Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.28
      1 /*	$NetBSD: zs.c,v 1.28 1998/01/12 18:04:17 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/systm.h>
     58 #include <sys/proc.h>
     59 #include <sys/device.h>
     60 #include <sys/conf.h>
     61 #include <sys/file.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/malloc.h>
     64 #include <sys/tty.h>
     65 #include <sys/time.h>
     66 #include <sys/kernel.h>
     67 #include <sys/syslog.h>
     68 
     69 #include <machine/cpu.h>
     70 #include <machine/iomap.h>
     71 #include <machine/scu.h>
     72 #include <machine/mfp.h>
     73 #include <atari/dev/ym2149reg.h>
     74 
     75 #include <dev/ic/z8530reg.h>
     76 #include <atari/dev/zsvar.h>
     77 #include "zs.h"
     78 #if NZS > 1
     79 #error "This driver supports only 1 85C30!"
     80 #endif
     81 
     82 #if NZS > 0
     83 
     84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
     85 #define PCLK_HD	(14745600)	/* PCLK on Hades pin input clock rate */
     86 
     87 #define splzs	spl5
     88 
     89 /*
     90  * Software state per found chip.
     91  */
     92 struct zs_softc {
     93     struct	device		zi_dev;    /* base device		  */
     94     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     95     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     96 };
     97 
     98 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
     99 /*
    100  * Define the registers for a closed port
    101  */
    102 static u_char zs_init_regs[16] = {
    103 /*  0 */	0,
    104 /*  1 */	0,
    105 /*  2 */	0x60,
    106 /*  3 */	0,
    107 /*  4 */	0,
    108 /*  5 */	0,
    109 /*  6 */	0,
    110 /*  7 */	0,
    111 /*  8 */	0,
    112 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
    113 /* 10 */	ZSWR10_NRZ,
    114 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    115 /* 12 */	0,
    116 /* 13 */	0,
    117 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    118 /* 15 */	0
    119 };
    120 
    121 /*
    122  * Define the machine dependant clock frequencies
    123  * If BRgen feeds sender/receiver we always use a
    124  * divisor 16, therefor the division by 16 can as
    125  * well be done here.
    126  */
    127 static u_long zs_freqs_tt[] = {
    128 	/*
    129 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    130 	 * which is set to 307.2KHz during initialisation
    131 	 * and never changed afterwards.
    132 	 */
    133 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    134 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    135 	3672000,	/* RTxCA, from PCLK4		*/
    136 	      0,	/* TRxCA, external		*/
    137 
    138 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    139 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    140 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    141 	2457600		/* TRxCB, from BCLK		*/
    142 };
    143 
    144 static u_long zs_freqs_falcon[] = {
    145 	/*
    146 	 * Atari Falcon, XXX no specs available, this might be wrong
    147 	 */
    148 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    149 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    150 	3672000,	/* RTxCA, ???			*/
    151 	      0,	/* TRxCA, external		*/
    152 
    153 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    154 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    155 	3672000,	/* RTxCB, ???			*/
    156 	2457600		/* TRxCB, ???			*/
    157 };
    158 
    159 static u_long zs_freqs_hades[] = {
    160 	/*
    161 	 * XXX: Channel-A unchecked!!!!!
    162 	 */
    163      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    164 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    165 	3672000,	/* RTxCA, from PCLK4		*/
    166 	      0,	/* TRxCA, external		*/
    167 
    168      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    169 	 235550,	/* BRgen, RTxCB, divisor 16	*/
    170 	3768800,	/* RTxCB, 3.7688MHz		*/
    171 	3768800		/* TRxCB, 3.7688MHz		*/
    172 };
    173 
    174 static u_long zs_freqs_generic[] = {
    175 	/*
    176 	 * other machines, assume only PCLK is available
    177 	 */
    178 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    179 	      0,	/* BRgen, RTxCA, divisor 16	*/
    180 	      0,	/* RTxCA, unknown		*/
    181 	      0,	/* TRxCA, unknown		*/
    182 
    183 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    184 	      0,	/* BRgen, RTxCB, divisor 16	*/
    185 	      0,	/* RTxCB, unknown		*/
    186 	      0		/* TRxCB, unknown		*/
    187 };
    188 static u_long *zs_frequencies;
    189 
    190 /* Definition of the driver for autoconfig. */
    191 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    192 static void	zsattach __P((struct device *, struct device *, void *));
    193 
    194 struct cfattach zs_ca = {
    195 	sizeof(struct zs_softc), zsmatch, zsattach
    196 };
    197 
    198 extern struct cfdriver zs_cd;
    199 
    200 /* {b,c}devsw[] function prototypes */
    201 dev_type_open(zsopen);
    202 dev_type_close(zsclose);
    203 dev_type_read(zsread);
    204 dev_type_write(zswrite);
    205 dev_type_ioctl(zsioctl);
    206 dev_type_tty(zstty);
    207 
    208 /* Interrupt handlers. */
    209 int		zshard __P((long));
    210 static int	zssoft __P((long));
    211 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    212 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    213 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    214 
    215 static struct zs_chanstate *zslist;
    216 
    217 /* Routines called from other code. */
    218 static void	zsstart __P((struct tty *));
    219 void		zsstop __P((struct tty *, int));
    220 
    221 /* Routines purely local to this driver. */
    222 static void	zsoverrun __P((int, long *, char *));
    223 static int	zsparam __P((struct tty *, struct termios *));
    224 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    225 static int	zs_modem __P((struct zs_chanstate *, int, int));
    226 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    227 
    228 static int zsshortcuts;	/* number of "shortcut" software interrupts */
    229 
    230 static int
    231 zsmatch(pdp, cfp, auxp)
    232 struct device	*pdp;
    233 struct cfdata	*cfp;
    234 void		*auxp;
    235 {
    236 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
    237 		return(0);
    238 	return(1);
    239 }
    240 
    241 /*
    242  * Attach a found zs.
    243  */
    244 static void
    245 zsattach(parent, dev, aux)
    246 struct device	*parent;
    247 struct device	*dev;
    248 void		*aux;
    249 {
    250 	register struct zs_softc		*zi;
    251 	register struct zs_chanstate		*cs;
    252 	register volatile struct zsdevice	*addr;
    253 		 char				tmp;
    254 
    255 	addr      = (struct zsdevice *)AD_SCC;
    256 	zi        = (struct zs_softc *)dev;
    257 	zi->zi_zs = addr;
    258 	cs        = zi->zi_cs;
    259 
    260 	/*
    261 	 * Get the command register into a known state.
    262 	 */
    263 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    264 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    265 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    266 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    267 
    268 	/*
    269 	 * Do a hardware reset.
    270 	 */
    271 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    272 	delay(50000);	/*enough ? */
    273 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    274 
    275 	/*
    276 	 * Initialize both channels
    277 	 */
    278 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    279 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    280 
    281 	if(machineid & ATARI_TT) {
    282 		/*
    283 		 * ininitialise TT-MFP timer C: 307200Hz
    284 		 * timer C and D share one control register:
    285 		 *	bits 0-2 control timer D
    286 		 *	bits 4-6 control timer C
    287 		 */
    288 		int cr = MFP2->mf_tcdcr & 7;
    289 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    290 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    291 		cr |= T_Q004 << 4;		/* divisor 4     */
    292 		MFP2->mf_tcdcr = cr;		/* start timer C */
    293 		/*
    294 		 * enable scc related interrupts
    295 		 */
    296 		SCU->vme_mask |= SCU_SCC;
    297 
    298 		zs_frequencies = zs_freqs_tt;
    299 	} else if (machineid & ATARI_FALCON) {
    300 		zs_frequencies = zs_freqs_falcon;
    301 	} else if (machineid & ATARI_HADES) {
    302 		zs_frequencies = zs_freqs_hades;
    303 	} else {
    304 		zs_frequencies = zs_freqs_generic;
    305 	}
    306 
    307 	/* link into interrupt list with order (A,B) (B=A+1) */
    308 	cs[0].cs_next = &cs[1];
    309 	cs[1].cs_next = zslist;
    310 	zslist        = cs;
    311 
    312 	cs->cs_unit  = 0;
    313 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    314 	cs++;
    315 	cs->cs_unit  = 1;
    316 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    317 
    318 	printf(": serial2 on channel a and modem2 on channel b\n");
    319 }
    320 
    321 /*
    322  * Open a zs serial port.
    323  */
    324 int
    325 zsopen(dev, flags, mode, p)
    326 dev_t		dev;
    327 int		flags;
    328 int		mode;
    329 struct proc	*p;
    330 {
    331 	register struct tty		*tp;
    332 	register struct zs_chanstate	*cs;
    333 		 struct zs_softc	*zi;
    334 		 int			unit = ZS_UNIT(dev);
    335 		 int			zs = unit >> 1;
    336 		 int			error, s;
    337 
    338 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
    339 		return (ENXIO);
    340 	cs = &zi->zi_cs[unit & 1];
    341 
    342 	/*
    343 	 * When port A (ser02) is selected on the TT, make sure
    344 	 * the port is enabled.
    345 	 */
    346 	if((machineid & ATARI_TT) && !(unit & 1))
    347 		ym2149_ser2(1);
    348 
    349 	if (cs->cs_rbuf == NULL) {
    350 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
    351 								   M_WAITOK);
    352 	}
    353 
    354 	tp = cs->cs_ttyp;
    355 	if(tp == NULL) {
    356 		cs->cs_ttyp = tp = ttymalloc();
    357 		tty_attach(tp);
    358 		tp->t_dev   = dev;
    359 		tp->t_oproc = zsstart;
    360 		tp->t_param = zsparam;
    361 	}
    362 
    363 	s  = spltty();
    364 	if((tp->t_state & TS_ISOPEN) == 0) {
    365 		ttychars(tp);
    366 		if(tp->t_ispeed == 0) {
    367 			tp->t_iflag = TTYDEF_IFLAG;
    368 			tp->t_oflag = TTYDEF_OFLAG;
    369 			tp->t_cflag = TTYDEF_CFLAG;
    370 			tp->t_lflag = TTYDEF_LFLAG;
    371 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    372 		}
    373 		(void)zsparam(tp, &tp->t_termios);
    374 		ttsetwater(tp);
    375 	}
    376 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    377 			splx(s);
    378 			return (EBUSY);
    379 	}
    380 	error = 0;
    381 	for(;;) {
    382 		/* loop, turning on the device, until carrier present */
    383 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    384 
    385 		/* May never get a status intr. if DCD already on. -gwr */
    386 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
    387 			tp->t_state |= TS_CARR_ON;
    388 		if(cs->cs_softcar)
    389 			tp->t_state |= TS_CARR_ON;
    390 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    391 		    tp->t_state & TS_CARR_ON)
    392 			break;
    393 		tp->t_state |= TS_WOPEN;
    394 		if((error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    395 		    ttopen, 0)) != 0) {
    396 			if(!(tp->t_state & TS_ISOPEN)) {
    397 				zs_modem(cs, 0, DMSET);
    398 				tp->t_state &= ~TS_WOPEN;
    399 				ttwakeup(tp);
    400 			}
    401 			splx(s);
    402 			return error;
    403 		}
    404 	}
    405 	splx(s);
    406 	if(error == 0)
    407 		error = linesw[tp->t_line].l_open(dev, tp);
    408 	if(error)
    409 		zs_modem(cs, 0, DMSET);
    410 	return(error);
    411 }
    412 
    413 /*
    414  * Close a zs serial port.
    415  */
    416 int
    417 zsclose(dev, flags, mode, p)
    418 dev_t		dev;
    419 int		flags;
    420 int		mode;
    421 struct proc	*p;
    422 {
    423 	register struct zs_chanstate	*cs;
    424 	register struct tty		*tp;
    425 		 struct zs_softc	*zi;
    426 		 int			unit = ZS_UNIT(dev);
    427 		 int			s;
    428 
    429 	zi = zs_cd.cd_devs[unit >> 1];
    430 	cs = &zi->zi_cs[unit & 1];
    431 	tp = cs->cs_ttyp;
    432 	linesw[tp->t_line].l_close(tp, flags);
    433 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    434 	    (tp->t_state & TS_ISOPEN) == 0) {
    435 		zs_modem(cs, 0, DMSET);
    436 		/* hold low for 1 second */
    437 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    438 	}
    439 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
    440 		s = splzs();
    441 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    442 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    443 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    444 		splx(s);
    445 	}
    446 	ttyclose(tp);
    447 
    448 	/*
    449 	 * Drop all lines and cancel interrupts
    450 	 */
    451 	s = splzs();
    452 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
    453 	splx(s);
    454 	return (0);
    455 }
    456 
    457 /*
    458  * Read/write zs serial port.
    459  */
    460 int
    461 zsread(dev, uio, flags)
    462 dev_t		dev;
    463 struct uio	*uio;
    464 int		flags;
    465 {
    466 	register struct zs_chanstate	*cs;
    467 	register struct zs_softc	*zi;
    468 	register struct tty		*tp;
    469 		 int			unit;
    470 
    471 	unit = ZS_UNIT(dev);
    472 	zi   = zs_cd.cd_devs[unit >> 1];
    473 	cs   = &zi->zi_cs[unit & 1];
    474 	tp   = cs->cs_ttyp;
    475 
    476 	return(linesw[tp->t_line].l_read(tp, uio, flags));
    477 }
    478 
    479 int
    480 zswrite(dev, uio, flags)
    481 dev_t		dev;
    482 struct uio	*uio;
    483 int		flags;
    484 {
    485 	register struct zs_chanstate	*cs;
    486 	register struct zs_softc	*zi;
    487 	register struct tty		*tp;
    488 		 int			unit;
    489 
    490 	unit = ZS_UNIT(dev);
    491 	zi   = zs_cd.cd_devs[unit >> 1];
    492 	cs   = &zi->zi_cs[unit & 1];
    493 	tp   = cs->cs_ttyp;
    494 
    495 	return(linesw[tp->t_line].l_write(tp, uio, flags));
    496 }
    497 
    498 struct tty *
    499 zstty(dev)
    500 dev_t	dev;
    501 {
    502 	register struct zs_chanstate	*cs;
    503 	register struct zs_softc	*zi;
    504 		 int			unit;
    505 
    506 	unit = ZS_UNIT(dev);
    507 	zi   = zs_cd.cd_devs[unit >> 1];
    508 	cs   = &zi->zi_cs[unit & 1];
    509 	return(cs->cs_ttyp);
    510 }
    511 
    512 /*
    513  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    514  * channels are kept in (A,B) pairs.
    515  *
    516  * Do just a little, then get out; set a software interrupt if more
    517  * work is needed.
    518  *
    519  * We deliberately ignore the vectoring Zilog gives us, and match up
    520  * only the number of `reset interrupt under service' operations, not
    521  * the order.
    522  */
    523 
    524 int
    525 zshard(sr)
    526 long sr;
    527 {
    528 	register struct zs_chanstate	*a;
    529 #define	b (a + 1)
    530 	register volatile struct zschan *zc;
    531 	register int			rr3, intflags = 0, v, i;
    532 
    533 	do {
    534 	    intflags &= ~4;
    535 	    for(a = zslist; a != NULL; a = b->cs_next) {
    536 		rr3 = ZS_READ(a->cs_zc, 3);
    537 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    538 			intflags |= 4|2;
    539 			zc = a->cs_zc;
    540 			i  = a->cs_rbput;
    541 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    542 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    543 				intflags |= 1;
    544 			}
    545 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    546 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    547 				intflags |= 1;
    548 			}
    549 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    550 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    551 				intflags |= 1;
    552 			}
    553 			a->cs_rbput = i;
    554 		}
    555 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    556 			intflags |= 4|2;
    557 			zc = b->cs_zc;
    558 			i  = b->cs_rbput;
    559 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    560 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    561 				intflags |= 1;
    562 			}
    563 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    564 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    565 				intflags |= 1;
    566 			}
    567 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    568 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    569 				intflags |= 1;
    570 			}
    571 			b->cs_rbput = i;
    572 		}
    573 	    }
    574 	} while(intflags & 4);
    575 #undef b
    576 
    577 	if(intflags & 1) {
    578 		if(BASEPRI(sr)) {
    579 			spl1();
    580 			zsshortcuts++;
    581 			return(zssoft(sr));
    582 		}
    583 		else if(!cb_scheduled) {
    584 			cb_scheduled++;
    585 			add_sicallback((si_farg)zssoft, 0, 0);
    586 		}
    587 	}
    588 	return(intflags & 2);
    589 }
    590 
    591 static int
    592 zsrint(cs, zc)
    593 register struct zs_chanstate	*cs;
    594 register volatile struct zschan	*zc;
    595 {
    596 	register int c;
    597 
    598 	/*
    599 	 * First read the status, because read of the received char
    600 	 * destroy the status of this char.
    601 	 */
    602 	c = ZS_READ(zc, 1);
    603 	c |= (zc->zc_data << 8);
    604 
    605 	/* clear receive error & interrupt condition */
    606 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    607 	zc->zc_csr = ZSWR0_CLR_INTR;
    608 
    609 	return(ZRING_MAKE(ZRING_RINT, c));
    610 }
    611 
    612 static int
    613 zsxint(cs, zc)
    614 register struct zs_chanstate	*cs;
    615 register volatile struct zschan	*zc;
    616 {
    617 	register int i = cs->cs_tbc;
    618 
    619 	if(i == 0) {
    620 		zc->zc_csr = ZSWR0_RESET_TXINT;
    621 		zc->zc_csr = ZSWR0_CLR_INTR;
    622 		return(ZRING_MAKE(ZRING_XINT, 0));
    623 	}
    624 	cs->cs_tbc = i - 1;
    625 	zc->zc_data = *cs->cs_tba++;
    626 	zc->zc_csr = ZSWR0_CLR_INTR;
    627 	return (0);
    628 }
    629 
    630 static int
    631 zssint(cs, zc)
    632 register struct zs_chanstate	*cs;
    633 register volatile struct zschan	*zc;
    634 {
    635 	register int rr0;
    636 
    637 	rr0 = zc->zc_csr;
    638 	zc->zc_csr = ZSWR0_RESET_STATUS;
    639 	zc->zc_csr = ZSWR0_CLR_INTR;
    640 	/*
    641 	 * The chip's hardware flow control is, as noted in zsreg.h,
    642 	 * busted---if the DCD line goes low the chip shuts off the
    643 	 * receiver (!).  If we want hardware CTS flow control but do
    644 	 * not have it, and carrier is now on, turn HFC on; if we have
    645 	 * HFC now but carrier has gone low, turn it off.
    646 	 */
    647 	if(rr0 & ZSRR0_DCD) {
    648 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    649 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    650 			cs->cs_creg[3] |= ZSWR3_HFC;
    651 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    652 		}
    653 	}
    654 	else {
    655 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    656 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    657 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    658 		}
    659 	}
    660 	return(ZRING_MAKE(ZRING_SINT, rr0));
    661 }
    662 
    663 /*
    664  * Print out a ring or fifo overrun error message.
    665  */
    666 static void
    667 zsoverrun(unit, ptime, what)
    668 int	unit;
    669 long	*ptime;
    670 char	*what;
    671 {
    672 
    673 	if(*ptime != time.tv_sec) {
    674 		*ptime = time.tv_sec;
    675 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    676 		    (unit & 1) + 'a', what);
    677 	}
    678 }
    679 
    680 /*
    681  * ZS software interrupt.  Scan all channels for deferred interrupts.
    682  */
    683 int
    684 zssoft(sr)
    685 long sr;
    686 {
    687     register struct zs_chanstate	*cs;
    688     register volatile struct zschan	*zc;
    689     register struct linesw		*line;
    690     register struct tty			*tp;
    691     register int			get, n, c, cc, unit, s;
    692  	     int			retval = 0;
    693 
    694     cb_scheduled = 0;
    695     s = spltty();
    696     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    697 	get = cs->cs_rbget;
    698 again:
    699 	n = cs->cs_rbput;	/* atomic			*/
    700 	if(get == n)		/* nothing more on this line	*/
    701 		continue;
    702 	retval = 1;
    703 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    704 	zc     = cs->cs_zc;
    705 	tp     = cs->cs_ttyp;
    706 	line   = &linesw[tp->t_line];
    707 	/*
    708 	 * Compute the number of interrupts in the receive ring.
    709 	 * If the count is overlarge, we lost some events, and
    710 	 * must advance to the first valid one.  It may get
    711 	 * overwritten if more data are arriving, but this is
    712 	 * too expensive to check and gains nothing (we already
    713 	 * lost out; all we can do at this point is trade one
    714 	 * kind of loss for another).
    715 	 */
    716 	n -= get;
    717 	if(n > ZLRB_RING_SIZE) {
    718 		zsoverrun(unit, &cs->cs_rotime, "ring");
    719 		get += n - ZLRB_RING_SIZE;
    720 		n    = ZLRB_RING_SIZE;
    721 	}
    722 	while(--n >= 0) {
    723 		/* race to keep ahead of incoming interrupts */
    724 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    725 		switch (ZRING_TYPE(c)) {
    726 
    727 		case ZRING_RINT:
    728 			c = ZRING_VALUE(c);
    729 			if(c & ZSRR1_DO)
    730 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    731 			cc = c >> 8;
    732 			if(c & ZSRR1_FE)
    733 				cc |= TTY_FE;
    734 			if(c & ZSRR1_PE)
    735 				cc |= TTY_PE;
    736 			line->l_rint(cc, tp);
    737 			break;
    738 
    739 		case ZRING_XINT:
    740 			/*
    741 			 * Transmit done: change registers and resume,
    742 			 * or clear BUSY.
    743 			 */
    744 			if(cs->cs_heldchange) {
    745 				int sps;
    746 
    747 				sps = splzs();
    748 				c = zc->zc_csr;
    749 				if((c & ZSRR0_DCD) == 0)
    750 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    751 				bcopy((caddr_t)cs->cs_preg,
    752 				    (caddr_t)cs->cs_creg, 16);
    753 				zs_loadchannelregs(zc, cs->cs_creg);
    754 				splx(sps);
    755 				cs->cs_heldchange = 0;
    756 				if(cs->cs_heldtbc
    757 					&& (tp->t_state & TS_TTSTOP) == 0) {
    758 					cs->cs_tbc = cs->cs_heldtbc - 1;
    759 					zc->zc_data = *cs->cs_tba++;
    760 					goto again;
    761 				}
    762 			}
    763 			tp->t_state &= ~TS_BUSY;
    764 			if(tp->t_state & TS_FLUSH)
    765 				tp->t_state &= ~TS_FLUSH;
    766 			else ndflush(&tp->t_outq,cs->cs_tba
    767 						- (caddr_t)tp->t_outq.c_cf);
    768 			line->l_start(tp);
    769 			break;
    770 
    771 		case ZRING_SINT:
    772 			/*
    773 			 * Status line change.  HFC bit is run in
    774 			 * hardware interrupt, to avoid locking
    775 			 * at splzs here.
    776 			 */
    777 			c = ZRING_VALUE(c);
    778 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    779 				cc = (c & ZSRR0_DCD) != 0;
    780 				if(line->l_modem(tp, cc) == 0)
    781 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    782 							cc ? DMBIS : DMBIC);
    783 			}
    784 			cs->cs_rr0 = c;
    785 			break;
    786 
    787 		default:
    788 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    789 			    unit >> 1, (unit & 1) + 'a', c);
    790 			break;
    791 		}
    792 	}
    793 	cs->cs_rbget = get;
    794 	goto again;
    795     }
    796     splx(s);
    797     return (retval);
    798 }
    799 
    800 int
    801 zsioctl(dev, cmd, data, flag, p)
    802 dev_t		dev;
    803 u_long		cmd;
    804 caddr_t		data;
    805 int		flag;
    806 struct proc	*p;
    807 {
    808 		 int			unit = ZS_UNIT(dev);
    809 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    810 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    811 	register int			error, s;
    812 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    813 
    814 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
    815 	if(error >= 0)
    816 		return(error);
    817 	error = ttioctl(tp, cmd, data, flag, p);
    818 	if(error >= 0)
    819 		return (error);
    820 
    821 	switch (cmd) {
    822 	case TIOCSBRK:
    823 		s = splzs();
    824 		cs->cs_preg[5] |= ZSWR5_BREAK;
    825 		cs->cs_creg[5] |= ZSWR5_BREAK;
    826 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    827 		splx(s);
    828 		break;
    829 	case TIOCCBRK:
    830 		s = splzs();
    831 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    832 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    833 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    834 		splx(s);
    835 		break;
    836 	case TIOCGFLAGS: {
    837 		int bits = 0;
    838 
    839 		if(cs->cs_softcar)
    840 			bits |= TIOCFLAG_SOFTCAR;
    841 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    842 			bits |= TIOCFLAG_CLOCAL;
    843 		if(cs->cs_creg[3] & ZSWR3_HFC)
    844 			bits |= TIOCFLAG_CRTSCTS;
    845 		*(int *)data = bits;
    846 		break;
    847 	}
    848 	case TIOCSFLAGS: {
    849 		int userbits = 0;
    850 
    851 		error = suser(p->p_ucred, &p->p_acflag);
    852 		if(error != 0)
    853 			return (EPERM);
    854 
    855 		userbits = *(int *)data;
    856 
    857 		/*
    858 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    859 		 # defaulting to software flow control.
    860 		 */
    861 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    862 			return(EINVAL);
    863 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    864 			return(ENODEV);
    865 
    866 		s = splzs();
    867 		if((userbits & TIOCFLAG_SOFTCAR)) {
    868 			cs->cs_softcar = 1;	/* turn on softcar */
    869 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    870 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    871 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    872 		}
    873 		else if(userbits & TIOCFLAG_CLOCAL) {
    874 			cs->cs_softcar = 0; 	/* turn off softcar */
    875 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    876 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    877 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    878 			tp->t_termios.c_cflag |= CLOCAL;
    879 		}
    880 		if(userbits & TIOCFLAG_CRTSCTS) {
    881 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    882 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    883 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    884 			cs->cs_preg[3] |= ZSWR3_HFC;
    885 			cs->cs_creg[3] |= ZSWR3_HFC;
    886 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    887 			tp->t_termios.c_cflag |= CRTSCTS;
    888 		}
    889 		else {
    890 			/* no mdmbuf, so we must want software flow control */
    891 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    892 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    893 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    894 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    895 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    896 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    897 			tp->t_termios.c_cflag &= ~CRTSCTS;
    898 		}
    899 		splx(s);
    900 		break;
    901 	}
    902 	case TIOCSDTR:
    903 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    904 		break;
    905 	case TIOCCDTR:
    906 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    907 		break;
    908 	case TIOCMGET:
    909 		zs_modem(cs, 0, DMGET);
    910 		break;
    911 	case TIOCMSET:
    912 	case TIOCMBIS:
    913 	case TIOCMBIC:
    914 	default:
    915 		return (ENOTTY);
    916 	}
    917 	return (0);
    918 }
    919 
    920 /*
    921  * Start or restart transmission.
    922  */
    923 static void
    924 zsstart(tp)
    925 register struct tty *tp;
    926 {
    927 	register struct zs_chanstate	*cs;
    928 	register int			s, nch;
    929 		 int			unit = ZS_UNIT(tp->t_dev);
    930 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    931 
    932 	cs = &zi->zi_cs[unit & 1];
    933 	s  = spltty();
    934 
    935 	/*
    936 	 * If currently active or delaying, no need to do anything.
    937 	 */
    938 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    939 		goto out;
    940 
    941 	/*
    942 	 * If there are sleepers, and output has drained below low
    943 	 * water mark, awaken.
    944 	 */
    945 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    946 		if(tp->t_state & TS_ASLEEP) {
    947 			tp->t_state &= ~TS_ASLEEP;
    948 			wakeup((caddr_t)&tp->t_outq);
    949 		}
    950 		selwakeup(&tp->t_wsel);
    951 	}
    952 
    953 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    954 	if(nch) {
    955 		register char *p = tp->t_outq.c_cf;
    956 
    957 		/* mark busy, enable tx done interrupts, & send first byte */
    958 		tp->t_state |= TS_BUSY;
    959 		(void) splzs();
    960 		cs->cs_preg[1] |= ZSWR1_TIE;
    961 		cs->cs_creg[1] |= ZSWR1_TIE;
    962 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    963 		cs->cs_zc->zc_data = *p;
    964 		cs->cs_tba = p + 1;
    965 		cs->cs_tbc = nch - 1;
    966 	} else {
    967 		/*
    968 		 * Nothing to send, turn off transmit done interrupts.
    969 		 * This is useful if something is doing polled output.
    970 		 */
    971 		(void) splzs();
    972 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    973 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    974 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    975 	}
    976 out:
    977 	splx(s);
    978 }
    979 
    980 /*
    981  * Stop output, e.g., for ^S or output flush.
    982  */
    983 void
    984 zsstop(tp, flag)
    985 register struct tty	*tp;
    986 	 int		flag;
    987 {
    988 	register struct zs_chanstate	*cs;
    989 	register int			s, unit = ZS_UNIT(tp->t_dev);
    990 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    991 
    992 	cs = &zi->zi_cs[unit & 1];
    993 	s  = splzs();
    994 	if(tp->t_state & TS_BUSY) {
    995 		/*
    996 		 * Device is transmitting; must stop it.
    997 		 */
    998 		cs->cs_tbc = 0;
    999 		if ((tp->t_state & TS_TTSTOP) == 0)
   1000 			tp->t_state |= TS_FLUSH;
   1001 	}
   1002 	splx(s);
   1003 }
   1004 
   1005 /*
   1006  * Set ZS tty parameters from termios.
   1007  *
   1008  * This routine makes use of the fact that only registers
   1009  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
   1010  */
   1011 static int
   1012 zsparam(tp, t)
   1013 register struct tty	*tp;
   1014 register struct termios	*t;
   1015 {
   1016 		 int			unit = ZS_UNIT(tp->t_dev);
   1017 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
   1018 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
   1019 		 int			cdiv, clkm, brgm, tcon;
   1020 	register int			tmp, tmp5, cflag, s;
   1021 
   1022 	tmp  = t->c_ospeed;
   1023 	tmp5 = t->c_ispeed;
   1024 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
   1025 		return(EINVAL);
   1026 	if(tmp == 0) {
   1027 		/* stty 0 => drop DTR and RTS */
   1028 		zs_modem(cs, 0, DMSET);
   1029 		return(0);
   1030 	}
   1031 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
   1032 	if (tmp < 0)
   1033 		return(EINVAL);
   1034 	tp->t_ispeed = tp->t_ospeed = tmp;
   1035 
   1036 	cflag = tp->t_cflag = t->c_cflag;
   1037 	if (cflag & CSTOPB)
   1038 		cdiv |= ZSWR4_TWOSB;
   1039 	else
   1040 		cdiv |= ZSWR4_ONESB;
   1041 	if (!(cflag & PARODD))
   1042 		cdiv |= ZSWR4_EVENP;
   1043 	if (cflag & PARENB)
   1044 		cdiv |= ZSWR4_PARENB;
   1045 
   1046 	switch(cflag & CSIZE) {
   1047 	case CS5:
   1048 		tmp  = ZSWR3_RX_5;
   1049 		tmp5 = ZSWR5_TX_5;
   1050 		break;
   1051 	case CS6:
   1052 		tmp  = ZSWR3_RX_6;
   1053 		tmp5 = ZSWR5_TX_6;
   1054 		break;
   1055 	case CS7:
   1056 		tmp  = ZSWR3_RX_7;
   1057 		tmp5 = ZSWR5_TX_7;
   1058 		break;
   1059 	case CS8:
   1060 	default:
   1061 		tmp  = ZSWR3_RX_8;
   1062 		tmp5 = ZSWR5_TX_8;
   1063 		break;
   1064 	}
   1065 	tmp  |= ZSWR3_RX_ENABLE;
   1066 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1067 
   1068 	/*
   1069 	 * Block interrupts so that state will not
   1070 	 * be altered until we are done setting it up.
   1071 	 */
   1072 	s = splzs();
   1073 	cs->cs_preg[4]  = cdiv;
   1074 	cs->cs_preg[11] = clkm;
   1075 	cs->cs_preg[12] = tcon;
   1076 	cs->cs_preg[13] = tcon >> 8;
   1077 	cs->cs_preg[14] = brgm;
   1078 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1079 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1080 	cs->cs_preg[10] = ZSWR10_NRZ;
   1081 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1082 
   1083 	/*
   1084 	 * Output hardware flow control on the chip is horrendous: if
   1085 	 * carrier detect drops, the receiver is disabled.  Hence we
   1086 	 * can only do this when the carrier is on.
   1087 	 */
   1088 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1089 		tmp |= ZSWR3_HFC;
   1090 	cs->cs_preg[3] = tmp;
   1091 	cs->cs_preg[5] = tmp5;
   1092 
   1093 	/*
   1094 	 * If nothing is being transmitted, set up new current values,
   1095 	 * else mark them as pending.
   1096 	 */
   1097 	if(cs->cs_heldchange == 0) {
   1098 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1099 			cs->cs_heldtbc = cs->cs_tbc;
   1100 			cs->cs_tbc = 0;
   1101 			cs->cs_heldchange = 1;
   1102 		} else {
   1103 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1104 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1105 		}
   1106 	}
   1107 	splx(s);
   1108 	return (0);
   1109 }
   1110 
   1111 /*
   1112  * search for the best matching baudrate
   1113  */
   1114 static int
   1115 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1116 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1117 {
   1118 	int	bestdiff, bestbps, source;
   1119 
   1120 	bestdiff = bestbps = 0;
   1121 	unit = (unit & 1) << 2;
   1122 	for (source = 0; source < 4; ++source) {
   1123 		long	freq = zs_frequencies[unit + source];
   1124 		int	diff, bps, div, clkm, brgm, tcon;
   1125 
   1126 		bps = div = clkm = brgm = tcon = 0;
   1127 		switch (source) {
   1128 			case 0:	/* BRgen, PCLK */
   1129 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1130 				break;
   1131 			case 1:	/* BRgen, RTxC */
   1132 				brgm = ZSWR14_BAUD_ENA;
   1133 				break;
   1134 			case 2: /* RTxC */
   1135 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1136 				break;
   1137 			case 3: /* TRxC */
   1138 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1139 				break;
   1140 		}
   1141 		switch (source) {
   1142 			case 0:
   1143 			case 1:
   1144 				div  = ZSWR4_CLK_X16;
   1145 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1146 				tcon = BPS_TO_TCONST(freq, wanted);
   1147 				if (tcon < 0)
   1148 					tcon = 0;
   1149 				bps  = TCONST_TO_BPS(freq, tcon);
   1150 				break;
   1151 			case 2:
   1152 			case 3:
   1153 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1154 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1155 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1156 
   1157 				if (d1 < d2 && d1 < d3) {
   1158 					div = ZSWR4_CLK_X16;
   1159 					bps = b1;
   1160 				} else if (d2 < d3 && d2 < d1) {
   1161 					div = ZSWR4_CLK_X32;
   1162 					bps = b2;
   1163 				} else {
   1164 					div = ZSWR4_CLK_X64;
   1165 					bps = b3;
   1166 				}
   1167 				brgm = tcon = 0;
   1168 				break;
   1169 			}
   1170 		}
   1171 		diff = abs(bps - wanted);
   1172 		if (!source || diff < bestdiff) {
   1173 			*divisor   = div;
   1174 			*clockmode = clkm;
   1175 			*brgenmode = brgm;
   1176 			*timeconst = tcon;
   1177 			bestbps    = bps;
   1178 			bestdiff   = diff;
   1179 			if (diff == 0)
   1180 				break;
   1181 		}
   1182 	}
   1183 	/* Allow deviations upto 5% */
   1184 	if (20 * bestdiff > wanted)
   1185 		return -1;
   1186 	return bestbps;
   1187 }
   1188 
   1189 /*
   1190  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1191  * in transmission, the change is deferred.
   1192  */
   1193 static int
   1194 zs_modem(cs, bits, how)
   1195 struct zs_chanstate	*cs;
   1196 int			bits, how;
   1197 {
   1198 	int s, mbits;
   1199 
   1200 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1201 
   1202 	s = splzs();
   1203 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1204 
   1205 	switch(how) {
   1206 		case DMSET:
   1207 				mbits  = bits;
   1208 				break;
   1209 		case DMBIS:
   1210 				mbits |= bits;
   1211 				break;
   1212 		case DMBIC:
   1213 				mbits &= ~bits;
   1214 				break;
   1215 		case DMGET:
   1216 				splx(s);
   1217 				return(mbits);
   1218 	}
   1219 
   1220 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1221 	if(cs->cs_heldchange == 0) {
   1222 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1223 			cs->cs_heldtbc = cs->cs_tbc;
   1224 			cs->cs_tbc = 0;
   1225 			cs->cs_heldchange = 1;
   1226 		}
   1227 		else {
   1228 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1229 		}
   1230 	}
   1231 	splx(s);
   1232 	return(0);
   1233 }
   1234 
   1235 /*
   1236  * Write the given register set to the given zs channel in the proper order.
   1237  * The channel must not be transmitting at the time.  The receiver will
   1238  * be disabled for the time it takes to write all the registers.
   1239  */
   1240 static void
   1241 zs_loadchannelregs(zc, reg)
   1242 volatile struct zschan	*zc;
   1243 u_char			*reg;
   1244 {
   1245 	int i;
   1246 
   1247 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1248 	i = zc->zc_data;		/* drain fifo */
   1249 	i = zc->zc_data;
   1250 	i = zc->zc_data;
   1251 	ZS_WRITE(zc,  4, reg[4]);
   1252 	ZS_WRITE(zc, 10, reg[10]);
   1253 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1254 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1255 	ZS_WRITE(zc,  1, reg[1]);
   1256 	ZS_WRITE(zc,  9, reg[9]);
   1257 	ZS_WRITE(zc, 11, reg[11]);
   1258 	ZS_WRITE(zc, 12, reg[12]);
   1259 	ZS_WRITE(zc, 13, reg[13]);
   1260 	ZS_WRITE(zc, 14, reg[14]);
   1261 	ZS_WRITE(zc, 15, reg[15]);
   1262 	ZS_WRITE(zc,  3, reg[3]);
   1263 	ZS_WRITE(zc,  5, reg[5]);
   1264 }
   1265 #endif /* NZS > 1 */
   1266