &= ~ZSWR5_BREAK;
425 cs->cs_creg[5] &= ~ZSWR5_BREAK;
426 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
427 splx(s);
428 }
429 ttyclose(tp);
430
431 /*
432 * Drop all lines and cancel interrupts
433 */
434 s = splzs();
435 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
436 splx(s);
437 return (0);
438 }
439
440 /*
441 * Read/write zs serial port.
442 */
443 int
444 zsread(dev, uio, flags)
445 dev_t dev;
446 struct uio *uio;
447 int flags;
448 {
449 register struct zs_chanstate *cs;
450 register struct zs_softc *zi;
451 register struct tty *tp;
452 int unit;
453
454 unit = ZS_UNIT(dev);
455 zi = zs_cd.cd_devs[unit >> 1];
456 cs = &zi->zi_cs[unit & 1];
457 tp = cs->cs_ttyp;
458
459 return(linesw[tp->t_line].l_read(tp, uio, flags));
460 }
461
462 int
463 zswrite(dev, uio, flags)
464 dev_t dev;
465 struct uio *uio;
466 int flags;
467 {
468 register struct zs_chanstate *cs;
469 register struct zs_softc *zi;
470 register struct tty *tp;
471 int unit;
472
473 unit = ZS_UNIT(dev);
474 zi = zs_cd.cd_devs[unit >> 1];
475 cs = &zi->zi_cs[unit & 1];
476 tp = cs->cs_ttyp;
477
478 return(linesw[tp->t_line].l_write(tp, uio, flags));
479 }
480
481 struct tty *
482 zstty(dev)
483 dev_t dev;
484 {
485 register struct zs_chanstate *cs;
486 register struct zs_softc *zi;
487 int unit;
488
489 unit = ZS_UNIT(dev);
490 zi = zs_cd.cd_devs[unit >> 1];
491 cs = &zi->zi_cs[unit & 1];
492 return(cs->cs_ttyp);
493 }
494
495 /*
496 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
497 * channels are kept in (A,B) pairs.
498 *
499 * Do just a little, then get out; set a software interrupt if more
500 * work is needed.
501 *
502 * We deliberately ignore the vectoring Zilog gives us, and match up
503 * only the number of `reset interrupt under service' operations, not
504 * the order.
505 */
506
507 int
508 zshard(sr)
509 long sr;
510 {
511 register struct zs_chanstate *a;
512 #define b (a + 1)
513 register volatile struct zschan *zc;
514 register int rr3, intflags = 0, v, i;
515
516 do {
517 intflags &= ~4;
518 for(a = zslist; a != NULL; a = b->cs_next) {
519 rr3 = ZS_READ(a->cs_zc, 3);
520 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
521 intflags |= 4|2;
522 zc = a->cs_zc;
523 i = a->cs_rbput;
524 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
525 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
526 intflags |= 1;
527 }
528 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
529 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
530 intflags |= 1;
531 }
532 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
533 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
534 intflags |= 1;
535 }
536 a->cs_rbput = i;
537 }
538 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
539 intflags |= 4|2;
540 zc = b->cs_zc;
541 i = b->cs_rbput;
542 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
543 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
544 intflags |= 1;
545 }
546 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
547 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
548 intflags |= 1;
549 }
550 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
551 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
552 intflags |= 1;
553 }
554 b->cs_rbput = i;
555 }
556 }
557 } while(intflags & 4);
558 #undef b
559
560 if(intflags & 1) {
561 if(BASEPRI(sr)) {
562 spl1();
563 zsshortcuts++;
564 return(zssoft(sr));
565 }
566 else if(!cb_scheduled) {
567 cb_scheduled++;
568 add_sicallback((si_farg)zssoft, 0, 0);
569 }
570 }
571 return(intflags & 2);
572 }
573
574 static int
575 zsrint(cs, zc)
576 register struct zs_chanstate *cs;
577 register volatile struct zschan *zc;
578 {
579 register int c;
580
581 /*
582 * First read the status, because read of the received char
583 * destroy the status of this char.
584 */
585 c = ZS_READ(zc, 1);
586 c |= (zc->zc_data << 8);
587
588 /* clear receive error & interrupt condition */
589 zc->zc_csr = ZSWR0_RESET_ERRORS;
590 zc->zc_csr = ZSWR0_CLR_INTR;
591
592 return(ZRING_MAKE(ZRING_RINT, c));
593 }
594
595 static int
596 zsxint(cs, zc)
597 register struct zs_chanstate *cs;
598 register volatile struct zschan *zc;
599 {
600 register int i = cs->cs_tbc;
601
602 if(i == 0) {
603 zc->zc_csr = ZSWR0_RESET_TXINT;
604 zc->zc_csr = ZSWR0_CLR_INTR;
605 return(ZRING_MAKE(ZRING_XINT, 0));
606 }
607 cs->cs_tbc = i - 1;
608 zc->zc_data = *cs->cs_tba++;
609 zc->zc_csr = ZSWR0_CLR_INTR;
610 return (0);
611 }
612
613 static int
614 zssint(cs, zc)
615 register struct zs_chanstate *cs;
616 register volatile struct zschan *zc;
617 {
618 register int rr0;
619
620 rr0 = zc->zc_csr;
621 zc->zc_csr = ZSWR0_RESET_STATUS;
622 zc->zc_csr = ZSWR0_CLR_INTR;
623 /*
624 * The chip's hardware flow control is, as noted in zsreg.h,
625 * busted---if the DCD line goes low the chip shuts off the
626 * receiver (!). If we want hardware CTS flow control but do
627 * not have it, and carrier is now on, turn HFC on; if we have
628 * HFC now but carrier has gone low, turn it off.
629 */
630 if(rr0 & ZSRR0_DCD) {
631 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
632 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
633 cs->cs_creg[3] |= ZSWR3_HFC;
634 ZS_WRITE(zc, 3, cs->cs_creg[3]);
635 }
636 }
637 else {
638 if (cs->cs_creg[3] & ZSWR3_HFC) {
639 cs->cs_creg[3] &= ~ZSWR3_HFC;
640 ZS_WRITE(zc, 3, cs->cs_creg[3]);
641 }
642 }
643 return(ZRING_MAKE(ZRING_SINT, rr0));
644 }
645
646 /*
647 * Print out a ring or fifo overrun error message.
648 */
649 static void
650 zsoverrun(unit, ptime, what)
651 int unit;
652 long *ptime;
653 char *what;
654 {
655
656 if(*ptime != time.tv_sec) {
657 *ptime = time.tv_sec;
658 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
659 (unit & 1) + 'a', what);
660 }
661 }
662
663 /*
664 * ZS software interrupt. Scan all channels for deferred interrupts.
665 */
666 int
667 zssoft(sr)
668 long sr;
669 {
670 register struct zs_chanstate *cs;
671 register volatile struct zschan *zc;
672 register struct linesw *line;
673 register struct tty *tp;
674 register int get, n, c, cc, unit, s;
675 int retval = 0;
676
677 cb_scheduled = 0;
678 s = spltty();
679 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
680 get = cs->cs_rbget;
681 again:
682 n = cs->cs_rbput; /* atomic */
683 if(get == n) /* nothing more on this line */
684 continue;
685 retval = 1;
686 unit = cs->cs_unit; /* set up to handle interrupts */
687 zc = cs->cs_zc;
688 tp = cs->cs_ttyp;
689 line = &linesw[tp->t_line];
690 /*
691 * Compute the number of interrupts in the receive ring.
692 * If the count is overlarge, we lost some events, and
693 * must advance to the first valid one. It may get
694 * overwritten if more data are arriving, but this is
695 * too expensive to check and gains nothing (we already
696 * lost out; all we can do at this point is trade one
697 * kind of loss for another).
698 */
699 n -= get;
700 if(n > ZLRB_RING_SIZE) {
701 zsoverrun(unit, &cs->cs_rotime, "ring");
702 get += n - ZLRB_RING_SIZE;
703 n = ZLRB_RING_SIZE;
704 }
705 while(--n >= 0) {
706 /* race to keep ahead of incoming interrupts */
707 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
708 switch (ZRING_TYPE(c)) {
709
710 case ZRING_RINT:
711 c = ZRING_VALUE(c);
712 if(c & ZSRR1_DO)
713 zsoverrun(unit, &cs->cs_fotime, "fifo");
714 cc = c >> 8;
715 if(c & ZSRR1_FE)
716 cc |= TTY_FE;
717 if(c & ZSRR1_PE)
718 cc |= TTY_PE;
719 line->l_rint(cc, tp);
720 break;
721
722 case ZRING_XINT:
723 /*
724 * Transmit done: change registers and resume,
725 * or clear BUSY.
726 */
727 if(cs->cs_heldchange) {
728 int sps;
729
730 sps = splzs();
731 c = zc->zc_csr;
732 if((c & ZSRR0_DCD) == 0)
733 cs->cs_preg[3] &= ~ZSWR3_HFC;
734 bcopy((caddr_t)cs->cs_preg,
735 (caddr_t)cs->cs_creg, 16);
736 zs_loadchannelregs(zc, cs->cs_creg);
737 splx(sps);
738 cs->cs_heldchange = 0;
739 if(cs->cs_heldtbc
740 && (tp->t_state & TS_TTSTOP) == 0) {
741 cs->cs_tbc = cs->cs_heldtbc - 1;
742 zc->zc_data = *cs->cs_tba++;
743 goto again;
744 }
745 }
746 tp->t_state &= ~TS_BUSY;
747 if(tp->t_state & TS_FLUSH)
748 tp->t_state &= ~TS_FLUSH;
749 else ndflush(&tp->t_outq,cs->cs_tba
750 - (caddr_t)tp->t_outq.c_cf);
751 line->l_start(tp);
752 break;
753
754 case ZRING_SINT:
755 /*
756 * Status line change. HFC bit is run in
757 * hardware interrupt, to avoid locking
758 * at splzs here.
759 */
760 c = ZRING_VALUE(c);
761 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
762 cc = (c & ZSRR0_DCD) != 0;
763 if(line->l_modem(tp, cc) == 0)
764 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
765 cc ? DMBIS : DMBIC);
766 }
767 cs->cs_rr0 = c;
768 break;
769
770 default:
771 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
772 unit >> 1, (unit & 1) + 'a', c);
773 break;
774 }
775 }
776 cs->cs_rbget = get;
777 goto again;
778 }
779 splx(s);
780 return (retval);
781 }
782
783 int
784 zsioctl(dev, cmd, data, flag, p)
785 dev_t dev;
786 u_long cmd;
787 caddr_t data;
788 int flag;
789 struct proc *p;
790 {
791 int unit = ZS_UNIT(dev);
792 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
793 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
794 register int error, s;
795 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
796
797 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
798 if(error >= 0)
799 return(error);
800 error = ttioctl(tp, cmd, data, flag, p);
801 if(error >= 0)
802 return (error);
803
804 switch (cmd) {
805 case TIOCSBRK:
806 s = splzs();
807 cs->cs_preg[5] |= ZSWR5_BREAK;
808 cs->cs_creg[5] |= ZSWR5_BREAK;
809 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
810 splx(s);
811 break;
812 case TIOCCBRK:
813 s = splzs();
814 cs->cs_preg[5] &= ~ZSWR5_BREAK;
815 cs->cs_creg[5] &= ~ZSWR5_BREAK;
816 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
817 splx(s);
818 break;
819 case TIOCGFLAGS: {
820 int bits = 0;
821
822 if(cs->cs_softcar)
823 bits |= TIOCFLAG_SOFTCAR;
824 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
825 bits |= TIOCFLAG_CLOCAL;
826 if(cs->cs_creg[3] & ZSWR3_HFC)
827 bits |= TIOCFLAG_CRTSCTS;
828 *(int *)data = bits;
829 break;
830 }
831 case TIOCSFLAGS: {
832 int userbits = 0;
833
834 error = suser(p->p_ucred, &p->p_acflag);
835 if(error != 0)
836 return (EPERM);
837
838 userbits = *(int *)data;
839
840 /*
841 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
842 # defaulting to software flow control.
843 */
844 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
845 return(EINVAL);
846 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
847 return(ENODEV);
848
849 s = splzs();
850 if((userbits & TIOCFLAG_SOFTCAR)) {
851 cs->cs_softcar = 1; /* turn on softcar */
852 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
853 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
854 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
855 }
856 else if(userbits & TIOCFLAG_CLOCAL) {
857 cs->cs_softcar = 0; /* turn off softcar */
858 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
859 cs->cs_creg[15] |= ZSWR15_DCD_IE;
860 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
861 tp->t_termios.c_cflag |= CLOCAL;
862 }
863 if(userbits & TIOCFLAG_CRTSCTS) {
864 cs->cs_preg[15] |= ZSWR15_CTS_IE;
865 cs->cs_creg[15] |= ZSWR15_CTS_IE;
866 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
867 cs->cs_preg[3] |= ZSWR3_HFC;
868 cs->cs_creg[3] |= ZSWR3_HFC;
869 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
870 tp->t_termios.c_cflag |= CRTSCTS;
871 }
872 else {
873 /* no mdmbuf, so we must want software flow control */
874 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
875 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
876 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
877 cs->cs_preg[3] &= ~ZSWR3_HFC;
878 cs->cs_creg[3] &= ~ZSWR3_HFC;
879 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
880 tp->t_termios.c_cflag &= ~CRTSCTS;
881 }
882 splx(s);
883 break;
884 }
885 case TIOCSDTR:
886 zs_modem(cs, ZSWR5_DTR, DMBIS);
887 break;
888 case TIOCCDTR:
889 zs_modem(cs, ZSWR5_DTR, DMBIC);
890 break;
891 case TIOCMGET:
892 zs_modem(cs, 0, DMGET);
893 break;
894 case TIOCMSET:
895 case TIOCMBIS:
896 case TIOCMBIC:
897 default:
898 return (ENOTTY);
899 }
900 return (0);
901 }
902
903 /*
904 * Start or restart transmission.
905 */
906 static void
907 zsstart(tp)
908 register struct tty *tp;
909 {
910 register struct zs_chanstate *cs;
911 register int s, nch;
912 int unit = ZS_UNIT(tp->t_dev);
913 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
914
915 cs = &zi->zi_cs[unit & 1];
916 s = spltty();
917
918 /*
919 * If currently active or delaying, no need to do anything.
920 */
921 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
922 goto out;
923
924 /*
925 * If there are sleepers, and output has drained below low
926 * water mark, awaken.
927 */
928 if(tp->t_outq.c_cc <= tp->t_lowat) {
929 if(tp->t_state & TS_ASLEEP) {
930 tp->t_state &= ~TS_ASLEEP;
931 wakeup((caddr_t)&tp->t_outq);
932 }
933 selwakeup(&tp->t_wsel);
934 }
935
936 nch = ndqb(&tp->t_outq, 0); /* XXX */
937 if(nch) {
938 register char *p = tp->t_outq.c_cf;
939
940 /* mark busy, enable tx done interrupts, & send first byte */
941 tp->t_state |= TS_BUSY;
942 (void) splzs();
943 cs->cs_preg[1] |= ZSWR1_TIE;
944 cs->cs_creg[1] |= ZSWR1_TIE;
945 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
946 cs->cs_zc->zc_data = *p;
947 cs->cs_tba = p + 1;
948 cs->cs_tbc = nch - 1;
949 } else {
950 /*
951 * Nothing to send, turn off transmit done interrupts.
952 * This is useful if something is doing polled output.
953 */
954 (void) splzs();
955 cs->cs_preg[1] &= ~ZSWR1_TIE;
956 cs->cs_creg[1] &= ~ZSWR1_TIE;
957 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
958 }
959 out:
960 splx(s);
961 }
962
963 /*
964 * Stop output, e.g., for ^S or output flush.
965 */
966 void
967 zsstop(tp, flag)
968 register struct tty *tp;
969 int flag;
970 {
971 register struct zs_chanstate *cs;
972 register int s, unit = ZS_UNIT(tp->t_dev);
973 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
974
975 cs = &zi->zi_cs[unit & 1];
976 s = splzs();
977 if(tp->t_state & TS_BUSY) {
978 /*
979 * Device is transmitting; must stop it.
980 */
981 cs->cs_tbc = 0;
982 if ((tp->t_state & TS_TTSTOP) == 0)
983 tp->t_state |= TS_FLUSH;
984 }
985 splx(s);
986 }
987
988 /*
989 * Set ZS tty parameters from termios.
990 *
991 * This routine makes use of the fact that only registers
992 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
993 */
994 static int
995 zsparam(tp, t)
996 register struct tty *tp;
997 register struct termios *t;
998 {
999 int unit = ZS_UNIT(tp->t_dev);
1000 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1001 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1002 int cdiv, clkm, brgm, tcon;
1003 register int tmp, tmp5, cflag, s;
1004
1005 tmp = t->c_ospeed;
1006 tmp5 = t->c_ispeed;
1007 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1008 return(EINVAL);
1009 if(tmp == 0) {
1010 /* stty 0 => drop DTR and RTS */
1011 zs_modem(cs, 0, DMSET);
1012 return(0);
1013 }
1014 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1015 if (tmp < 0)
1016 return(EINVAL);
1017 tp->t_ispeed = tp->t_ospeed = tmp;
1018
1019 cflag = tp->t_cflag = t->c_cflag;
1020 if (cflag & CSTOPB)
1021 cdiv |= ZSWR4_TWOSB;
1022 else
1023 cdiv |= ZSWR4_ONESB;
1024 if (!(cflag & PARODD))
1025 cdiv |= ZSWR4_EVENP;
1026 if (cflag & PARENB)
1027 cdiv |= ZSWR4_PARENB;
1028
1029 switch(cflag & CSIZE) {
1030 case CS5:
1031 tmp = ZSWR3_RX_5;
1032 tmp5 = ZSWR5_TX_5;
1033 break;
1034 case CS6:
1035 tmp = ZSWR3_RX_6;
1036 tmp5 = ZSWR5_TX_6;
1037 break;
1038 case CS7:
1039 tmp = ZSWR3_RX_7;
1040 tmp5 = ZSWR5_TX_7;
1041 break;
1042 case CS8:
1043 default:
1044 tmp = ZSWR3_RX_8;
1045 tmp5 = ZSWR5_TX_8;
1046 break;
1047 }
1048 tmp |= ZSWR3_RX_ENABLE;
1049 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1050
1051 /*
1052 * Block interrupts so that state will not
1053 * be altered until we are done setting it up.
1054 */
1055 s = splzs();
1056 cs->cs_preg[4] = cdiv;
1057 cs->cs_preg[11] = clkm;
1058 cs->cs_preg[12] = tcon;
1059 cs->cs_preg[13] = tcon >> 8;
1060 cs->cs_preg[14] = brgm;
1061 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1062 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1063 cs->cs_preg[10] = ZSWR10_NRZ;
1064 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1065
1066 /*
1067 * Output hardware flow control on the chip is horrendous: if
1068 * carrier detect drops, the receiver is disabled. Hence we
1069 * can only do this when the carrier is on.
1070 */
1071 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1072 tmp |= ZSWR3_HFC;
1073 cs->cs_preg[3] = tmp;
1074 cs->cs_preg[5] = tmp5;
1075
1076 /*
1077 * If nothing is being transmitted, set up new current values,
1078 * else mark them as pending.
1079 */
1080 if(cs->cs_heldchange == 0) {
1081 if (cs->cs_ttyp->t_state & TS_BUSY) {
1082 cs->cs_heldtbc = cs->cs_tbc;
1083 cs->cs_tbc = 0;
1084 cs->cs_heldchange = 1;
1085 } else {
1086 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1087 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1088 }
1089 }
1090 splx(s);
1091 return (0);
1092 }
1093
1094 /*
1095 * search for the best matching baudrate
1096 */
1097 static int
1098 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1099 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1100 {
1101 int bestdiff, bestbps, source;
1102
1103 bestdiff = bestbps = 0;
1104 unit = (unit & 1) << 2;
1105 for (source = 0; source < 4; ++source) {
1106 long freq = zs_frequencies[unit + source];
1107 int diff, bps, div, clkm, brgm, tcon;
1108
1109 bps = div = clkm = brgm = tcon = 0;
1110 switch (source) {
1111 case 0: /* BRgen, PCLK */
1112 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1113 break;
1114 case 1: /* BRgen, RTxC */
1115 brgm = ZSWR14_BAUD_ENA;
1116 break;
1117 case 2: /* RTxC */
1118 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1119 break;
1120 case 3: /* TRxC */
1121 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1122 break;
1123 }
1124 switch (source) {
1125 case 0:
1126 case 1:
1127 div = ZSWR4_CLK_X16;
1128 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1129 tcon = BPS_TO_TCONST(freq, wanted);
1130 if (tcon < 0)
1131 tcon = 0;
1132 bps = TCONST_TO_BPS(freq, tcon);
1133 break;
1134 case 2:
1135 case 3:
1136 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1137 int b2 = freq / 32, d2 = abs(b2 - wanted);
1138 int b3 = freq / 64, d3 = abs(b3 - wanted);
1139
1140 if (d1 < d2 && d1 < d3) {
1141 div = ZSWR4_CLK_X16;
1142 bps = b1;
1143 } else if (d2 < d3 && d2 < d1) {
1144 div = ZSWR4_CLK_X32;
1145 bps = b2;
1146 } else {
1147 div = ZSWR4_CLK_X64;
1148 bps = b3;
1149 }
1150 brgm = tcon = 0;
1151 break;
1152 }
1153 }
1154 diff = abs(bps - wanted);
1155 if (!source || diff < bestdiff) {
1156 *divisor = div;
1157 *clockmode = clkm;
1158 *brgenmode = brgm;
1159 *timeconst = tcon;
1160 bestbps = bps;
1161 bestdiff = diff;
1162 if (diff == 0)
1163 break;
1164 }
1165 }
1166 /* Allow deviations upto 5% */
1167 if (20 * bestdiff > wanted)
1168 return -1;
1169 return bestbps;
1170 }
1171
1172 /*
1173 * Raise or lower modem control (DTR/RTS) signals. If a character is
1174 * in transmission, the change is deferred.
1175 */
1176 static int
1177 zs_modem(cs, bits, how)
1178 struct zs_chanstate *cs;
1179 int bits, how;
1180 {
1181 int s, mbits;
1182
1183 bits &= ZSWR5_DTR | ZSWR5_RTS;
1184
1185 s = splzs();
1186 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1187
1188 switch(how) {
1189 case DMSET:
1190 mbits = bits;
1191 break;
1192 case DMBIS:
1193 mbits |= bits;
1194 break;
1195 case DMBIC:
1196 mbits &= ~bits;
1197 break;
1198 case DMGET:
1199 splx(s);
1200 return(mbits);
1201 }
1202
1203 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1204 if(cs->cs_heldchange == 0) {
1205 if(cs->cs_ttyp->t_state & TS_BUSY) {
1206 cs->cs_heldtbc = cs->cs_tbc;
1207 cs->cs_tbc = 0;
1208 cs->cs_heldchange = 1;
1209 }
1210 else {
1211 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1212 }
1213 }
1214 splx(s);
1215 return(0);
1216 }
1217
1218 /*
1219 * Write the given register set to the given zs channel in the proper order.
1220 * The channel must not be transmitting at the time. The receiver will
1221 * be disabled for the time it takes to write all the registers.
1222 */
1223 static void
1224 zs_loadchannelregs(zc, reg)
1225 volatile struct zschan *zc;
1226 u_char *reg;
1227 {
1228 int i;
1229
1230 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1231 i = zc->zc_data; /* drain fifo */
1232 i = zc->zc_data;
1233 i = zc->zc_data;
1234 ZS_WRITE(zc, 4, reg[4]);
1235 ZS_WRITE(zc, 10, reg[10]);
1236 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1237 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1238 ZS_WRITE(zc, 1, reg[1]);
1239 ZS_WRITE(zc, 9, reg[9]);
1240 ZS_WRITE(zc, 11, reg[11]);
1241 ZS_WRITE(zc, 12, reg[12]);
1242 ZS_WRITE(zc, 13, reg[13]);
1243 ZS_WRITE(zc, 14, reg[14]);
1244 ZS_WRITE(zc, 15, reg[15]);
1245 ZS_WRITE(zc, 3, reg[3]);
1246 ZS_WRITE(zc, 5, reg[5]);
1247 }
1248 #endif /* NZS > 1 */
1249