Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.26
      1 /*	$NetBSD: zs.c,v 1.26 1997/01/21 20:41:10 leo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/systm.h>
     58 #include <sys/proc.h>
     59 #include <sys/device.h>
     60 #include <sys/conf.h>
     61 #include <sys/file.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/malloc.h>
     64 #include <sys/tty.h>
     65 #include <sys/time.h>
     66 #include <sys/kernel.h>
     67 #include <sys/syslog.h>
     68 
     69 #include <machine/cpu.h>
     70 #include <machine/iomap.h>
     71 #include <machine/scu.h>
     72 #include <machine/mfp.h>
     73 #include <atari/dev/ym2149reg.h>
     74 
     75 #include <dev/ic/z8530reg.h>
     76 #include <atari/dev/zsvar.h>
     77 #include "zs.h"
     78 #if NZS > 1
     79 #error "This driver supports only 1 85C30!"
     80 #endif
     81 
     82 #if NZS > 0
     83 
     84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
     85 #define PCLK_HD	(14745600)	/* PCLK on Hades pin input clock rate */
     86 
     87 #define splzs	spl5
     88 
     89 /*
     90  * Software state per found chip.
     91  */
     92 struct zs_softc {
     93     struct	device		zi_dev;    /* base device		  */
     94     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     95     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     96 };
     97 
     98 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
     99 /*
    100  * Define the registers for a closed port
    101  */
    102 static u_char zs_init_regs[16] = {
    103 /*  0 */	0,
    104 /*  1 */	0,
    105 /*  2 */	0x60,
    106 /*  3 */	0,
    107 /*  4 */	0,
    108 /*  5 */	0,
    109 /*  6 */	0,
    110 /*  7 */	0,
    111 /*  8 */	0,
    112 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
    113 /* 10 */	ZSWR10_NRZ,
    114 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    115 /* 12 */	0,
    116 /* 13 */	0,
    117 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    118 /* 15 */	0
    119 };
    120 
    121 /*
    122  * Define the machine dependant clock frequencies
    123  * If BRgen feeds sender/receiver we always use a
    124  * divisor 16, therefor the division by 16 can as
    125  * well be done here.
    126  */
    127 static u_long zs_freqs_tt[] = {
    128 	/*
    129 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    130 	 * which is set to 307.2KHz during initialisation
    131 	 * and never changed afterwards.
    132 	 */
    133 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    134 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    135 	3672000,	/* RTxCA, from PCLK4		*/
    136 	      0,	/* TRxCA, external		*/
    137 
    138 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    139 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    140 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    141 	2457600		/* TRxCB, from BCLK		*/
    142 };
    143 
    144 static u_long zs_freqs_falcon[] = {
    145 	/*
    146 	 * Atari Falcon, XXX no specs available, this might be wrong
    147 	 */
    148 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    149 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    150 	3672000,	/* RTxCA, ???			*/
    151 	      0,	/* TRxCA, external		*/
    152 
    153 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    154 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    155 	3672000,	/* RTxCB, ???			*/
    156 	2457600		/* TRxCB, ???			*/
    157 };
    158 
    159 static u_long zs_freqs_hades[] = {
    160 	/*
    161 	 * XXX: Channel-A unchecked!!!!!
    162 	 */
    163      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    164 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    165 	3672000,	/* RTxCA, from PCLK4		*/
    166 	      0,	/* TRxCA, external		*/
    167 
    168      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    169 	 235550,	/* BRgen, RTxCB, divisor 16	*/
    170 	3768800,	/* RTxCB, 3.7688MHz		*/
    171 	3768800		/* TRxCB, 3.7688MHz		*/
    172 };
    173 
    174 static u_long zs_freqs_generic[] = {
    175 	/*
    176 	 * other machines, assume only PCLK is available
    177 	 */
    178 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    179 	      0,	/* BRgen, RTxCA, divisor 16	*/
    180 	      0,	/* RTxCA, unknown		*/
    181 	      0,	/* TRxCA, unknown		*/
    182 
    183 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    184 	      0,	/* BRgen, RTxCB, divisor 16	*/
    185 	      0,	/* RTxCB, unknown		*/
    186 	      0		/* TRxCB, unknown		*/
    187 };
    188 static u_long *zs_frequencies;
    189 
    190 /* Definition of the driver for autoconfig. */
    191 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    192 static void	zsattach __P((struct device *, struct device *, void *));
    193 
    194 struct cfattach zs_ca = {
    195 	sizeof(struct zs_softc), zsmatch, zsattach
    196 };
    197 
    198 struct cfdriver zs_cd = {
    199 	NULL, "zs", DV_TTY, NULL, 0
    200 };
    201 
    202 /* {b,c}devsw[] function prototypes */
    203 dev_type_open(zsopen);
    204 dev_type_close(zsclose);
    205 dev_type_read(zsread);
    206 dev_type_write(zswrite);
    207 dev_type_ioctl(zsioctl);
    208 dev_type_tty(zstty);
    209 
    210 /* Interrupt handlers. */
    211 int		zshard __P((long));
    212 static int	zssoft __P((long));
    213 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    214 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    215 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    216 
    217 static struct zs_chanstate *zslist;
    218 
    219 /* Routines called from other code. */
    220 static void	zsstart __P((struct tty *));
    221 void		zsstop __P((struct tty *, int));
    222 
    223 /* Routines purely local to this driver. */
    224 static void	zsoverrun __P((int, long *, char *));
    225 static int	zsparam __P((struct tty *, struct termios *));
    226 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    227 static int	zs_modem __P((struct zs_chanstate *, int, int));
    228 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    229 
    230 static int zsshortcuts;	/* number of "shortcut" software interrupts */
    231 
    232 static int
    233 zsmatch(pdp, cfp, auxp)
    234 struct device	*pdp;
    235 struct cfdata	*cfp;
    236 void		*auxp;
    237 {
    238 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
    239 		return(0);
    240 	return(1);
    241 }
    242 
    243 /*
    244  * Attach a found zs.
    245  */
    246 static void
    247 zsattach(parent, dev, aux)
    248 struct device	*parent;
    249 struct device	*dev;
    250 void		*aux;
    251 {
    252 	register struct zs_softc		*zi;
    253 	register struct zs_chanstate		*cs;
    254 	register volatile struct zsdevice	*addr;
    255 		 char				tmp;
    256 
    257 	addr      = (struct zsdevice *)AD_SCC;
    258 	zi        = (struct zs_softc *)dev;
    259 	zi->zi_zs = addr;
    260 	cs        = zi->zi_cs;
    261 
    262 	/*
    263 	 * Get the command register into a known state.
    264 	 */
    265 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    266 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    267 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    268 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    269 
    270 	/*
    271 	 * Do a hardware reset.
    272 	 */
    273 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    274 	delay(50000);	/*enough ? */
    275 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    276 
    277 	/*
    278 	 * Initialize both channels
    279 	 */
    280 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    281 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    282 
    283 	if(machineid & ATARI_TT) {
    284 		/*
    285 		 * ininitialise TT-MFP timer C: 307200Hz
    286 		 * timer C and D share one control register:
    287 		 *	bits 0-2 control timer D
    288 		 *	bits 4-6 control timer C
    289 		 */
    290 		int cr = MFP2->mf_tcdcr & 7;
    291 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    292 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    293 		cr |= T_Q004 << 4;		/* divisor 4     */
    294 		MFP2->mf_tcdcr = cr;		/* start timer C */
    295 		/*
    296 		 * enable scc related interrupts
    297 		 */
    298 		SCU->sys_mask |= SCU_SCC;
    299 
    300 		zs_frequencies = zs_freqs_tt;
    301 	} else if (machineid & ATARI_FALCON) {
    302 		zs_frequencies = zs_freqs_falcon;
    303 	} else if (machineid & ATARI_HADES) {
    304 		zs_frequencies = zs_freqs_hades;
    305 	} else {
    306 		zs_frequencies = zs_freqs_generic;
    307 	}
    308 
    309 	/* link into interrupt list with order (A,B) (B=A+1) */
    310 	cs[0].cs_next = &cs[1];
    311 	cs[1].cs_next = zslist;
    312 	zslist        = cs;
    313 
    314 	cs->cs_unit  = 0;
    315 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    316 	cs++;
    317 	cs->cs_unit  = 1;
    318 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    319 
    320 	printf(": serial2 on channel a and modem2 on channel b\n");
    321 }
    322 
    323 /*
    324  * Open a zs serial port.
    325  */
    326 int
    327 zsopen(dev, flags, mode, p)
    328 dev_t		dev;
    329 int		flags;
    330 int		mode;
    331 struct proc	*p;
    332 {
    333 	register struct tty		*tp;
    334 	register struct zs_chanstate	*cs;
    335 		 struct zs_softc	*zi;
    336 		 int			unit = ZS_UNIT(dev);
    337 		 int			zs = unit >> 1;
    338 		 int			error, s;
    339 
    340 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
    341 		return (ENXIO);
    342 	cs = &zi->zi_cs[unit & 1];
    343 
    344 	/*
    345 	 * When port A (ser02) is selected on the TT, make sure
    346 	 * the port is enabled.
    347 	 */
    348 	if((machineid & ATARI_TT) && !(unit & 1))
    349 		ym2149_ser2(1);
    350 
    351 	if (cs->cs_rbuf == NULL) {
    352 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
    353 								   M_WAITOK);
    354 	}
    355 
    356 	tp = cs->cs_ttyp;
    357 	if(tp == NULL) {
    358 		cs->cs_ttyp = tp = ttymalloc();
    359 		tty_attach(tp);
    360 		tp->t_dev   = dev;
    361 		tp->t_oproc = zsstart;
    362 		tp->t_param = zsparam;
    363 	}
    364 
    365 	s  = spltty();
    366 	if((tp->t_state & TS_ISOPEN) == 0) {
    367 		ttychars(tp);
    368 		if(tp->t_ispeed == 0) {
    369 			tp->t_iflag = TTYDEF_IFLAG;
    370 			tp->t_oflag = TTYDEF_OFLAG;
    371 			tp->t_cflag = TTYDEF_CFLAG;
    372 			tp->t_lflag = TTYDEF_LFLAG;
    373 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    374 		}
    375 		(void)zsparam(tp, &tp->t_termios);
    376 		ttsetwater(tp);
    377 	}
    378 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    379 			splx(s);
    380 			return (EBUSY);
    381 	}
    382 	error = 0;
    383 	for(;;) {
    384 		/* loop, turning on the device, until carrier present */
    385 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    386 
    387 		/* May never get a status intr. if DCD already on. -gwr */
    388 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
    389 			tp->t_state |= TS_CARR_ON;
    390 		if(cs->cs_softcar)
    391 			tp->t_state |= TS_CARR_ON;
    392 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    393 		    tp->t_state & TS_CARR_ON)
    394 			break;
    395 		tp->t_state |= TS_WOPEN;
    396 		if((error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    397 		    ttopen, 0)) != 0) {
    398 			if(!(tp->t_state & TS_ISOPEN)) {
    399 				zs_modem(cs, 0, DMSET);
    400 				tp->t_state &= ~TS_WOPEN;
    401 				ttwakeup(tp);
    402 			}
    403 			splx(s);
    404 			return error;
    405 		}
    406 	}
    407 	splx(s);
    408 	if(error == 0)
    409 		error = linesw[tp->t_line].l_open(dev, tp);
    410 	if(error)
    411 		zs_modem(cs, 0, DMSET);
    412 	return(error);
    413 }
    414 
    415 /*
    416  * Close a zs serial port.
    417  */
    418 int
    419 zsclose(dev, flags, mode, p)
    420 dev_t		dev;
    421 int		flags;
    422 int		mode;
    423 struct proc	*p;
    424 {
    425 	register struct zs_chanstate	*cs;
    426 	register struct tty		*tp;
    427 		 struct zs_softc	*zi;
    428 		 int			unit = ZS_UNIT(dev);
    429 		 int			s;
    430 
    431 	zi = zs_cd.cd_devs[unit >> 1];
    432 	cs = &zi->zi_cs[unit & 1];
    433 	tp = cs->cs_ttyp;
    434 	linesw[tp->t_line].l_close(tp, flags);
    435 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    436 	    (tp->t_state & TS_ISOPEN) == 0) {
    437 		zs_modem(cs, 0, DMSET);
    438 		/* hold low for 1 second */
    439 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    440 	}
    441 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
    442 		s = splzs();
    443 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    444 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    445 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    446 		splx(s);
    447 	}
    448 	ttyclose(tp);
    449 
    450 	/*
    451 	 * Drop all lines and cancel interrupts
    452 	 */
    453 	s = splzs();
    454 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
    455 	splx(s);
    456 	return (0);
    457 }
    458 
    459 /*
    460  * Read/write zs serial port.
    461  */
    462 int
    463 zsread(dev, uio, flags)
    464 dev_t		dev;
    465 struct uio	*uio;
    466 int		flags;
    467 {
    468 	register struct zs_chanstate	*cs;
    469 	register struct zs_softc	*zi;
    470 	register struct tty		*tp;
    471 		 int			unit;
    472 
    473 	unit = ZS_UNIT(dev);
    474 	zi   = zs_cd.cd_devs[unit >> 1];
    475 	cs   = &zi->zi_cs[unit & 1];
    476 	tp   = cs->cs_ttyp;
    477 
    478 	return(linesw[tp->t_line].l_read(tp, uio, flags));
    479 }
    480 
    481 int
    482 zswrite(dev, uio, flags)
    483 dev_t		dev;
    484 struct uio	*uio;
    485 int		flags;
    486 {
    487 	register struct zs_chanstate	*cs;
    488 	register struct zs_softc	*zi;
    489 	register struct tty		*tp;
    490 		 int			unit;
    491 
    492 	unit = ZS_UNIT(dev);
    493 	zi   = zs_cd.cd_devs[unit >> 1];
    494 	cs   = &zi->zi_cs[unit & 1];
    495 	tp   = cs->cs_ttyp;
    496 
    497 	return(linesw[tp->t_line].l_write(tp, uio, flags));
    498 }
    499 
    500 struct tty *
    501 zstty(dev)
    502 dev_t	dev;
    503 {
    504 	register struct zs_chanstate	*cs;
    505 	register struct zs_softc	*zi;
    506 		 int			unit;
    507 
    508 	unit = ZS_UNIT(dev);
    509 	zi   = zs_cd.cd_devs[unit >> 1];
    510 	cs   = &zi->zi_cs[unit & 1];
    511 	return(cs->cs_ttyp);
    512 }
    513 
    514 /*
    515  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    516  * channels are kept in (A,B) pairs.
    517  *
    518  * Do just a little, then get out; set a software interrupt if more
    519  * work is needed.
    520  *
    521  * We deliberately ignore the vectoring Zilog gives us, and match up
    522  * only the number of `reset interrupt under service' operations, not
    523  * the order.
    524  */
    525 
    526 int
    527 zshard(sr)
    528 long sr;
    529 {
    530 	register struct zs_chanstate	*a;
    531 #define	b (a + 1)
    532 	register volatile struct zschan *zc;
    533 	register int			rr3, intflags = 0, v, i;
    534 
    535 	do {
    536 	    intflags &= ~4;
    537 	    for(a = zslist; a != NULL; a = b->cs_next) {
    538 		rr3 = ZS_READ(a->cs_zc, 3);
    539 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    540 			intflags |= 4|2;
    541 			zc = a->cs_zc;
    542 			i  = a->cs_rbput;
    543 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    544 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    545 				intflags |= 1;
    546 			}
    547 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    548 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    549 				intflags |= 1;
    550 			}
    551 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    552 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    553 				intflags |= 1;
    554 			}
    555 			a->cs_rbput = i;
    556 		}
    557 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    558 			intflags |= 4|2;
    559 			zc = b->cs_zc;
    560 			i  = b->cs_rbput;
    561 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    562 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    563 				intflags |= 1;
    564 			}
    565 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    566 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    567 				intflags |= 1;
    568 			}
    569 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    570 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    571 				intflags |= 1;
    572 			}
    573 			b->cs_rbput = i;
    574 		}
    575 	    }
    576 	} while(intflags & 4);
    577 #undef b
    578 
    579 	if(intflags & 1) {
    580 		if(BASEPRI(sr)) {
    581 			spl1();
    582 			zsshortcuts++;
    583 			return(zssoft(sr));
    584 		}
    585 		else if(!cb_scheduled) {
    586 			cb_scheduled++;
    587 			add_sicallback((si_farg)zssoft, 0, 0);
    588 		}
    589 	}
    590 	return(intflags & 2);
    591 }
    592 
    593 static int
    594 zsrint(cs, zc)
    595 register struct zs_chanstate	*cs;
    596 register volatile struct zschan	*zc;
    597 {
    598 	register int c;
    599 
    600 	/*
    601 	 * First read the status, because read of the received char
    602 	 * destroy the status of this char.
    603 	 */
    604 	c = ZS_READ(zc, 1);
    605 	c |= (zc->zc_data << 8);
    606 
    607 	/* clear receive error & interrupt condition */
    608 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    609 	zc->zc_csr = ZSWR0_CLR_INTR;
    610 
    611 	return(ZRING_MAKE(ZRING_RINT, c));
    612 }
    613 
    614 static int
    615 zsxint(cs, zc)
    616 register struct zs_chanstate	*cs;
    617 register volatile struct zschan	*zc;
    618 {
    619 	register int i = cs->cs_tbc;
    620 
    621 	if(i == 0) {
    622 		zc->zc_csr = ZSWR0_RESET_TXINT;
    623 		zc->zc_csr = ZSWR0_CLR_INTR;
    624 		return(ZRING_MAKE(ZRING_XINT, 0));
    625 	}
    626 	cs->cs_tbc = i - 1;
    627 	zc->zc_data = *cs->cs_tba++;
    628 	zc->zc_csr = ZSWR0_CLR_INTR;
    629 	return (0);
    630 }
    631 
    632 static int
    633 zssint(cs, zc)
    634 register struct zs_chanstate	*cs;
    635 register volatile struct zschan	*zc;
    636 {
    637 	register int rr0;
    638 
    639 	rr0 = zc->zc_csr;
    640 	zc->zc_csr = ZSWR0_RESET_STATUS;
    641 	zc->zc_csr = ZSWR0_CLR_INTR;
    642 	/*
    643 	 * The chip's hardware flow control is, as noted in zsreg.h,
    644 	 * busted---if the DCD line goes low the chip shuts off the
    645 	 * receiver (!).  If we want hardware CTS flow control but do
    646 	 * not have it, and carrier is now on, turn HFC on; if we have
    647 	 * HFC now but carrier has gone low, turn it off.
    648 	 */
    649 	if(rr0 & ZSRR0_DCD) {
    650 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    651 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    652 			cs->cs_creg[3] |= ZSWR3_HFC;
    653 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    654 		}
    655 	}
    656 	else {
    657 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    658 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    659 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    660 		}
    661 	}
    662 	return(ZRING_MAKE(ZRING_SINT, rr0));
    663 }
    664 
    665 /*
    666  * Print out a ring or fifo overrun error message.
    667  */
    668 static void
    669 zsoverrun(unit, ptime, what)
    670 int	unit;
    671 long	*ptime;
    672 char	*what;
    673 {
    674 
    675 	if(*ptime != time.tv_sec) {
    676 		*ptime = time.tv_sec;
    677 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    678 		    (unit & 1) + 'a', what);
    679 	}
    680 }
    681 
    682 /*
    683  * ZS software interrupt.  Scan all channels for deferred interrupts.
    684  */
    685 int
    686 zssoft(sr)
    687 long sr;
    688 {
    689     register struct zs_chanstate	*cs;
    690     register volatile struct zschan	*zc;
    691     register struct linesw		*line;
    692     register struct tty			*tp;
    693     register int			get, n, c, cc, unit, s;
    694  	     int			retval = 0;
    695 
    696     cb_scheduled = 0;
    697     s = spltty();
    698     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    699 	get = cs->cs_rbget;
    700 again:
    701 	n = cs->cs_rbput;	/* atomic			*/
    702 	if(get == n)		/* nothing more on this line	*/
    703 		continue;
    704 	retval = 1;
    705 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    706 	zc     = cs->cs_zc;
    707 	tp     = cs->cs_ttyp;
    708 	line   = &linesw[tp->t_line];
    709 	/*
    710 	 * Compute the number of interrupts in the receive ring.
    711 	 * If the count is overlarge, we lost some events, and
    712 	 * must advance to the first valid one.  It may get
    713 	 * overwritten if more data are arriving, but this is
    714 	 * too expensive to check and gains nothing (we already
    715 	 * lost out; all we can do at this point is trade one
    716 	 * kind of loss for another).
    717 	 */
    718 	n -= get;
    719 	if(n > ZLRB_RING_SIZE) {
    720 		zsoverrun(unit, &cs->cs_rotime, "ring");
    721 		get += n - ZLRB_RING_SIZE;
    722 		n    = ZLRB_RING_SIZE;
    723 	}
    724 	while(--n >= 0) {
    725 		/* race to keep ahead of incoming interrupts */
    726 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    727 		switch (ZRING_TYPE(c)) {
    728 
    729 		case ZRING_RINT:
    730 			c = ZRING_VALUE(c);
    731 			if(c & ZSRR1_DO)
    732 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    733 			cc = c >> 8;
    734 			if(c & ZSRR1_FE)
    735 				cc |= TTY_FE;
    736 			if(c & ZSRR1_PE)
    737 				cc |= TTY_PE;
    738 			line->l_rint(cc, tp);
    739 			break;
    740 
    741 		case ZRING_XINT:
    742 			/*
    743 			 * Transmit done: change registers and resume,
    744 			 * or clear BUSY.
    745 			 */
    746 			if(cs->cs_heldchange) {
    747 				int sps;
    748 
    749 				sps = splzs();
    750 				c = zc->zc_csr;
    751 				if((c & ZSRR0_DCD) == 0)
    752 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    753 				bcopy((caddr_t)cs->cs_preg,
    754 				    (caddr_t)cs->cs_creg, 16);
    755 				zs_loadchannelregs(zc, cs->cs_creg);
    756 				splx(sps);
    757 				cs->cs_heldchange = 0;
    758 				if(cs->cs_heldtbc
    759 					&& (tp->t_state & TS_TTSTOP) == 0) {
    760 					cs->cs_tbc = cs->cs_heldtbc - 1;
    761 					zc->zc_data = *cs->cs_tba++;
    762 					goto again;
    763 				}
    764 			}
    765 			tp->t_state &= ~TS_BUSY;
    766 			if(tp->t_state & TS_FLUSH)
    767 				tp->t_state &= ~TS_FLUSH;
    768 			else ndflush(&tp->t_outq,cs->cs_tba
    769 						- (caddr_t)tp->t_outq.c_cf);
    770 			line->l_start(tp);
    771 			break;
    772 
    773 		case ZRING_SINT:
    774 			/*
    775 			 * Status line change.  HFC bit is run in
    776 			 * hardware interrupt, to avoid locking
    777 			 * at splzs here.
    778 			 */
    779 			c = ZRING_VALUE(c);
    780 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    781 				cc = (c & ZSRR0_DCD) != 0;
    782 				if(line->l_modem(tp, cc) == 0)
    783 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    784 							cc ? DMBIS : DMBIC);
    785 			}
    786 			cs->cs_rr0 = c;
    787 			break;
    788 
    789 		default:
    790 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    791 			    unit >> 1, (unit & 1) + 'a', c);
    792 			break;
    793 		}
    794 	}
    795 	cs->cs_rbget = get;
    796 	goto again;
    797     }
    798     splx(s);
    799     return (retval);
    800 }
    801 
    802 int
    803 zsioctl(dev, cmd, data, flag, p)
    804 dev_t		dev;
    805 u_long		cmd;
    806 caddr_t		data;
    807 int		flag;
    808 struct proc	*p;
    809 {
    810 		 int			unit = ZS_UNIT(dev);
    811 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    812 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    813 	register int			error, s;
    814 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    815 
    816 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
    817 	if(error >= 0)
    818 		return(error);
    819 	error = ttioctl(tp, cmd, data, flag, p);
    820 	if(error >= 0)
    821 		return (error);
    822 
    823 	switch (cmd) {
    824 	case TIOCSBRK:
    825 		s = splzs();
    826 		cs->cs_preg[5] |= ZSWR5_BREAK;
    827 		cs->cs_creg[5] |= ZSWR5_BREAK;
    828 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    829 		splx(s);
    830 		break;
    831 	case TIOCCBRK:
    832 		s = splzs();
    833 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    834 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    835 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    836 		splx(s);
    837 		break;
    838 	case TIOCGFLAGS: {
    839 		int bits = 0;
    840 
    841 		if(cs->cs_softcar)
    842 			bits |= TIOCFLAG_SOFTCAR;
    843 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    844 			bits |= TIOCFLAG_CLOCAL;
    845 		if(cs->cs_creg[3] & ZSWR3_HFC)
    846 			bits |= TIOCFLAG_CRTSCTS;
    847 		*(int *)data = bits;
    848 		break;
    849 	}
    850 	case TIOCSFLAGS: {
    851 		int userbits = 0;
    852 
    853 		error = suser(p->p_ucred, &p->p_acflag);
    854 		if(error != 0)
    855 			return (EPERM);
    856 
    857 		userbits = *(int *)data;
    858 
    859 		/*
    860 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    861 		 # defaulting to software flow control.
    862 		 */
    863 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    864 			return(EINVAL);
    865 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    866 			return(ENODEV);
    867 
    868 		s = splzs();
    869 		if((userbits & TIOCFLAG_SOFTCAR)) {
    870 			cs->cs_softcar = 1;	/* turn on softcar */
    871 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    872 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    873 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    874 		}
    875 		else if(userbits & TIOCFLAG_CLOCAL) {
    876 			cs->cs_softcar = 0; 	/* turn off softcar */
    877 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    878 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    879 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    880 			tp->t_termios.c_cflag |= CLOCAL;
    881 		}
    882 		if(userbits & TIOCFLAG_CRTSCTS) {
    883 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    884 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    885 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    886 			cs->cs_preg[3] |= ZSWR3_HFC;
    887 			cs->cs_creg[3] |= ZSWR3_HFC;
    888 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    889 			tp->t_termios.c_cflag |= CRTSCTS;
    890 		}
    891 		else {
    892 			/* no mdmbuf, so we must want software flow control */
    893 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    894 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    895 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    896 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    897 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    898 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    899 			tp->t_termios.c_cflag &= ~CRTSCTS;
    900 		}
    901 		splx(s);
    902 		break;
    903 	}
    904 	case TIOCSDTR:
    905 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    906 		break;
    907 	case TIOCCDTR:
    908 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    909 		break;
    910 	case TIOCMGET:
    911 		zs_modem(cs, 0, DMGET);
    912 		break;
    913 	case TIOCMSET:
    914 	case TIOCMBIS:
    915 	case TIOCMBIC:
    916 	default:
    917 		return (ENOTTY);
    918 	}
    919 	return (0);
    920 }
    921 
    922 /*
    923  * Start or restart transmission.
    924  */
    925 static void
    926 zsstart(tp)
    927 register struct tty *tp;
    928 {
    929 	register struct zs_chanstate	*cs;
    930 	register int			s, nch;
    931 		 int			unit = ZS_UNIT(tp->t_dev);
    932 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    933 
    934 	cs = &zi->zi_cs[unit & 1];
    935 	s  = spltty();
    936 
    937 	/*
    938 	 * If currently active or delaying, no need to do anything.
    939 	 */
    940 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    941 		goto out;
    942 
    943 	/*
    944 	 * If there are sleepers, and output has drained below low
    945 	 * water mark, awaken.
    946 	 */
    947 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    948 		if(tp->t_state & TS_ASLEEP) {
    949 			tp->t_state &= ~TS_ASLEEP;
    950 			wakeup((caddr_t)&tp->t_outq);
    951 		}
    952 		selwakeup(&tp->t_wsel);
    953 	}
    954 
    955 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    956 	if(nch) {
    957 		register char *p = tp->t_outq.c_cf;
    958 
    959 		/* mark busy, enable tx done interrupts, & send first byte */
    960 		tp->t_state |= TS_BUSY;
    961 		(void) splzs();
    962 		cs->cs_preg[1] |= ZSWR1_TIE;
    963 		cs->cs_creg[1] |= ZSWR1_TIE;
    964 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    965 		cs->cs_zc->zc_data = *p;
    966 		cs->cs_tba = p + 1;
    967 		cs->cs_tbc = nch - 1;
    968 	} else {
    969 		/*
    970 		 * Nothing to send, turn off transmit done interrupts.
    971 		 * This is useful if something is doing polled output.
    972 		 */
    973 		(void) splzs();
    974 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    975 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    976 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    977 	}
    978 out:
    979 	splx(s);
    980 }
    981 
    982 /*
    983  * Stop output, e.g., for ^S or output flush.
    984  */
    985 void
    986 zsstop(tp, flag)
    987 register struct tty	*tp;
    988 	 int		flag;
    989 {
    990 	register struct zs_chanstate	*cs;
    991 	register int			s, unit = ZS_UNIT(tp->t_dev);
    992 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    993 
    994 	cs = &zi->zi_cs[unit & 1];
    995 	s  = splzs();
    996 	if(tp->t_state & TS_BUSY) {
    997 		/*
    998 		 * Device is transmitting; must stop it.
    999 		 */
   1000 		cs->cs_tbc = 0;
   1001 		if ((tp->t_state & TS_TTSTOP) == 0)
   1002 			tp->t_state |= TS_FLUSH;
   1003 	}
   1004 	splx(s);
   1005 }
   1006 
   1007 /*
   1008  * Set ZS tty parameters from termios.
   1009  *
   1010  * This routine makes use of the fact that only registers
   1011  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
   1012  */
   1013 static int
   1014 zsparam(tp, t)
   1015 register struct tty	*tp;
   1016 register struct termios	*t;
   1017 {
   1018 		 int			unit = ZS_UNIT(tp->t_dev);
   1019 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
   1020 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
   1021 		 int			cdiv, clkm, brgm, tcon;
   1022 	register int			tmp, tmp5, cflag, s;
   1023 
   1024 	tmp  = t->c_ospeed;
   1025 	tmp5 = t->c_ispeed;
   1026 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
   1027 		return(EINVAL);
   1028 	if(tmp == 0) {
   1029 		/* stty 0 => drop DTR and RTS */
   1030 		zs_modem(cs, 0, DMSET);
   1031 		return(0);
   1032 	}
   1033 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
   1034 	if (tmp < 0)
   1035 		return(EINVAL);
   1036 	tp->t_ispeed = tp->t_ospeed = tmp;
   1037 
   1038 	cflag = tp->t_cflag = t->c_cflag;
   1039 	if (cflag & CSTOPB)
   1040 		cdiv |= ZSWR4_TWOSB;
   1041 	else
   1042 		cdiv |= ZSWR4_ONESB;
   1043 	if (!(cflag & PARODD))
   1044 		cdiv |= ZSWR4_EVENP;
   1045 	if (cflag & PARENB)
   1046 		cdiv |= ZSWR4_PARENB;
   1047 
   1048 	switch(cflag & CSIZE) {
   1049 	case CS5:
   1050 		tmp  = ZSWR3_RX_5;
   1051 		tmp5 = ZSWR5_TX_5;
   1052 		break;
   1053 	case CS6:
   1054 		tmp  = ZSWR3_RX_6;
   1055 		tmp5 = ZSWR5_TX_6;
   1056 		break;
   1057 	case CS7:
   1058 		tmp  = ZSWR3_RX_7;
   1059 		tmp5 = ZSWR5_TX_7;
   1060 		break;
   1061 	case CS8:
   1062 	default:
   1063 		tmp  = ZSWR3_RX_8;
   1064 		tmp5 = ZSWR5_TX_8;
   1065 		break;
   1066 	}
   1067 	tmp  |= ZSWR3_RX_ENABLE;
   1068 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1069 
   1070 	/*
   1071 	 * Block interrupts so that state will not
   1072 	 * be altered until we are done setting it up.
   1073 	 */
   1074 	s = splzs();
   1075 	cs->cs_preg[4]  = cdiv;
   1076 	cs->cs_preg[11] = clkm;
   1077 	cs->cs_preg[12] = tcon;
   1078 	cs->cs_preg[13] = tcon >> 8;
   1079 	cs->cs_preg[14] = brgm;
   1080 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1081 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1082 	cs->cs_preg[10] = ZSWR10_NRZ;
   1083 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1084 
   1085 	/*
   1086 	 * Output hardware flow control on the chip is horrendous: if
   1087 	 * carrier detect drops, the receiver is disabled.  Hence we
   1088 	 * can only do this when the carrier is on.
   1089 	 */
   1090 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1091 		tmp |= ZSWR3_HFC;
   1092 	cs->cs_preg[3] = tmp;
   1093 	cs->cs_preg[5] = tmp5;
   1094 
   1095 	/*
   1096 	 * If nothing is being transmitted, set up new current values,
   1097 	 * else mark them as pending.
   1098 	 */
   1099 	if(cs->cs_heldchange == 0) {
   1100 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1101 			cs->cs_heldtbc = cs->cs_tbc;
   1102 			cs->cs_tbc = 0;
   1103 			cs->cs_heldchange = 1;
   1104 		} else {
   1105 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1106 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1107 		}
   1108 	}
   1109 	splx(s);
   1110 	return (0);
   1111 }
   1112 
   1113 /*
   1114  * search for the best matching baudrate
   1115  */
   1116 static int
   1117 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1118 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1119 {
   1120 	int	bestdiff, bestbps, source;
   1121 
   1122 	bestdiff = bestbps = 0;
   1123 	unit = (unit & 1) << 2;
   1124 	for (source = 0; source < 4; ++source) {
   1125 		long	freq = zs_frequencies[unit + source];
   1126 		int	diff, bps, div, clkm, brgm, tcon;
   1127 
   1128 		bps = div = clkm = brgm = tcon = 0;
   1129 		switch (source) {
   1130 			case 0:	/* BRgen, PCLK */
   1131 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1132 				break;
   1133 			case 1:	/* BRgen, RTxC */
   1134 				brgm = ZSWR14_BAUD_ENA;
   1135 				break;
   1136 			case 2: /* RTxC */
   1137 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1138 				break;
   1139 			case 3: /* TRxC */
   1140 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1141 				break;
   1142 		}
   1143 		switch (source) {
   1144 			case 0:
   1145 			case 1:
   1146 				div  = ZSWR4_CLK_X16;
   1147 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1148 				tcon = BPS_TO_TCONST(freq, wanted);
   1149 				if (tcon < 0)
   1150 					tcon = 0;
   1151 				bps  = TCONST_TO_BPS(freq, tcon);
   1152 				break;
   1153 			case 2:
   1154 			case 3:
   1155 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1156 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1157 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1158 
   1159 				if (d1 < d2 && d1 < d3) {
   1160 					div = ZSWR4_CLK_X16;
   1161 					bps = b1;
   1162 				} else if (d2 < d3 && d2 < d1) {
   1163 					div = ZSWR4_CLK_X32;
   1164 					bps = b2;
   1165 				} else {
   1166 					div = ZSWR4_CLK_X64;
   1167 					bps = b3;
   1168 				}
   1169 				brgm = tcon = 0;
   1170 				break;
   1171 			}
   1172 		}
   1173 		diff = abs(bps - wanted);
   1174 		if (!source || diff < bestdiff) {
   1175 			*divisor   = div;
   1176 			*clockmode = clkm;
   1177 			*brgenmode = brgm;
   1178 			*timeconst = tcon;
   1179 			bestbps    = bps;
   1180 			bestdiff   = diff;
   1181 			if (diff == 0)
   1182 				break;
   1183 		}
   1184 	}
   1185 	/* Allow deviations upto 5% */
   1186 	if (20 * bestdiff > wanted)
   1187 		return -1;
   1188 	return bestbps;
   1189 }
   1190 
   1191 /*
   1192  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1193  * in transmission, the change is deferred.
   1194  */
   1195 static int
   1196 zs_modem(cs, bits, how)
   1197 struct zs_chanstate	*cs;
   1198 int			bits, how;
   1199 {
   1200 	int s, mbits;
   1201 
   1202 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1203 
   1204 	s = splzs();
   1205 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1206 
   1207 	switch(how) {
   1208 		case DMSET:
   1209 				mbits  = bits;
   1210 				break;
   1211 		case DMBIS:
   1212 				mbits |= bits;
   1213 				break;
   1214 		case DMBIC:
   1215 				mbits &= ~bits;
   1216 				break;
   1217 		case DMGET:
   1218 				splx(s);
   1219 				return(mbits);
   1220 	}
   1221 
   1222 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1223 	if(cs->cs_heldchange == 0) {
   1224 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1225 			cs->cs_heldtbc = cs->cs_tbc;
   1226 			cs->cs_tbc = 0;
   1227 			cs->cs_heldchange = 1;
   1228 		}
   1229 		else {
   1230 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1231 		}
   1232 	}
   1233 	splx(s);
   1234 	return(0);
   1235 }
   1236 
   1237 /*
   1238  * Write the given register set to the given zs channel in the proper order.
   1239  * The channel must not be transmitting at the time.  The receiver will
   1240  * be disabled for the time it takes to write all the registers.
   1241  */
   1242 static void
   1243 zs_loadchannelregs(zc, reg)
   1244 volatile struct zschan	*zc;
   1245 u_char			*reg;
   1246 {
   1247 	int i;
   1248 
   1249 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1250 	i = zc->zc_data;		/* drain fifo */
   1251 	i = zc->zc_data;
   1252 	i = zc->zc_data;
   1253 	ZS_WRITE(zc,  4, reg[4]);
   1254 	ZS_WRITE(zc, 10, reg[10]);
   1255 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1256 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1257 	ZS_WRITE(zc,  1, reg[1]);
   1258 	ZS_WRITE(zc,  9, reg[9]);
   1259 	ZS_WRITE(zc, 11, reg[11]);
   1260 	ZS_WRITE(zc, 12, reg[12]);
   1261 	ZS_WRITE(zc, 13, reg[13]);
   1262 	ZS_WRITE(zc, 14, reg[14]);
   1263 	ZS_WRITE(zc, 15, reg[15]);
   1264 	ZS_WRITE(zc,  3, reg[3]);
   1265 	ZS_WRITE(zc,  5, reg[5]);
   1266 }
   1267 #endif /* NZS > 1 */
   1268