Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.24
      1 /*	$NetBSD: zs.c,v 1.24 1996/11/10 21:52:37 leo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/systm.h>
     58 #include <sys/proc.h>
     59 #include <sys/device.h>
     60 #include <sys/conf.h>
     61 #include <sys/file.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/malloc.h>
     64 #include <sys/tty.h>
     65 #include <sys/time.h>
     66 #include <sys/kernel.h>
     67 #include <sys/syslog.h>
     68 
     69 #include <machine/cpu.h>
     70 #include <machine/iomap.h>
     71 #include <machine/scu.h>
     72 #include <machine/mfp.h>
     73 #include <atari/dev/ym2149reg.h>
     74 
     75 #include <dev/ic/z8530reg.h>
     76 #include <atari/dev/zsvar.h>
     77 #include "zs.h"
     78 #if NZS > 1
     79 #error "This driver supports only 1 85C30!"
     80 #endif
     81 
     82 #if NZS > 0
     83 
     84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
     85 #define PCLK_HD	(14745600)	/* PCLK on Hades pin input clock rate */
     86 
     87 #define splzs	spl5
     88 
     89 /*
     90  * Software state per found chip.
     91  */
     92 struct zs_softc {
     93     struct	device		zi_dev;    /* base device		  */
     94     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     95     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     96 };
     97 
     98 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
     99 /*
    100  * Define the registers for a closed port
    101  */
    102 static u_char zs_init_regs[16] = {
    103 /*  0 */	0,
    104 /*  1 */	0,
    105 /*  2 */	0x60,
    106 /*  3 */	0,
    107 /*  4 */	0,
    108 /*  5 */	0,
    109 /*  6 */	0,
    110 /*  7 */	0,
    111 /*  8 */	0,
    112 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
    113 /* 10 */	ZSWR10_NRZ,
    114 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    115 /* 12 */	0,
    116 /* 13 */	0,
    117 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    118 /* 15 */	0
    119 };
    120 
    121 /*
    122  * Define the machine dependant clock frequencies
    123  * If BRgen feeds sender/receiver we always use a
    124  * divisor 16, therefor the division by 16 can as
    125  * well be done here.
    126  */
    127 static u_long zs_freqs_tt[] = {
    128 	/*
    129 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    130 	 * which is set to 307.2KHz during initialisation
    131 	 * and never changed afterwards.
    132 	 */
    133 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    134 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    135 	3672000,	/* RTxCA, from PCLK4		*/
    136 	      0,	/* TRxCA, external		*/
    137 
    138 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    139 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    140 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    141 	2457600		/* TRxCB, from BCLK		*/
    142 };
    143 
    144 static u_long zs_freqs_falcon[] = {
    145 	/*
    146 	 * Atari Falcon, XXX no specs available, this might be wrong
    147 	 */
    148 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    149 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    150 	3672000,	/* RTxCA, ???			*/
    151 	      0,	/* TRxCA, external		*/
    152 
    153 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    154 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    155 	3672000,	/* RTxCB, ???			*/
    156 	2457600		/* TRxCB, ???			*/
    157 };
    158 
    159 static u_long zs_freqs_hades[] = {
    160 	/*
    161 	 * XXX: Channel-A unchecked!!!!!
    162 	 */
    163      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    164 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    165 	3672000,	/* RTxCA, from PCLK4		*/
    166 	      0,	/* TRxCA, external		*/
    167 
    168      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    169 	 235550,	/* BRgen, RTxCB, divisor 16	*/
    170 	3768800,	/* RTxCB, 3.7688MHz		*/
    171 	3768800		/* TRxCB, 3.7688MHz		*/
    172 };
    173 
    174 static u_long zs_freqs_generic[] = {
    175 	/*
    176 	 * other machines, assume only PCLK is available
    177 	 */
    178 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    179 	      0,	/* BRgen, RTxCA, divisor 16	*/
    180 	      0,	/* RTxCA, unknown		*/
    181 	      0,	/* TRxCA, unknown		*/
    182 
    183 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    184 	      0,	/* BRgen, RTxCB, divisor 16	*/
    185 	      0,	/* RTxCB, unknown		*/
    186 	      0		/* TRxCB, unknown		*/
    187 };
    188 static u_long *zs_frequencies;
    189 
    190 /* Definition of the driver for autoconfig. */
    191 static int	zsmatch __P((struct device *, void *, void *));
    192 static void	zsattach __P((struct device *, struct device *, void *));
    193 
    194 struct cfattach zs_ca = {
    195 	sizeof(struct zs_softc), zsmatch, zsattach
    196 };
    197 
    198 struct cfdriver zs_cd = {
    199 	NULL, "zs", DV_TTY, NULL, 0
    200 };
    201 
    202 /* {b,c}devsw[] function prototypes */
    203 dev_type_open(zsopen);
    204 dev_type_close(zsclose);
    205 dev_type_read(zsread);
    206 dev_type_write(zswrite);
    207 dev_type_ioctl(zsioctl);
    208 dev_type_tty(zstty);
    209 
    210 /* Interrupt handlers. */
    211 int		zshard __P((long));
    212 static int	zssoft __P((long));
    213 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    214 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    215 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    216 
    217 static struct zs_chanstate *zslist;
    218 
    219 /* Routines called from other code. */
    220 static void	zsstart __P((struct tty *));
    221 void		zsstop __P((struct tty *, int));
    222 
    223 /* Routines purely local to this driver. */
    224 static void	zsoverrun __P((int, long *, char *));
    225 static int	zsparam __P((struct tty *, struct termios *));
    226 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    227 static int	zs_modem __P((struct zs_chanstate *, int, int));
    228 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    229 
    230 static int zsshortcuts;	/* number of "shortcut" software interrupts */
    231 
    232 static int
    233 zsmatch(pdp, match, auxp)
    234 struct device	*pdp;
    235 void		*match, *auxp;
    236 {
    237 	struct cfdata *cfp = match;
    238 
    239 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
    240 		return(0);
    241 	return(1);
    242 }
    243 
    244 /*
    245  * Attach a found zs.
    246  */
    247 static void
    248 zsattach(parent, dev, aux)
    249 struct device	*parent;
    250 struct device	*dev;
    251 void		*aux;
    252 {
    253 	register struct zs_softc		*zi;
    254 	register struct zs_chanstate		*cs;
    255 	register volatile struct zsdevice	*addr;
    256 		 char				tmp;
    257 
    258 	addr      = (struct zsdevice *)AD_SCC;
    259 	zi        = (struct zs_softc *)dev;
    260 	zi->zi_zs = addr;
    261 	cs        = zi->zi_cs;
    262 
    263 	/*
    264 	 * Get the command register into a known state.
    265 	 */
    266 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    267 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    268 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    269 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    270 
    271 	/*
    272 	 * Do a hardware reset.
    273 	 */
    274 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    275 	delay(50000);	/*enough ? */
    276 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    277 
    278 	/*
    279 	 * Initialize both channels
    280 	 */
    281 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    282 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    283 
    284 	if(machineid & ATARI_TT) {
    285 		/*
    286 		 * ininitialise TT-MFP timer C: 307200Hz
    287 		 * timer C and D share one control register:
    288 		 *	bits 0-2 control timer D
    289 		 *	bits 4-6 control timer C
    290 		 */
    291 		int cr = MFP2->mf_tcdcr & 7;
    292 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    293 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    294 		cr |= T_Q004 << 4;		/* divisor 4     */
    295 		MFP2->mf_tcdcr = cr;		/* start timer C */
    296 		/*
    297 		 * enable scc related interrupts
    298 		 */
    299 		SCU->sys_mask |= SCU_SCC;
    300 
    301 		zs_frequencies = zs_freqs_tt;
    302 	} else if (machineid & ATARI_FALCON) {
    303 		zs_frequencies = zs_freqs_falcon;
    304 	} else if (machineid & ATARI_HADES) {
    305 		zs_frequencies = zs_freqs_hades;
    306 	} else {
    307 		zs_frequencies = zs_freqs_generic;
    308 	}
    309 
    310 	/* link into interrupt list with order (A,B) (B=A+1) */
    311 	cs[0].cs_next = &cs[1];
    312 	cs[1].cs_next = zslist;
    313 	zslist        = cs;
    314 
    315 	cs->cs_unit  = 0;
    316 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    317 	cs++;
    318 	cs->cs_unit  = 1;
    319 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    320 
    321 	printf(": serial2 on channel a and modem2 on channel b\n");
    322 }
    323 
    324 /*
    325  * Open a zs serial port.
    326  */
    327 int
    328 zsopen(dev, flags, mode, p)
    329 dev_t		dev;
    330 int		flags;
    331 int		mode;
    332 struct proc	*p;
    333 {
    334 	register struct tty		*tp;
    335 	register struct zs_chanstate	*cs;
    336 		 struct zs_softc	*zi;
    337 		 int			unit = ZS_UNIT(dev);
    338 		 int			zs = unit >> 1;
    339 		 int			error, s;
    340 
    341 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
    342 		return (ENXIO);
    343 	cs = &zi->zi_cs[unit & 1];
    344 
    345 	/*
    346 	 * When port A (ser02) is selected on the TT, make sure
    347 	 * the port is enabled.
    348 	 */
    349 	if((machineid & ATARI_TT) && !(unit & 1))
    350 		ym2149_ser2_select();
    351 
    352 	if (cs->cs_rbuf == NULL) {
    353 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
    354 								   M_WAITOK);
    355 	}
    356 
    357 	tp = cs->cs_ttyp;
    358 	if(tp == NULL) {
    359 		cs->cs_ttyp = tp = ttymalloc();
    360 		tty_attach(tp);
    361 		tp->t_dev   = dev;
    362 		tp->t_oproc = zsstart;
    363 		tp->t_param = zsparam;
    364 	}
    365 
    366 	s  = spltty();
    367 	if((tp->t_state & TS_ISOPEN) == 0) {
    368 		ttychars(tp);
    369 		if(tp->t_ispeed == 0) {
    370 			tp->t_iflag = TTYDEF_IFLAG;
    371 			tp->t_oflag = TTYDEF_OFLAG;
    372 			tp->t_cflag = TTYDEF_CFLAG;
    373 			tp->t_lflag = TTYDEF_LFLAG;
    374 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    375 		}
    376 		(void)zsparam(tp, &tp->t_termios);
    377 		ttsetwater(tp);
    378 	}
    379 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    380 			splx(s);
    381 			return (EBUSY);
    382 	}
    383 	error = 0;
    384 	for(;;) {
    385 		/* loop, turning on the device, until carrier present */
    386 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    387 
    388 		/* May never get a status intr. if DCD already on. -gwr */
    389 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
    390 			tp->t_state |= TS_CARR_ON;
    391 		if(cs->cs_softcar)
    392 			tp->t_state |= TS_CARR_ON;
    393 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    394 		    tp->t_state & TS_CARR_ON)
    395 			break;
    396 		tp->t_state |= TS_WOPEN;
    397 		if((error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    398 		    ttopen, 0)) != 0) {
    399 			if(!(tp->t_state & TS_ISOPEN)) {
    400 				zs_modem(cs, 0, DMSET);
    401 				tp->t_state &= ~TS_WOPEN;
    402 				ttwakeup(tp);
    403 			}
    404 			splx(s);
    405 			return error;
    406 		}
    407 	}
    408 	splx(s);
    409 	if(error == 0)
    410 		error = linesw[tp->t_line].l_open(dev, tp);
    411 	if(error)
    412 		zs_modem(cs, 0, DMSET);
    413 	return(error);
    414 }
    415 
    416 /*
    417  * Close a zs serial port.
    418  */
    419 int
    420 zsclose(dev, flags, mode, p)
    421 dev_t		dev;
    422 int		flags;
    423 int		mode;
    424 struct proc	*p;
    425 {
    426 	register struct zs_chanstate	*cs;
    427 	register struct tty		*tp;
    428 		 struct zs_softc	*zi;
    429 		 int			unit = ZS_UNIT(dev);
    430 		 int			s;
    431 
    432 	zi = zs_cd.cd_devs[unit >> 1];
    433 	cs = &zi->zi_cs[unit & 1];
    434 	tp = cs->cs_ttyp;
    435 	linesw[tp->t_line].l_close(tp, flags);
    436 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    437 	    (tp->t_state & TS_ISOPEN) == 0) {
    438 		zs_modem(cs, 0, DMSET);
    439 		/* hold low for 1 second */
    440 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    441 	}
    442 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
    443 		s = splzs();
    444 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    445 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    446 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    447 		splx(s);
    448 	}
    449 	ttyclose(tp);
    450 
    451 	/*
    452 	 * Drop all lines and cancel interrupts
    453 	 */
    454 	s = splzs();
    455 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
    456 	splx(s);
    457 	return (0);
    458 }
    459 
    460 /*
    461  * Read/write zs serial port.
    462  */
    463 int
    464 zsread(dev, uio, flags)
    465 dev_t		dev;
    466 struct uio	*uio;
    467 int		flags;
    468 {
    469 	register struct zs_chanstate	*cs;
    470 	register struct zs_softc	*zi;
    471 	register struct tty		*tp;
    472 		 int			unit;
    473 
    474 	unit = ZS_UNIT(dev);
    475 	zi   = zs_cd.cd_devs[unit >> 1];
    476 	cs   = &zi->zi_cs[unit & 1];
    477 	tp   = cs->cs_ttyp;
    478 
    479 	return(linesw[tp->t_line].l_read(tp, uio, flags));
    480 }
    481 
    482 int
    483 zswrite(dev, uio, flags)
    484 dev_t		dev;
    485 struct uio	*uio;
    486 int		flags;
    487 {
    488 	register struct zs_chanstate	*cs;
    489 	register struct zs_softc	*zi;
    490 	register struct tty		*tp;
    491 		 int			unit;
    492 
    493 	unit = ZS_UNIT(dev);
    494 	zi   = zs_cd.cd_devs[unit >> 1];
    495 	cs   = &zi->zi_cs[unit & 1];
    496 	tp   = cs->cs_ttyp;
    497 
    498 	return(linesw[tp->t_line].l_write(tp, uio, flags));
    499 }
    500 
    501 struct tty *
    502 zstty(dev)
    503 dev_t	dev;
    504 {
    505 	register struct zs_chanstate	*cs;
    506 	register struct zs_softc	*zi;
    507 		 int			unit;
    508 
    509 	unit = ZS_UNIT(dev);
    510 	zi   = zs_cd.cd_devs[unit >> 1];
    511 	cs   = &zi->zi_cs[unit & 1];
    512 	return(cs->cs_ttyp);
    513 }
    514 
    515 /*
    516  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    517  * channels are kept in (A,B) pairs.
    518  *
    519  * Do just a little, then get out; set a software interrupt if more
    520  * work is needed.
    521  *
    522  * We deliberately ignore the vectoring Zilog gives us, and match up
    523  * only the number of `reset interrupt under service' operations, not
    524  * the order.
    525  */
    526 
    527 int
    528 zshard(sr)
    529 long sr;
    530 {
    531 	register struct zs_chanstate	*a;
    532 #define	b (a + 1)
    533 	register volatile struct zschan *zc;
    534 	register int			rr3, intflags = 0, v, i;
    535 
    536 	do {
    537 	    intflags &= ~4;
    538 	    for(a = zslist; a != NULL; a = b->cs_next) {
    539 		rr3 = ZS_READ(a->cs_zc, 3);
    540 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    541 			intflags |= 4|2;
    542 			zc = a->cs_zc;
    543 			i  = a->cs_rbput;
    544 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    545 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    546 				intflags |= 1;
    547 			}
    548 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    549 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    550 				intflags |= 1;
    551 			}
    552 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    553 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    554 				intflags |= 1;
    555 			}
    556 			a->cs_rbput = i;
    557 		}
    558 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    559 			intflags |= 4|2;
    560 			zc = b->cs_zc;
    561 			i  = b->cs_rbput;
    562 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    563 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    564 				intflags |= 1;
    565 			}
    566 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    567 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    568 				intflags |= 1;
    569 			}
    570 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    571 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    572 				intflags |= 1;
    573 			}
    574 			b->cs_rbput = i;
    575 		}
    576 	    }
    577 	} while(intflags & 4);
    578 #undef b
    579 
    580 	if(intflags & 1) {
    581 		if(BASEPRI(sr)) {
    582 			spl1();
    583 			zsshortcuts++;
    584 			return(zssoft(sr));
    585 		}
    586 		else if(!cb_scheduled) {
    587 			cb_scheduled++;
    588 			add_sicallback((si_farg)zssoft, 0, 0);
    589 		}
    590 	}
    591 	return(intflags & 2);
    592 }
    593 
    594 static int
    595 zsrint(cs, zc)
    596 register struct zs_chanstate	*cs;
    597 register volatile struct zschan	*zc;
    598 {
    599 	register int c;
    600 
    601 	/*
    602 	 * First read the status, because read of the received char
    603 	 * destroy the status of this char.
    604 	 */
    605 	c = ZS_READ(zc, 1);
    606 	c |= (zc->zc_data << 8);
    607 
    608 	/* clear receive error & interrupt condition */
    609 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    610 	zc->zc_csr = ZSWR0_CLR_INTR;
    611 
    612 	return(ZRING_MAKE(ZRING_RINT, c));
    613 }
    614 
    615 static int
    616 zsxint(cs, zc)
    617 register struct zs_chanstate	*cs;
    618 register volatile struct zschan	*zc;
    619 {
    620 	register int i = cs->cs_tbc;
    621 
    622 	if(i == 0) {
    623 		zc->zc_csr = ZSWR0_RESET_TXINT;
    624 		zc->zc_csr = ZSWR0_CLR_INTR;
    625 		return(ZRING_MAKE(ZRING_XINT, 0));
    626 	}
    627 	cs->cs_tbc = i - 1;
    628 	zc->zc_data = *cs->cs_tba++;
    629 	zc->zc_csr = ZSWR0_CLR_INTR;
    630 	return (0);
    631 }
    632 
    633 static int
    634 zssint(cs, zc)
    635 register struct zs_chanstate	*cs;
    636 register volatile struct zschan	*zc;
    637 {
    638 	register int rr0;
    639 
    640 	rr0 = zc->zc_csr;
    641 	zc->zc_csr = ZSWR0_RESET_STATUS;
    642 	zc->zc_csr = ZSWR0_CLR_INTR;
    643 	/*
    644 	 * The chip's hardware flow control is, as noted in zsreg.h,
    645 	 * busted---if the DCD line goes low the chip shuts off the
    646 	 * receiver (!).  If we want hardware CTS flow control but do
    647 	 * not have it, and carrier is now on, turn HFC on; if we have
    648 	 * HFC now but carrier has gone low, turn it off.
    649 	 */
    650 	if(rr0 & ZSRR0_DCD) {
    651 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    652 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    653 			cs->cs_creg[3] |= ZSWR3_HFC;
    654 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    655 		}
    656 	}
    657 	else {
    658 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    659 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    660 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    661 		}
    662 	}
    663 	return(ZRING_MAKE(ZRING_SINT, rr0));
    664 }
    665 
    666 /*
    667  * Print out a ring or fifo overrun error message.
    668  */
    669 static void
    670 zsoverrun(unit, ptime, what)
    671 int	unit;
    672 long	*ptime;
    673 char	*what;
    674 {
    675 
    676 	if(*ptime != time.tv_sec) {
    677 		*ptime = time.tv_sec;
    678 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    679 		    (unit & 1) + 'a', what);
    680 	}
    681 }
    682 
    683 /*
    684  * ZS software interrupt.  Scan all channels for deferred interrupts.
    685  */
    686 int
    687 zssoft(sr)
    688 long sr;
    689 {
    690     register struct zs_chanstate	*cs;
    691     register volatile struct zschan	*zc;
    692     register struct linesw		*line;
    693     register struct tty			*tp;
    694     register int			get, n, c, cc, unit, s;
    695  	     int			retval = 0;
    696 
    697     cb_scheduled = 0;
    698     s = spltty();
    699     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    700 	get = cs->cs_rbget;
    701 again:
    702 	n = cs->cs_rbput;	/* atomic			*/
    703 	if(get == n)		/* nothing more on this line	*/
    704 		continue;
    705 	retval = 1;
    706 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    707 	zc     = cs->cs_zc;
    708 	tp     = cs->cs_ttyp;
    709 	line   = &linesw[tp->t_line];
    710 	/*
    711 	 * Compute the number of interrupts in the receive ring.
    712 	 * If the count is overlarge, we lost some events, and
    713 	 * must advance to the first valid one.  It may get
    714 	 * overwritten if more data are arriving, but this is
    715 	 * too expensive to check and gains nothing (we already
    716 	 * lost out; all we can do at this point is trade one
    717 	 * kind of loss for another).
    718 	 */
    719 	n -= get;
    720 	if(n > ZLRB_RING_SIZE) {
    721 		zsoverrun(unit, &cs->cs_rotime, "ring");
    722 		get += n - ZLRB_RING_SIZE;
    723 		n    = ZLRB_RING_SIZE;
    724 	}
    725 	while(--n >= 0) {
    726 		/* race to keep ahead of incoming interrupts */
    727 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    728 		switch (ZRING_TYPE(c)) {
    729 
    730 		case ZRING_RINT:
    731 			c = ZRING_VALUE(c);
    732 			if(c & ZSRR1_DO)
    733 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    734 			cc = c >> 8;
    735 			if(c & ZSRR1_FE)
    736 				cc |= TTY_FE;
    737 			if(c & ZSRR1_PE)
    738 				cc |= TTY_PE;
    739 			line->l_rint(cc, tp);
    740 			break;
    741 
    742 		case ZRING_XINT:
    743 			/*
    744 			 * Transmit done: change registers and resume,
    745 			 * or clear BUSY.
    746 			 */
    747 			if(cs->cs_heldchange) {
    748 				int sps;
    749 
    750 				sps = splzs();
    751 				c = zc->zc_csr;
    752 				if((c & ZSRR0_DCD) == 0)
    753 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    754 				bcopy((caddr_t)cs->cs_preg,
    755 				    (caddr_t)cs->cs_creg, 16);
    756 				zs_loadchannelregs(zc, cs->cs_creg);
    757 				splx(sps);
    758 				cs->cs_heldchange = 0;
    759 				if(cs->cs_heldtbc
    760 					&& (tp->t_state & TS_TTSTOP) == 0) {
    761 					cs->cs_tbc = cs->cs_heldtbc - 1;
    762 					zc->zc_data = *cs->cs_tba++;
    763 					goto again;
    764 				}
    765 			}
    766 			tp->t_state &= ~TS_BUSY;
    767 			if(tp->t_state & TS_FLUSH)
    768 				tp->t_state &= ~TS_FLUSH;
    769 			else ndflush(&tp->t_outq,cs->cs_tba
    770 						- (caddr_t)tp->t_outq.c_cf);
    771 			line->l_start(tp);
    772 			break;
    773 
    774 		case ZRING_SINT:
    775 			/*
    776 			 * Status line change.  HFC bit is run in
    777 			 * hardware interrupt, to avoid locking
    778 			 * at splzs here.
    779 			 */
    780 			c = ZRING_VALUE(c);
    781 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    782 				cc = (c & ZSRR0_DCD) != 0;
    783 				if(line->l_modem(tp, cc) == 0)
    784 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    785 							cc ? DMBIS : DMBIC);
    786 			}
    787 			cs->cs_rr0 = c;
    788 			break;
    789 
    790 		default:
    791 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    792 			    unit >> 1, (unit & 1) + 'a', c);
    793 			break;
    794 		}
    795 	}
    796 	cs->cs_rbget = get;
    797 	goto again;
    798     }
    799     splx(s);
    800     return (retval);
    801 }
    802 
    803 int
    804 zsioctl(dev, cmd, data, flag, p)
    805 dev_t		dev;
    806 u_long		cmd;
    807 caddr_t		data;
    808 int		flag;
    809 struct proc	*p;
    810 {
    811 		 int			unit = ZS_UNIT(dev);
    812 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    813 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    814 	register int			error, s;
    815 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    816 
    817 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
    818 	if(error >= 0)
    819 		return(error);
    820 	error = ttioctl(tp, cmd, data, flag, p);
    821 	if(error >= 0)
    822 		return (error);
    823 
    824 	switch (cmd) {
    825 	case TIOCSBRK:
    826 		s = splzs();
    827 		cs->cs_preg[5] |= ZSWR5_BREAK;
    828 		cs->cs_creg[5] |= ZSWR5_BREAK;
    829 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    830 		splx(s);
    831 		break;
    832 	case TIOCCBRK:
    833 		s = splzs();
    834 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    835 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    836 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    837 		splx(s);
    838 		break;
    839 	case TIOCGFLAGS: {
    840 		int bits = 0;
    841 
    842 		if(cs->cs_softcar)
    843 			bits |= TIOCFLAG_SOFTCAR;
    844 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    845 			bits |= TIOCFLAG_CLOCAL;
    846 		if(cs->cs_creg[3] & ZSWR3_HFC)
    847 			bits |= TIOCFLAG_CRTSCTS;
    848 		*(int *)data = bits;
    849 		break;
    850 	}
    851 	case TIOCSFLAGS: {
    852 		int userbits = 0;
    853 
    854 		error = suser(p->p_ucred, &p->p_acflag);
    855 		if(error != 0)
    856 			return (EPERM);
    857 
    858 		userbits = *(int *)data;
    859 
    860 		/*
    861 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    862 		 # defaulting to software flow control.
    863 		 */
    864 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    865 			return(EINVAL);
    866 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    867 			return(ENODEV);
    868 
    869 		s = splzs();
    870 		if((userbits & TIOCFLAG_SOFTCAR)) {
    871 			cs->cs_softcar = 1;	/* turn on softcar */
    872 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    873 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    874 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    875 		}
    876 		else if(userbits & TIOCFLAG_CLOCAL) {
    877 			cs->cs_softcar = 0; 	/* turn off softcar */
    878 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    879 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    880 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    881 			tp->t_termios.c_cflag |= CLOCAL;
    882 		}
    883 		if(userbits & TIOCFLAG_CRTSCTS) {
    884 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    885 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    886 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    887 			cs->cs_preg[3] |= ZSWR3_HFC;
    888 			cs->cs_creg[3] |= ZSWR3_HFC;
    889 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    890 			tp->t_termios.c_cflag |= CRTSCTS;
    891 		}
    892 		else {
    893 			/* no mdmbuf, so we must want software flow control */
    894 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    895 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    896 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    897 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    898 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    899 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    900 			tp->t_termios.c_cflag &= ~CRTSCTS;
    901 		}
    902 		splx(s);
    903 		break;
    904 	}
    905 	case TIOCSDTR:
    906 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    907 		break;
    908 	case TIOCCDTR:
    909 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    910 		break;
    911 	case TIOCMGET:
    912 		zs_modem(cs, 0, DMGET);
    913 		break;
    914 	case TIOCMSET:
    915 	case TIOCMBIS:
    916 	case TIOCMBIC:
    917 	default:
    918 		return (ENOTTY);
    919 	}
    920 	return (0);
    921 }
    922 
    923 /*
    924  * Start or restart transmission.
    925  */
    926 static void
    927 zsstart(tp)
    928 register struct tty *tp;
    929 {
    930 	register struct zs_chanstate	*cs;
    931 	register int			s, nch;
    932 		 int			unit = ZS_UNIT(tp->t_dev);
    933 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    934 
    935 	cs = &zi->zi_cs[unit & 1];
    936 	s  = spltty();
    937 
    938 	/*
    939 	 * If currently active or delaying, no need to do anything.
    940 	 */
    941 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    942 		goto out;
    943 
    944 	/*
    945 	 * If there are sleepers, and output has drained below low
    946 	 * water mark, awaken.
    947 	 */
    948 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    949 		if(tp->t_state & TS_ASLEEP) {
    950 			tp->t_state &= ~TS_ASLEEP;
    951 			wakeup((caddr_t)&tp->t_outq);
    952 		}
    953 		selwakeup(&tp->t_wsel);
    954 	}
    955 
    956 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    957 	if(nch) {
    958 		register char *p = tp->t_outq.c_cf;
    959 
    960 		/* mark busy, enable tx done interrupts, & send first byte */
    961 		tp->t_state |= TS_BUSY;
    962 		(void) splzs();
    963 		cs->cs_preg[1] |= ZSWR1_TIE;
    964 		cs->cs_creg[1] |= ZSWR1_TIE;
    965 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    966 		cs->cs_zc->zc_data = *p;
    967 		cs->cs_tba = p + 1;
    968 		cs->cs_tbc = nch - 1;
    969 	} else {
    970 		/*
    971 		 * Nothing to send, turn off transmit done interrupts.
    972 		 * This is useful if something is doing polled output.
    973 		 */
    974 		(void) splzs();
    975 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    976 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    977 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    978 	}
    979 out:
    980 	splx(s);
    981 }
    982 
    983 /*
    984  * Stop output, e.g., for ^S or output flush.
    985  */
    986 void
    987 zsstop(tp, flag)
    988 register struct tty	*tp;
    989 	 int		flag;
    990 {
    991 	register struct zs_chanstate	*cs;
    992 	register int			s, unit = ZS_UNIT(tp->t_dev);
    993 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    994 
    995 	cs = &zi->zi_cs[unit & 1];
    996 	s  = splzs();
    997 	if(tp->t_state & TS_BUSY) {
    998 		/*
    999 		 * Device is transmitting; must stop it.
   1000 		 */
   1001 		cs->cs_tbc = 0;
   1002 		if ((tp->t_state & TS_TTSTOP) == 0)
   1003 			tp->t_state |= TS_FLUSH;
   1004 	}
   1005 	splx(s);
   1006 }
   1007 
   1008 /*
   1009  * Set ZS tty parameters from termios.
   1010  *
   1011  * This routine makes use of the fact that only registers
   1012  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
   1013  */
   1014 static int
   1015 zsparam(tp, t)
   1016 register struct tty	*tp;
   1017 register struct termios	*t;
   1018 {
   1019 		 int			unit = ZS_UNIT(tp->t_dev);
   1020 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
   1021 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
   1022 		 int			cdiv, clkm, brgm, tcon;
   1023 	register int			tmp, tmp5, cflag, s;
   1024 
   1025 	tmp  = t->c_ospeed;
   1026 	tmp5 = t->c_ispeed;
   1027 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
   1028 		return(EINVAL);
   1029 	if(tmp == 0) {
   1030 		/* stty 0 => drop DTR and RTS */
   1031 		zs_modem(cs, 0, DMSET);
   1032 		return(0);
   1033 	}
   1034 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
   1035 	if (tmp < 0)
   1036 		return(EINVAL);
   1037 	tp->t_ispeed = tp->t_ospeed = tmp;
   1038 
   1039 	cflag = tp->t_cflag = t->c_cflag;
   1040 	if (cflag & CSTOPB)
   1041 		cdiv |= ZSWR4_TWOSB;
   1042 	else
   1043 		cdiv |= ZSWR4_ONESB;
   1044 	if (!(cflag & PARODD))
   1045 		cdiv |= ZSWR4_EVENP;
   1046 	if (cflag & PARENB)
   1047 		cdiv |= ZSWR4_PARENB;
   1048 
   1049 	switch(cflag & CSIZE) {
   1050 	case CS5:
   1051 		tmp  = ZSWR3_RX_5;
   1052 		tmp5 = ZSWR5_TX_5;
   1053 		break;
   1054 	case CS6:
   1055 		tmp  = ZSWR3_RX_6;
   1056 		tmp5 = ZSWR5_TX_6;
   1057 		break;
   1058 	case CS7:
   1059 		tmp  = ZSWR3_RX_7;
   1060 		tmp5 = ZSWR5_TX_7;
   1061 		break;
   1062 	case CS8:
   1063 	default:
   1064 		tmp  = ZSWR3_RX_8;
   1065 		tmp5 = ZSWR5_TX_8;
   1066 		break;
   1067 	}
   1068 	tmp  |= ZSWR3_RX_ENABLE;
   1069 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1070 
   1071 	/*
   1072 	 * Block interrupts so that state will not
   1073 	 * be altered until we are done setting it up.
   1074 	 */
   1075 	s = splzs();
   1076 	cs->cs_preg[4]  = cdiv;
   1077 	cs->cs_preg[11] = clkm;
   1078 	cs->cs_preg[12] = tcon;
   1079 	cs->cs_preg[13] = tcon >> 8;
   1080 	cs->cs_preg[14] = brgm;
   1081 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1082 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1083 	cs->cs_preg[10] = ZSWR10_NRZ;
   1084 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1085 
   1086 	/*
   1087 	 * Output hardware flow control on the chip is horrendous: if
   1088 	 * carrier detect drops, the receiver is disabled.  Hence we
   1089 	 * can only do this when the carrier is on.
   1090 	 */
   1091 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1092 		tmp |= ZSWR3_HFC;
   1093 	cs->cs_preg[3] = tmp;
   1094 	cs->cs_preg[5] = tmp5;
   1095 
   1096 	/*
   1097 	 * If nothing is being transmitted, set up new current values,
   1098 	 * else mark them as pending.
   1099 	 */
   1100 	if(cs->cs_heldchange == 0) {
   1101 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1102 			cs->cs_heldtbc = cs->cs_tbc;
   1103 			cs->cs_tbc = 0;
   1104 			cs->cs_heldchange = 1;
   1105 		} else {
   1106 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1107 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1108 		}
   1109 	}
   1110 	splx(s);
   1111 	return (0);
   1112 }
   1113 
   1114 /*
   1115  * search for the best matching baudrate
   1116  */
   1117 static int
   1118 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1119 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1120 {
   1121 	int	bestdiff, bestbps, source;
   1122 
   1123 	bestdiff = bestbps = 0;
   1124 	unit = (unit & 1) << 2;
   1125 	for (source = 0; source < 4; ++source) {
   1126 		long	freq = zs_frequencies[unit + source];
   1127 		int	diff, bps, div, clkm, brgm, tcon;
   1128 
   1129 		bps = div = clkm = brgm = tcon = 0;
   1130 		switch (source) {
   1131 			case 0:	/* BRgen, PCLK */
   1132 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1133 				break;
   1134 			case 1:	/* BRgen, RTxC */
   1135 				brgm = ZSWR14_BAUD_ENA;
   1136 				break;
   1137 			case 2: /* RTxC */
   1138 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1139 				break;
   1140 			case 3: /* TRxC */
   1141 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1142 				break;
   1143 		}
   1144 		switch (source) {
   1145 			case 0:
   1146 			case 1:
   1147 				div  = ZSWR4_CLK_X16;
   1148 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1149 				tcon = BPS_TO_TCONST(freq, wanted);
   1150 				if (tcon < 0)
   1151 					tcon = 0;
   1152 				bps  = TCONST_TO_BPS(freq, tcon);
   1153 				break;
   1154 			case 2:
   1155 			case 3:
   1156 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1157 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1158 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1159 
   1160 				if (d1 < d2 && d1 < d3) {
   1161 					div = ZSWR4_CLK_X16;
   1162 					bps = b1;
   1163 				} else if (d2 < d3 && d2 < d1) {
   1164 					div = ZSWR4_CLK_X32;
   1165 					bps = b2;
   1166 				} else {
   1167 					div = ZSWR4_CLK_X64;
   1168 					bps = b3;
   1169 				}
   1170 				brgm = tcon = 0;
   1171 				break;
   1172 			}
   1173 		}
   1174 		diff = abs(bps - wanted);
   1175 		if (!source || diff < bestdiff) {
   1176 			*divisor   = div;
   1177 			*clockmode = clkm;
   1178 			*brgenmode = brgm;
   1179 			*timeconst = tcon;
   1180 			bestbps    = bps;
   1181 			bestdiff   = diff;
   1182 			if (diff == 0)
   1183 				break;
   1184 		}
   1185 	}
   1186 	/* Allow deviations upto 5% */
   1187 	if (20 * bestdiff > wanted)
   1188 		return -1;
   1189 	return bestbps;
   1190 }
   1191 
   1192 /*
   1193  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1194  * in transmission, the change is deferred.
   1195  */
   1196 static int
   1197 zs_modem(cs, bits, how)
   1198 struct zs_chanstate	*cs;
   1199 int			bits, how;
   1200 {
   1201 	int s, mbits;
   1202 
   1203 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1204 
   1205 	s = splzs();
   1206 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1207 
   1208 	switch(how) {
   1209 		case DMSET:
   1210 				mbits  = bits;
   1211 				break;
   1212 		case DMBIS:
   1213 				mbits |= bits;
   1214 				break;
   1215 		case DMBIC:
   1216 				mbits &= ~bits;
   1217 				break;
   1218 		case DMGET:
   1219 				splx(s);
   1220 				return(mbits);
   1221 	}
   1222 
   1223 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1224 	if(cs->cs_heldchange == 0) {
   1225 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1226 			cs->cs_heldtbc = cs->cs_tbc;
   1227 			cs->cs_tbc = 0;
   1228 			cs->cs_heldchange = 1;
   1229 		}
   1230 		else {
   1231 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1232 		}
   1233 	}
   1234 	splx(s);
   1235 	return(0);
   1236 }
   1237 
   1238 /*
   1239  * Write the given register set to the given zs channel in the proper order.
   1240  * The channel must not be transmitting at the time.  The receiver will
   1241  * be disabled for the time it takes to write all the registers.
   1242  */
   1243 static void
   1244 zs_loadchannelregs(zc, reg)
   1245 volatile struct zschan	*zc;
   1246 u_char			*reg;
   1247 {
   1248 	int i;
   1249 
   1250 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1251 	i = zc->zc_data;		/* drain fifo */
   1252 	i = zc->zc_data;
   1253 	i = zc->zc_data;
   1254 	ZS_WRITE(zc,  4, reg[4]);
   1255 	ZS_WRITE(zc, 10, reg[10]);
   1256 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1257 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1258 	ZS_WRITE(zc,  1, reg[1]);
   1259 	ZS_WRITE(zc,  9, reg[9]);
   1260 	ZS_WRITE(zc, 11, reg[11]);
   1261 	ZS_WRITE(zc, 12, reg[12]);
   1262 	ZS_WRITE(zc, 13, reg[13]);
   1263 	ZS_WRITE(zc, 14, reg[14]);
   1264 	ZS_WRITE(zc, 15, reg[15]);
   1265 	ZS_WRITE(zc,  3, reg[3]);
   1266 	ZS_WRITE(zc,  5, reg[5]);
   1267 }
   1268 #endif /* NZS > 1 */
   1269