zs.c revision 1.25 1 /* $NetBSD: zs.c,v 1.25 1996/12/20 12:49:45 leo Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81
82 #if NZS > 0
83
84 #define PCLK (8053976) /* PCLK pin input clock rate */
85 #define PCLK_HD (14745600) /* PCLK on Hades pin input clock rate */
86
87 #define splzs spl5
88
89 /*
90 * Software state per found chip.
91 */
92 struct zs_softc {
93 struct device zi_dev; /* base device */
94 volatile struct zsdevice *zi_zs; /* chip registers */
95 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
96 };
97
98 static u_char cb_scheduled = 0; /* Already asked for callback? */
99 /*
100 * Define the registers for a closed port
101 */
102 static u_char zs_init_regs[16] = {
103 /* 0 */ 0,
104 /* 1 */ 0,
105 /* 2 */ 0x60,
106 /* 3 */ 0,
107 /* 4 */ 0,
108 /* 5 */ 0,
109 /* 6 */ 0,
110 /* 7 */ 0,
111 /* 8 */ 0,
112 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */ ZSWR10_NRZ,
114 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */ 0,
116 /* 13 */ 0,
117 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */ 0
119 };
120
121 /*
122 * Define the machine dependant clock frequencies
123 * If BRgen feeds sender/receiver we always use a
124 * divisor 16, therefor the division by 16 can as
125 * well be done here.
126 */
127 static u_long zs_freqs_tt[] = {
128 /*
129 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 * which is set to 307.2KHz during initialisation
131 * and never changed afterwards.
132 */
133 PCLK/16, /* BRgen, PCLK, divisor 16 */
134 229500, /* BRgen, RTxCA, divisor 16 */
135 3672000, /* RTxCA, from PCLK4 */
136 0, /* TRxCA, external */
137
138 PCLK/16, /* BRgen, PCLK, divisor 16 */
139 19200, /* BRgen, RTxCB, divisor 16 */
140 307200, /* RTxCB, from TT-MFP TCO */
141 2457600 /* TRxCB, from BCLK */
142 };
143
144 static u_long zs_freqs_falcon[] = {
145 /*
146 * Atari Falcon, XXX no specs available, this might be wrong
147 */
148 PCLK/16, /* BRgen, PCLK, divisor 16 */
149 229500, /* BRgen, RTxCA, divisor 16 */
150 3672000, /* RTxCA, ??? */
151 0, /* TRxCA, external */
152
153 PCLK/16, /* BRgen, PCLK, divisor 16 */
154 229500, /* BRgen, RTxCB, divisor 16 */
155 3672000, /* RTxCB, ??? */
156 2457600 /* TRxCB, ??? */
157 };
158
159 static u_long zs_freqs_hades[] = {
160 /*
161 * XXX: Channel-A unchecked!!!!!
162 */
163 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
164 229500, /* BRgen, RTxCA, divisor 16 */
165 3672000, /* RTxCA, from PCLK4 */
166 0, /* TRxCA, external */
167
168 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
169 235550, /* BRgen, RTxCB, divisor 16 */
170 3768800, /* RTxCB, 3.7688MHz */
171 3768800 /* TRxCB, 3.7688MHz */
172 };
173
174 static u_long zs_freqs_generic[] = {
175 /*
176 * other machines, assume only PCLK is available
177 */
178 PCLK/16, /* BRgen, PCLK, divisor 16 */
179 0, /* BRgen, RTxCA, divisor 16 */
180 0, /* RTxCA, unknown */
181 0, /* TRxCA, unknown */
182
183 PCLK/16, /* BRgen, PCLK, divisor 16 */
184 0, /* BRgen, RTxCB, divisor 16 */
185 0, /* RTxCB, unknown */
186 0 /* TRxCB, unknown */
187 };
188 static u_long *zs_frequencies;
189
190 /* Definition of the driver for autoconfig. */
191 static int zsmatch __P((struct device *, struct cfdata *, void *));
192 static void zsattach __P((struct device *, struct device *, void *));
193
194 struct cfattach zs_ca = {
195 sizeof(struct zs_softc), zsmatch, zsattach
196 };
197
198 struct cfdriver zs_cd = {
199 NULL, "zs", DV_TTY, NULL, 0
200 };
201
202 /* {b,c}devsw[] function prototypes */
203 dev_type_open(zsopen);
204 dev_type_close(zsclose);
205 dev_type_read(zsread);
206 dev_type_write(zswrite);
207 dev_type_ioctl(zsioctl);
208 dev_type_tty(zstty);
209
210 /* Interrupt handlers. */
211 int zshard __P((long));
212 static int zssoft __P((long));
213 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
214 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
215 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
216
217 static struct zs_chanstate *zslist;
218
219 /* Routines called from other code. */
220 static void zsstart __P((struct tty *));
221 void zsstop __P((struct tty *, int));
222
223 /* Routines purely local to this driver. */
224 static void zsoverrun __P((int, long *, char *));
225 static int zsparam __P((struct tty *, struct termios *));
226 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
227 static int zs_modem __P((struct zs_chanstate *, int, int));
228 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
229
230 static int zsshortcuts; /* number of "shortcut" software interrupts */
231
232 static int
233 zsmatch(pdp, cfp, auxp)
234 struct device *pdp;
235 struct cfdata *cfp;
236 void *auxp;
237 {
238 if(strcmp("zs", auxp) || cfp->cf_unit != 0)
239 return(0);
240 return(1);
241 }
242
243 /*
244 * Attach a found zs.
245 */
246 static void
247 zsattach(parent, dev, aux)
248 struct device *parent;
249 struct device *dev;
250 void *aux;
251 {
252 register struct zs_softc *zi;
253 register struct zs_chanstate *cs;
254 register volatile struct zsdevice *addr;
255 char tmp;
256
257 addr = (struct zsdevice *)AD_SCC;
258 zi = (struct zs_softc *)dev;
259 zi->zi_zs = addr;
260 cs = zi->zi_cs;
261
262 /*
263 * Get the command register into a known state.
264 */
265 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
266 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
267 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
268 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
269
270 /*
271 * Do a hardware reset.
272 */
273 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
274 delay(50000); /*enough ? */
275 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
276
277 /*
278 * Initialize both channels
279 */
280 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
281 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
282
283 if(machineid & ATARI_TT) {
284 /*
285 * ininitialise TT-MFP timer C: 307200Hz
286 * timer C and D share one control register:
287 * bits 0-2 control timer D
288 * bits 4-6 control timer C
289 */
290 int cr = MFP2->mf_tcdcr & 7;
291 MFP2->mf_tcdcr = cr; /* stop timer C */
292 MFP2->mf_tcdr = 1; /* counter 1 */
293 cr |= T_Q004 << 4; /* divisor 4 */
294 MFP2->mf_tcdcr = cr; /* start timer C */
295 /*
296 * enable scc related interrupts
297 */
298 SCU->sys_mask |= SCU_SCC;
299
300 zs_frequencies = zs_freqs_tt;
301 } else if (machineid & ATARI_FALCON) {
302 zs_frequencies = zs_freqs_falcon;
303 } else if (machineid & ATARI_HADES) {
304 zs_frequencies = zs_freqs_hades;
305 } else {
306 zs_frequencies = zs_freqs_generic;
307 }
308
309 /* link into interrupt list with order (A,B) (B=A+1) */
310 cs[0].cs_next = &cs[1];
311 cs[1].cs_next = zslist;
312 zslist = cs;
313
314 cs->cs_unit = 0;
315 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
316 cs++;
317 cs->cs_unit = 1;
318 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
319
320 printf(": serial2 on channel a and modem2 on channel b\n");
321 }
322
323 /*
324 * Open a zs serial port.
325 */
326 int
327 zsopen(dev, flags, mode, p)
328 dev_t dev;
329 int flags;
330 int mode;
331 struct proc *p;
332 {
333 register struct tty *tp;
334 register struct zs_chanstate *cs;
335 struct zs_softc *zi;
336 int unit = ZS_UNIT(dev);
337 int zs = unit >> 1;
338 int error, s;
339
340 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
341 return (ENXIO);
342 cs = &zi->zi_cs[unit & 1];
343
344 /*
345 * When port A (ser02) is selected on the TT, make sure
346 * the port is enabled.
347 */
348 if((machineid & ATARI_TT) && !(unit & 1))
349 ym2149_ser2_select();
350
351 if (cs->cs_rbuf == NULL) {
352 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
353 M_WAITOK);
354 }
355
356 tp = cs->cs_ttyp;
357 if(tp == NULL) {
358 cs->cs_ttyp = tp = ttymalloc();
359 tty_attach(tp);
360 tp->t_dev = dev;
361 tp->t_oproc = zsstart;
362 tp->t_param = zsparam;
363 }
364
365 s = spltty();
366 if((tp->t_state & TS_ISOPEN) == 0) {
367 ttychars(tp);
368 if(tp->t_ispeed == 0) {
369 tp->t_iflag = TTYDEF_IFLAG;
370 tp->t_oflag = TTYDEF_OFLAG;
371 tp->t_cflag = TTYDEF_CFLAG;
372 tp->t_lflag = TTYDEF_LFLAG;
373 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
374 }
375 (void)zsparam(tp, &tp->t_termios);
376 ttsetwater(tp);
377 }
378 else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
379 splx(s);
380 return (EBUSY);
381 }
382 error = 0;
383 for(;;) {
384 /* loop, turning on the device, until carrier present */
385 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
386
387 /* May never get a status intr. if DCD already on. -gwr */
388 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
389 tp->t_state |= TS_CARR_ON;
390 if(cs->cs_softcar)
391 tp->t_state |= TS_CARR_ON;
392 if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
393 tp->t_state & TS_CARR_ON)
394 break;
395 tp->t_state |= TS_WOPEN;
396 if((error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
397 ttopen, 0)) != 0) {
398 if(!(tp->t_state & TS_ISOPEN)) {
399 zs_modem(cs, 0, DMSET);
400 tp->t_state &= ~TS_WOPEN;
401 ttwakeup(tp);
402 }
403 splx(s);
404 return error;
405 }
406 }
407 splx(s);
408 if(error == 0)
409 error = linesw[tp->t_line].l_open(dev, tp);
410 if(error)
411 zs_modem(cs, 0, DMSET);
412 return(error);
413 }
414
415 /*
416 * Close a zs serial port.
417 */
418 int
419 zsclose(dev, flags, mode, p)
420 dev_t dev;
421 int flags;
422 int mode;
423 struct proc *p;
424 {
425 register struct zs_chanstate *cs;
426 register struct tty *tp;
427 struct zs_softc *zi;
428 int unit = ZS_UNIT(dev);
429 int s;
430
431 zi = zs_cd.cd_devs[unit >> 1];
432 cs = &zi->zi_cs[unit & 1];
433 tp = cs->cs_ttyp;
434 linesw[tp->t_line].l_close(tp, flags);
435 if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
436 (tp->t_state & TS_ISOPEN) == 0) {
437 zs_modem(cs, 0, DMSET);
438 /* hold low for 1 second */
439 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
440 }
441 if(cs->cs_creg[5] & ZSWR5_BREAK) {
442 s = splzs();
443 cs->cs_preg[5] &= ~ZSWR5_BREAK;
444 cs->cs_creg[5] &= ~ZSWR5_BREAK;
445 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
446 splx(s);
447 }
448 ttyclose(tp);
449
450 /*
451 * Drop all lines and cancel interrupts
452 */
453 s = splzs();
454 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
455 splx(s);
456 return (0);
457 }
458
459 /*
460 * Read/write zs serial port.
461 */
462 int
463 zsread(dev, uio, flags)
464 dev_t dev;
465 struct uio *uio;
466 int flags;
467 {
468 register struct zs_chanstate *cs;
469 register struct zs_softc *zi;
470 register struct tty *tp;
471 int unit;
472
473 unit = ZS_UNIT(dev);
474 zi = zs_cd.cd_devs[unit >> 1];
475 cs = &zi->zi_cs[unit & 1];
476 tp = cs->cs_ttyp;
477
478 return(linesw[tp->t_line].l_read(tp, uio, flags));
479 }
480
481 int
482 zswrite(dev, uio, flags)
483 dev_t dev;
484 struct uio *uio;
485 int flags;
486 {
487 register struct zs_chanstate *cs;
488 register struct zs_softc *zi;
489 register struct tty *tp;
490 int unit;
491
492 unit = ZS_UNIT(dev);
493 zi = zs_cd.cd_devs[unit >> 1];
494 cs = &zi->zi_cs[unit & 1];
495 tp = cs->cs_ttyp;
496
497 return(linesw[tp->t_line].l_write(tp, uio, flags));
498 }
499
500 struct tty *
501 zstty(dev)
502 dev_t dev;
503 {
504 register struct zs_chanstate *cs;
505 register struct zs_softc *zi;
506 int unit;
507
508 unit = ZS_UNIT(dev);
509 zi = zs_cd.cd_devs[unit >> 1];
510 cs = &zi->zi_cs[unit & 1];
511 return(cs->cs_ttyp);
512 }
513
514 /*
515 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
516 * channels are kept in (A,B) pairs.
517 *
518 * Do just a little, then get out; set a software interrupt if more
519 * work is needed.
520 *
521 * We deliberately ignore the vectoring Zilog gives us, and match up
522 * only the number of `reset interrupt under service' operations, not
523 * the order.
524 */
525
526 int
527 zshard(sr)
528 long sr;
529 {
530 register struct zs_chanstate *a;
531 #define b (a + 1)
532 register volatile struct zschan *zc;
533 register int rr3, intflags = 0, v, i;
534
535 do {
536 intflags &= ~4;
537 for(a = zslist; a != NULL; a = b->cs_next) {
538 rr3 = ZS_READ(a->cs_zc, 3);
539 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
540 intflags |= 4|2;
541 zc = a->cs_zc;
542 i = a->cs_rbput;
543 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
544 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
545 intflags |= 1;
546 }
547 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
548 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
549 intflags |= 1;
550 }
551 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
552 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
553 intflags |= 1;
554 }
555 a->cs_rbput = i;
556 }
557 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
558 intflags |= 4|2;
559 zc = b->cs_zc;
560 i = b->cs_rbput;
561 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
562 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
563 intflags |= 1;
564 }
565 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
566 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
567 intflags |= 1;
568 }
569 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
570 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
571 intflags |= 1;
572 }
573 b->cs_rbput = i;
574 }
575 }
576 } while(intflags & 4);
577 #undef b
578
579 if(intflags & 1) {
580 if(BASEPRI(sr)) {
581 spl1();
582 zsshortcuts++;
583 return(zssoft(sr));
584 }
585 else if(!cb_scheduled) {
586 cb_scheduled++;
587 add_sicallback((si_farg)zssoft, 0, 0);
588 }
589 }
590 return(intflags & 2);
591 }
592
593 static int
594 zsrint(cs, zc)
595 register struct zs_chanstate *cs;
596 register volatile struct zschan *zc;
597 {
598 register int c;
599
600 /*
601 * First read the status, because read of the received char
602 * destroy the status of this char.
603 */
604 c = ZS_READ(zc, 1);
605 c |= (zc->zc_data << 8);
606
607 /* clear receive error & interrupt condition */
608 zc->zc_csr = ZSWR0_RESET_ERRORS;
609 zc->zc_csr = ZSWR0_CLR_INTR;
610
611 return(ZRING_MAKE(ZRING_RINT, c));
612 }
613
614 static int
615 zsxint(cs, zc)
616 register struct zs_chanstate *cs;
617 register volatile struct zschan *zc;
618 {
619 register int i = cs->cs_tbc;
620
621 if(i == 0) {
622 zc->zc_csr = ZSWR0_RESET_TXINT;
623 zc->zc_csr = ZSWR0_CLR_INTR;
624 return(ZRING_MAKE(ZRING_XINT, 0));
625 }
626 cs->cs_tbc = i - 1;
627 zc->zc_data = *cs->cs_tba++;
628 zc->zc_csr = ZSWR0_CLR_INTR;
629 return (0);
630 }
631
632 static int
633 zssint(cs, zc)
634 register struct zs_chanstate *cs;
635 register volatile struct zschan *zc;
636 {
637 register int rr0;
638
639 rr0 = zc->zc_csr;
640 zc->zc_csr = ZSWR0_RESET_STATUS;
641 zc->zc_csr = ZSWR0_CLR_INTR;
642 /*
643 * The chip's hardware flow control is, as noted in zsreg.h,
644 * busted---if the DCD line goes low the chip shuts off the
645 * receiver (!). If we want hardware CTS flow control but do
646 * not have it, and carrier is now on, turn HFC on; if we have
647 * HFC now but carrier has gone low, turn it off.
648 */
649 if(rr0 & ZSRR0_DCD) {
650 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
651 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
652 cs->cs_creg[3] |= ZSWR3_HFC;
653 ZS_WRITE(zc, 3, cs->cs_creg[3]);
654 }
655 }
656 else {
657 if (cs->cs_creg[3] & ZSWR3_HFC) {
658 cs->cs_creg[3] &= ~ZSWR3_HFC;
659 ZS_WRITE(zc, 3, cs->cs_creg[3]);
660 }
661 }
662 return(ZRING_MAKE(ZRING_SINT, rr0));
663 }
664
665 /*
666 * Print out a ring or fifo overrun error message.
667 */
668 static void
669 zsoverrun(unit, ptime, what)
670 int unit;
671 long *ptime;
672 char *what;
673 {
674
675 if(*ptime != time.tv_sec) {
676 *ptime = time.tv_sec;
677 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
678 (unit & 1) + 'a', what);
679 }
680 }
681
682 /*
683 * ZS software interrupt. Scan all channels for deferred interrupts.
684 */
685 int
686 zssoft(sr)
687 long sr;
688 {
689 register struct zs_chanstate *cs;
690 register volatile struct zschan *zc;
691 register struct linesw *line;
692 register struct tty *tp;
693 register int get, n, c, cc, unit, s;
694 int retval = 0;
695
696 cb_scheduled = 0;
697 s = spltty();
698 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
699 get = cs->cs_rbget;
700 again:
701 n = cs->cs_rbput; /* atomic */
702 if(get == n) /* nothing more on this line */
703 continue;
704 retval = 1;
705 unit = cs->cs_unit; /* set up to handle interrupts */
706 zc = cs->cs_zc;
707 tp = cs->cs_ttyp;
708 line = &linesw[tp->t_line];
709 /*
710 * Compute the number of interrupts in the receive ring.
711 * If the count is overlarge, we lost some events, and
712 * must advance to the first valid one. It may get
713 * overwritten if more data are arriving, but this is
714 * too expensive to check and gains nothing (we already
715 * lost out; all we can do at this point is trade one
716 * kind of loss for another).
717 */
718 n -= get;
719 if(n > ZLRB_RING_SIZE) {
720 zsoverrun(unit, &cs->cs_rotime, "ring");
721 get += n - ZLRB_RING_SIZE;
722 n = ZLRB_RING_SIZE;
723 }
724 while(--n >= 0) {
725 /* race to keep ahead of incoming interrupts */
726 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
727 switch (ZRING_TYPE(c)) {
728
729 case ZRING_RINT:
730 c = ZRING_VALUE(c);
731 if(c & ZSRR1_DO)
732 zsoverrun(unit, &cs->cs_fotime, "fifo");
733 cc = c >> 8;
734 if(c & ZSRR1_FE)
735 cc |= TTY_FE;
736 if(c & ZSRR1_PE)
737 cc |= TTY_PE;
738 line->l_rint(cc, tp);
739 break;
740
741 case ZRING_XINT:
742 /*
743 * Transmit done: change registers and resume,
744 * or clear BUSY.
745 */
746 if(cs->cs_heldchange) {
747 int sps;
748
749 sps = splzs();
750 c = zc->zc_csr;
751 if((c & ZSRR0_DCD) == 0)
752 cs->cs_preg[3] &= ~ZSWR3_HFC;
753 bcopy((caddr_t)cs->cs_preg,
754 (caddr_t)cs->cs_creg, 16);
755 zs_loadchannelregs(zc, cs->cs_creg);
756 splx(sps);
757 cs->cs_heldchange = 0;
758 if(cs->cs_heldtbc
759 && (tp->t_state & TS_TTSTOP) == 0) {
760 cs->cs_tbc = cs->cs_heldtbc - 1;
761 zc->zc_data = *cs->cs_tba++;
762 goto again;
763 }
764 }
765 tp->t_state &= ~TS_BUSY;
766 if(tp->t_state & TS_FLUSH)
767 tp->t_state &= ~TS_FLUSH;
768 else ndflush(&tp->t_outq,cs->cs_tba
769 - (caddr_t)tp->t_outq.c_cf);
770 line->l_start(tp);
771 break;
772
773 case ZRING_SINT:
774 /*
775 * Status line change. HFC bit is run in
776 * hardware interrupt, to avoid locking
777 * at splzs here.
778 */
779 c = ZRING_VALUE(c);
780 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
781 cc = (c & ZSRR0_DCD) != 0;
782 if(line->l_modem(tp, cc) == 0)
783 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
784 cc ? DMBIS : DMBIC);
785 }
786 cs->cs_rr0 = c;
787 break;
788
789 default:
790 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
791 unit >> 1, (unit & 1) + 'a', c);
792 break;
793 }
794 }
795 cs->cs_rbget = get;
796 goto again;
797 }
798 splx(s);
799 return (retval);
800 }
801
802 int
803 zsioctl(dev, cmd, data, flag, p)
804 dev_t dev;
805 u_long cmd;
806 caddr_t data;
807 int flag;
808 struct proc *p;
809 {
810 int unit = ZS_UNIT(dev);
811 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
812 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
813 register int error, s;
814 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
815
816 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
817 if(error >= 0)
818 return(error);
819 error = ttioctl(tp, cmd, data, flag, p);
820 if(error >= 0)
821 return (error);
822
823 switch (cmd) {
824 case TIOCSBRK:
825 s = splzs();
826 cs->cs_preg[5] |= ZSWR5_BREAK;
827 cs->cs_creg[5] |= ZSWR5_BREAK;
828 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
829 splx(s);
830 break;
831 case TIOCCBRK:
832 s = splzs();
833 cs->cs_preg[5] &= ~ZSWR5_BREAK;
834 cs->cs_creg[5] &= ~ZSWR5_BREAK;
835 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
836 splx(s);
837 break;
838 case TIOCGFLAGS: {
839 int bits = 0;
840
841 if(cs->cs_softcar)
842 bits |= TIOCFLAG_SOFTCAR;
843 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
844 bits |= TIOCFLAG_CLOCAL;
845 if(cs->cs_creg[3] & ZSWR3_HFC)
846 bits |= TIOCFLAG_CRTSCTS;
847 *(int *)data = bits;
848 break;
849 }
850 case TIOCSFLAGS: {
851 int userbits = 0;
852
853 error = suser(p->p_ucred, &p->p_acflag);
854 if(error != 0)
855 return (EPERM);
856
857 userbits = *(int *)data;
858
859 /*
860 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
861 # defaulting to software flow control.
862 */
863 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
864 return(EINVAL);
865 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
866 return(ENODEV);
867
868 s = splzs();
869 if((userbits & TIOCFLAG_SOFTCAR)) {
870 cs->cs_softcar = 1; /* turn on softcar */
871 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
872 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
873 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
874 }
875 else if(userbits & TIOCFLAG_CLOCAL) {
876 cs->cs_softcar = 0; /* turn off softcar */
877 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
878 cs->cs_creg[15] |= ZSWR15_DCD_IE;
879 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
880 tp->t_termios.c_cflag |= CLOCAL;
881 }
882 if(userbits & TIOCFLAG_CRTSCTS) {
883 cs->cs_preg[15] |= ZSWR15_CTS_IE;
884 cs->cs_creg[15] |= ZSWR15_CTS_IE;
885 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
886 cs->cs_preg[3] |= ZSWR3_HFC;
887 cs->cs_creg[3] |= ZSWR3_HFC;
888 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
889 tp->t_termios.c_cflag |= CRTSCTS;
890 }
891 else {
892 /* no mdmbuf, so we must want software flow control */
893 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
894 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
895 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
896 cs->cs_preg[3] &= ~ZSWR3_HFC;
897 cs->cs_creg[3] &= ~ZSWR3_HFC;
898 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
899 tp->t_termios.c_cflag &= ~CRTSCTS;
900 }
901 splx(s);
902 break;
903 }
904 case TIOCSDTR:
905 zs_modem(cs, ZSWR5_DTR, DMBIS);
906 break;
907 case TIOCCDTR:
908 zs_modem(cs, ZSWR5_DTR, DMBIC);
909 break;
910 case TIOCMGET:
911 zs_modem(cs, 0, DMGET);
912 break;
913 case TIOCMSET:
914 case TIOCMBIS:
915 case TIOCMBIC:
916 default:
917 return (ENOTTY);
918 }
919 return (0);
920 }
921
922 /*
923 * Start or restart transmission.
924 */
925 static void
926 zsstart(tp)
927 register struct tty *tp;
928 {
929 register struct zs_chanstate *cs;
930 register int s, nch;
931 int unit = ZS_UNIT(tp->t_dev);
932 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
933
934 cs = &zi->zi_cs[unit & 1];
935 s = spltty();
936
937 /*
938 * If currently active or delaying, no need to do anything.
939 */
940 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
941 goto out;
942
943 /*
944 * If there are sleepers, and output has drained below low
945 * water mark, awaken.
946 */
947 if(tp->t_outq.c_cc <= tp->t_lowat) {
948 if(tp->t_state & TS_ASLEEP) {
949 tp->t_state &= ~TS_ASLEEP;
950 wakeup((caddr_t)&tp->t_outq);
951 }
952 selwakeup(&tp->t_wsel);
953 }
954
955 nch = ndqb(&tp->t_outq, 0); /* XXX */
956 if(nch) {
957 register char *p = tp->t_outq.c_cf;
958
959 /* mark busy, enable tx done interrupts, & send first byte */
960 tp->t_state |= TS_BUSY;
961 (void) splzs();
962 cs->cs_preg[1] |= ZSWR1_TIE;
963 cs->cs_creg[1] |= ZSWR1_TIE;
964 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
965 cs->cs_zc->zc_data = *p;
966 cs->cs_tba = p + 1;
967 cs->cs_tbc = nch - 1;
968 } else {
969 /*
970 * Nothing to send, turn off transmit done interrupts.
971 * This is useful if something is doing polled output.
972 */
973 (void) splzs();
974 cs->cs_preg[1] &= ~ZSWR1_TIE;
975 cs->cs_creg[1] &= ~ZSWR1_TIE;
976 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
977 }
978 out:
979 splx(s);
980 }
981
982 /*
983 * Stop output, e.g., for ^S or output flush.
984 */
985 void
986 zsstop(tp, flag)
987 register struct tty *tp;
988 int flag;
989 {
990 register struct zs_chanstate *cs;
991 register int s, unit = ZS_UNIT(tp->t_dev);
992 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
993
994 cs = &zi->zi_cs[unit & 1];
995 s = splzs();
996 if(tp->t_state & TS_BUSY) {
997 /*
998 * Device is transmitting; must stop it.
999 */
1000 cs->cs_tbc = 0;
1001 if ((tp->t_state & TS_TTSTOP) == 0)
1002 tp->t_state |= TS_FLUSH;
1003 }
1004 splx(s);
1005 }
1006
1007 /*
1008 * Set ZS tty parameters from termios.
1009 *
1010 * This routine makes use of the fact that only registers
1011 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1012 */
1013 static int
1014 zsparam(tp, t)
1015 register struct tty *tp;
1016 register struct termios *t;
1017 {
1018 int unit = ZS_UNIT(tp->t_dev);
1019 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1020 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1021 int cdiv, clkm, brgm, tcon;
1022 register int tmp, tmp5, cflag, s;
1023
1024 tmp = t->c_ospeed;
1025 tmp5 = t->c_ispeed;
1026 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1027 return(EINVAL);
1028 if(tmp == 0) {
1029 /* stty 0 => drop DTR and RTS */
1030 zs_modem(cs, 0, DMSET);
1031 return(0);
1032 }
1033 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1034 if (tmp < 0)
1035 return(EINVAL);
1036 tp->t_ispeed = tp->t_ospeed = tmp;
1037
1038 cflag = tp->t_cflag = t->c_cflag;
1039 if (cflag & CSTOPB)
1040 cdiv |= ZSWR4_TWOSB;
1041 else
1042 cdiv |= ZSWR4_ONESB;
1043 if (!(cflag & PARODD))
1044 cdiv |= ZSWR4_EVENP;
1045 if (cflag & PARENB)
1046 cdiv |= ZSWR4_PARENB;
1047
1048 switch(cflag & CSIZE) {
1049 case CS5:
1050 tmp = ZSWR3_RX_5;
1051 tmp5 = ZSWR5_TX_5;
1052 break;
1053 case CS6:
1054 tmp = ZSWR3_RX_6;
1055 tmp5 = ZSWR5_TX_6;
1056 break;
1057 case CS7:
1058 tmp = ZSWR3_RX_7;
1059 tmp5 = ZSWR5_TX_7;
1060 break;
1061 case CS8:
1062 default:
1063 tmp = ZSWR3_RX_8;
1064 tmp5 = ZSWR5_TX_8;
1065 break;
1066 }
1067 tmp |= ZSWR3_RX_ENABLE;
1068 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1069
1070 /*
1071 * Block interrupts so that state will not
1072 * be altered until we are done setting it up.
1073 */
1074 s = splzs();
1075 cs->cs_preg[4] = cdiv;
1076 cs->cs_preg[11] = clkm;
1077 cs->cs_preg[12] = tcon;
1078 cs->cs_preg[13] = tcon >> 8;
1079 cs->cs_preg[14] = brgm;
1080 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1081 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1082 cs->cs_preg[10] = ZSWR10_NRZ;
1083 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1084
1085 /*
1086 * Output hardware flow control on the chip is horrendous: if
1087 * carrier detect drops, the receiver is disabled. Hence we
1088 * can only do this when the carrier is on.
1089 */
1090 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1091 tmp |= ZSWR3_HFC;
1092 cs->cs_preg[3] = tmp;
1093 cs->cs_preg[5] = tmp5;
1094
1095 /*
1096 * If nothing is being transmitted, set up new current values,
1097 * else mark them as pending.
1098 */
1099 if(cs->cs_heldchange == 0) {
1100 if (cs->cs_ttyp->t_state & TS_BUSY) {
1101 cs->cs_heldtbc = cs->cs_tbc;
1102 cs->cs_tbc = 0;
1103 cs->cs_heldchange = 1;
1104 } else {
1105 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1106 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1107 }
1108 }
1109 splx(s);
1110 return (0);
1111 }
1112
1113 /*
1114 * search for the best matching baudrate
1115 */
1116 static int
1117 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1118 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1119 {
1120 int bestdiff, bestbps, source;
1121
1122 bestdiff = bestbps = 0;
1123 unit = (unit & 1) << 2;
1124 for (source = 0; source < 4; ++source) {
1125 long freq = zs_frequencies[unit + source];
1126 int diff, bps, div, clkm, brgm, tcon;
1127
1128 bps = div = clkm = brgm = tcon = 0;
1129 switch (source) {
1130 case 0: /* BRgen, PCLK */
1131 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1132 break;
1133 case 1: /* BRgen, RTxC */
1134 brgm = ZSWR14_BAUD_ENA;
1135 break;
1136 case 2: /* RTxC */
1137 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1138 break;
1139 case 3: /* TRxC */
1140 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1141 break;
1142 }
1143 switch (source) {
1144 case 0:
1145 case 1:
1146 div = ZSWR4_CLK_X16;
1147 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1148 tcon = BPS_TO_TCONST(freq, wanted);
1149 if (tcon < 0)
1150 tcon = 0;
1151 bps = TCONST_TO_BPS(freq, tcon);
1152 break;
1153 case 2:
1154 case 3:
1155 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1156 int b2 = freq / 32, d2 = abs(b2 - wanted);
1157 int b3 = freq / 64, d3 = abs(b3 - wanted);
1158
1159 if (d1 < d2 && d1 < d3) {
1160 div = ZSWR4_CLK_X16;
1161 bps = b1;
1162 } else if (d2 < d3 && d2 < d1) {
1163 div = ZSWR4_CLK_X32;
1164 bps = b2;
1165 } else {
1166 div = ZSWR4_CLK_X64;
1167 bps = b3;
1168 }
1169 brgm = tcon = 0;
1170 break;
1171 }
1172 }
1173 diff = abs(bps - wanted);
1174 if (!source || diff < bestdiff) {
1175 *divisor = div;
1176 *clockmode = clkm;
1177 *brgenmode = brgm;
1178 *timeconst = tcon;
1179 bestbps = bps;
1180 bestdiff = diff;
1181 if (diff == 0)
1182 break;
1183 }
1184 }
1185 /* Allow deviations upto 5% */
1186 if (20 * bestdiff > wanted)
1187 return -1;
1188 return bestbps;
1189 }
1190
1191 /*
1192 * Raise or lower modem control (DTR/RTS) signals. If a character is
1193 * in transmission, the change is deferred.
1194 */
1195 static int
1196 zs_modem(cs, bits, how)
1197 struct zs_chanstate *cs;
1198 int bits, how;
1199 {
1200 int s, mbits;
1201
1202 bits &= ZSWR5_DTR | ZSWR5_RTS;
1203
1204 s = splzs();
1205 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1206
1207 switch(how) {
1208 case DMSET:
1209 mbits = bits;
1210 break;
1211 case DMBIS:
1212 mbits |= bits;
1213 break;
1214 case DMBIC:
1215 mbits &= ~bits;
1216 break;
1217 case DMGET:
1218 splx(s);
1219 return(mbits);
1220 }
1221
1222 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1223 if(cs->cs_heldchange == 0) {
1224 if(cs->cs_ttyp->t_state & TS_BUSY) {
1225 cs->cs_heldtbc = cs->cs_tbc;
1226 cs->cs_tbc = 0;
1227 cs->cs_heldchange = 1;
1228 }
1229 else {
1230 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1231 }
1232 }
1233 splx(s);
1234 return(0);
1235 }
1236
1237 /*
1238 * Write the given register set to the given zs channel in the proper order.
1239 * The channel must not be transmitting at the time. The receiver will
1240 * be disabled for the time it takes to write all the registers.
1241 */
1242 static void
1243 zs_loadchannelregs(zc, reg)
1244 volatile struct zschan *zc;
1245 u_char *reg;
1246 {
1247 int i;
1248
1249 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1250 i = zc->zc_data; /* drain fifo */
1251 i = zc->zc_data;
1252 i = zc->zc_data;
1253 ZS_WRITE(zc, 4, reg[4]);
1254 ZS_WRITE(zc, 10, reg[10]);
1255 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1256 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1257 ZS_WRITE(zc, 1, reg[1]);
1258 ZS_WRITE(zc, 9, reg[9]);
1259 ZS_WRITE(zc, 11, reg[11]);
1260 ZS_WRITE(zc, 12, reg[12]);
1261 ZS_WRITE(zc, 13, reg[13]);
1262 ZS_WRITE(zc, 14, reg[14]);
1263 ZS_WRITE(zc, 15, reg[15]);
1264 ZS_WRITE(zc, 3, reg[3]);
1265 ZS_WRITE(zc, 5, reg[5]);
1266 }
1267 #endif /* NZS > 1 */
1268