zs.c revision 1.30 1 /* $NetBSD: zs.c,v 1.30 1999/02/11 15:28:03 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81
82 #if NZS > 0
83
84 #define PCLK (8053976) /* PCLK pin input clock rate */
85 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
86
87 #define splzs spl5
88
89 /*
90 * Software state per found chip.
91 */
92 struct zs_softc {
93 struct device zi_dev; /* base device */
94 volatile struct zsdevice *zi_zs; /* chip registers */
95 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
96 };
97
98 static u_char cb_scheduled = 0; /* Already asked for callback? */
99 /*
100 * Define the registers for a closed port
101 */
102 static u_char zs_init_regs[16] = {
103 /* 0 */ 0,
104 /* 1 */ 0,
105 /* 2 */ 0x60,
106 /* 3 */ 0,
107 /* 4 */ 0,
108 /* 5 */ 0,
109 /* 6 */ 0,
110 /* 7 */ 0,
111 /* 8 */ 0,
112 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */ ZSWR10_NRZ,
114 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */ 0,
116 /* 13 */ 0,
117 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */ 0
119 };
120
121 /*
122 * Define the machine dependant clock frequencies
123 * If BRgen feeds sender/receiver we always use a
124 * divisor 16, therefor the division by 16 can as
125 * well be done here.
126 */
127 static u_long zs_freqs_tt[] = {
128 /*
129 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 * which is set to 307.2KHz during initialisation
131 * and never changed afterwards.
132 */
133 PCLK/16, /* BRgen, PCLK, divisor 16 */
134 229500, /* BRgen, RTxCA, divisor 16 */
135 3672000, /* RTxCA, from PCLK4 */
136 0, /* TRxCA, external */
137
138 PCLK/16, /* BRgen, PCLK, divisor 16 */
139 19200, /* BRgen, RTxCB, divisor 16 */
140 307200, /* RTxCB, from TT-MFP TCO */
141 2457600 /* TRxCB, from BCLK */
142 };
143
144 static u_long zs_freqs_falcon[] = {
145 /*
146 * Atari Falcon, XXX no specs available, this might be wrong
147 */
148 PCLK/16, /* BRgen, PCLK, divisor 16 */
149 229500, /* BRgen, RTxCA, divisor 16 */
150 3672000, /* RTxCA, ??? */
151 0, /* TRxCA, external */
152
153 PCLK/16, /* BRgen, PCLK, divisor 16 */
154 229500, /* BRgen, RTxCB, divisor 16 */
155 3672000, /* RTxCB, ??? */
156 2457600 /* TRxCB, ??? */
157 };
158
159 static u_long zs_freqs_hades[] = {
160 /*
161 * XXX: Channel-A unchecked!!!!!
162 */
163 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
164 229500, /* BRgen, RTxCA, divisor 16 */
165 3672000, /* RTxCA, from PCLK4 */
166 0, /* TRxCA, external */
167
168 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
169 235550, /* BRgen, RTxCB, divisor 16 */
170 3768800, /* RTxCB, 3.7688MHz */
171 3768800 /* TRxCB, 3.7688MHz */
172 };
173
174 static u_long zs_freqs_generic[] = {
175 /*
176 * other machines, assume only PCLK is available
177 */
178 PCLK/16, /* BRgen, PCLK, divisor 16 */
179 0, /* BRgen, RTxCA, divisor 16 */
180 0, /* RTxCA, unknown */
181 0, /* TRxCA, unknown */
182
183 PCLK/16, /* BRgen, PCLK, divisor 16 */
184 0, /* BRgen, RTxCB, divisor 16 */
185 0, /* RTxCB, unknown */
186 0 /* TRxCB, unknown */
187 };
188 static u_long *zs_frequencies;
189
190 /* Definition of the driver for autoconfig. */
191 static int zsmatch __P((struct device *, struct cfdata *, void *));
192 static void zsattach __P((struct device *, struct device *, void *));
193
194 struct cfattach zs_ca = {
195 sizeof(struct zs_softc), zsmatch, zsattach
196 };
197
198 extern struct cfdriver zs_cd;
199
200 /* {b,c}devsw[] function prototypes */
201 dev_type_open(zsopen);
202 dev_type_close(zsclose);
203 dev_type_read(zsread);
204 dev_type_write(zswrite);
205 dev_type_ioctl(zsioctl);
206 dev_type_tty(zstty);
207
208 /* Interrupt handlers. */
209 int zshard __P((long));
210 static int zssoft __P((long));
211 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
212 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
213 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
214
215 static struct zs_chanstate *zslist;
216
217 /* Routines called from other code. */
218 static void zsstart __P((struct tty *));
219 void zsstop __P((struct tty *, int));
220
221 /* Routines purely local to this driver. */
222 static void zsoverrun __P((int, long *, char *));
223 static int zsparam __P((struct tty *, struct termios *));
224 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
225 static int zs_modem __P((struct zs_chanstate *, int, int));
226 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
227 static void zs_shutdown __P((struct zs_chanstate *));
228
229 static int zsshortcuts; /* number of "shortcut" software interrupts */
230
231 static int
232 zsmatch(pdp, cfp, auxp)
233 struct device *pdp;
234 struct cfdata *cfp;
235 void *auxp;
236 {
237 if(strcmp("zs", auxp) || cfp->cf_unit != 0)
238 return(0);
239 return(1);
240 }
241
242 /*
243 * Attach a found zs.
244 */
245 static void
246 zsattach(parent, dev, aux)
247 struct device *parent;
248 struct device *dev;
249 void *aux;
250 {
251 register struct zs_softc *zi;
252 register struct zs_chanstate *cs;
253 register volatile struct zsdevice *addr;
254 char tmp;
255
256 addr = (struct zsdevice *)AD_SCC;
257 zi = (struct zs_softc *)dev;
258 zi->zi_zs = addr;
259 cs = zi->zi_cs;
260
261 /*
262 * Get the command register into a known state.
263 */
264 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
265 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
266 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
267 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
268
269 /*
270 * Do a hardware reset.
271 */
272 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
273 delay(50000); /*enough ? */
274 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
275
276 /*
277 * Initialize both channels
278 */
279 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
280 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
281
282 if(machineid & ATARI_TT) {
283 /*
284 * ininitialise TT-MFP timer C: 307200Hz
285 * timer C and D share one control register:
286 * bits 0-2 control timer D
287 * bits 4-6 control timer C
288 */
289 int cr = MFP2->mf_tcdcr & 7;
290 MFP2->mf_tcdcr = cr; /* stop timer C */
291 MFP2->mf_tcdr = 1; /* counter 1 */
292 cr |= T_Q004 << 4; /* divisor 4 */
293 MFP2->mf_tcdcr = cr; /* start timer C */
294 /*
295 * enable scc related interrupts
296 */
297 SCU->vme_mask |= SCU_SCC;
298
299 zs_frequencies = zs_freqs_tt;
300 } else if (machineid & ATARI_FALCON) {
301 zs_frequencies = zs_freqs_falcon;
302 } else if (machineid & ATARI_HADES) {
303 zs_frequencies = zs_freqs_hades;
304 } else {
305 zs_frequencies = zs_freqs_generic;
306 }
307
308 /* link into interrupt list with order (A,B) (B=A+1) */
309 cs[0].cs_next = &cs[1];
310 cs[1].cs_next = zslist;
311 zslist = cs;
312
313 cs->cs_unit = 0;
314 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
315 cs++;
316 cs->cs_unit = 1;
317 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
318
319 printf(": serial2 on channel a and modem2 on channel b\n");
320 }
321
322 /*
323 * Open a zs serial port.
324 */
325 int
326 zsopen(dev, flags, mode, p)
327 dev_t dev;
328 int flags;
329 int mode;
330 struct proc *p;
331 {
332 register struct tty *tp;
333 register struct zs_chanstate *cs;
334 struct zs_softc *zi;
335 int unit = ZS_UNIT(dev);
336 int zs = unit >> 1;
337 int error, s;
338
339 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
340 return (ENXIO);
341 cs = &zi->zi_cs[unit & 1];
342
343 /*
344 * When port A (ser02) is selected on the TT, make sure
345 * the port is enabled.
346 */
347 if((machineid & ATARI_TT) && !(unit & 1))
348 ym2149_ser2(1);
349
350 if (cs->cs_rbuf == NULL) {
351 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
352 M_WAITOK);
353 }
354
355 tp = cs->cs_ttyp;
356 if(tp == NULL) {
357 cs->cs_ttyp = tp = ttymalloc();
358 tty_attach(tp);
359 tp->t_dev = dev;
360 tp->t_oproc = zsstart;
361 tp->t_param = zsparam;
362 }
363
364 if ((tp->t_state & TS_ISOPEN) &&
365 (tp->t_state & TS_XCLUDE) &&
366 p->p_ucred->cr_uid != 0)
367 return (EBUSY);
368
369 s = spltty();
370
371 /*
372 * Do the following iff this is a first open.
373 */
374 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
375 if(tp->t_ispeed == 0) {
376 tp->t_iflag = TTYDEF_IFLAG;
377 tp->t_oflag = TTYDEF_OFLAG;
378 tp->t_cflag = TTYDEF_CFLAG;
379 tp->t_lflag = TTYDEF_LFLAG;
380 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
381 }
382 ttychars(tp);
383 ttsetwater(tp);
384
385 (void)zsparam(tp, &tp->t_termios);
386
387 /*
388 * Turn on DTR. We must always do this, even if carrier is not
389 * present, because otherwise we'd have to use TIOCSDTR
390 * immediately after setting CLOCAL, which applications do not
391 * expect. We always assert DTR while the device is open
392 * unless explicitly requested to deassert it.
393 */
394 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
395 /* May never get a status intr. if DCD already on. -gwr */
396 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
397 tp->t_state |= TS_CARR_ON;
398 if(cs->cs_softcar)
399 tp->t_state |= TS_CARR_ON;
400 }
401
402 splx(s);
403
404 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
405 if (error)
406 goto bad;
407
408 error = linesw[tp->t_line].l_open(dev, tp);
409 if(error)
410 goto bad;
411 return (0);
412
413 bad:
414 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
415 /*
416 * We failed to open the device, and nobody else had it opened.
417 * Clean up the state as appropriate.
418 */
419 zs_shutdown(cs);
420 }
421 return(error);
422 }
423
424 /*
425 * Close a zs serial port.
426 */
427 int
428 zsclose(dev, flags, mode, p)
429 dev_t dev;
430 int flags;
431 int mode;
432 struct proc *p;
433 {
434 register struct zs_chanstate *cs;
435 register struct tty *tp;
436 struct zs_softc *zi;
437 int unit = ZS_UNIT(dev);
438
439 zi = zs_cd.cd_devs[unit >> 1];
440 cs = &zi->zi_cs[unit & 1];
441 tp = cs->cs_ttyp;
442
443 linesw[tp->t_line].l_close(tp, flags);
444 ttyclose(tp);
445
446 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
447 /*
448 * Although we got a last close, the device may still be in
449 * use; e.g. if this was the dialout node, and there are still
450 * processes waiting for carrier on the non-dialout node.
451 */
452 zs_shutdown(cs);
453 }
454 return (0);
455 }
456
457 /*
458 * Read/write zs serial port.
459 */
460 int
461 zsread(dev, uio, flags)
462 dev_t dev;
463 struct uio *uio;
464 int flags;
465 {
466 register struct zs_chanstate *cs;
467 register struct zs_softc *zi;
468 register struct tty *tp;
469 int unit;
470
471 unit = ZS_UNIT(dev);
472 zi = zs_cd.cd_devs[unit >> 1];
473 cs = &zi->zi_cs[unit & 1];
474 tp = cs->cs_ttyp;
475
476 return(linesw[tp->t_line].l_read(tp, uio, flags));
477 }
478
479 int
480 zswrite(dev, uio, flags)
481 dev_t dev;
482 struct uio *uio;
483 int flags;
484 {
485 register struct zs_chanstate *cs;
486 register struct zs_softc *zi;
487 register struct tty *tp;
488 int unit;
489
490 unit = ZS_UNIT(dev);
491 zi = zs_cd.cd_devs[unit >> 1];
492 cs = &zi->zi_cs[unit & 1];
493 tp = cs->cs_ttyp;
494
495 return(linesw[tp->t_line].l_write(tp, uio, flags));
496 }
497
498 struct tty *
499 zstty(dev)
500 dev_t dev;
501 {
502 register struct zs_chanstate *cs;
503 register struct zs_softc *zi;
504 int unit;
505
506 unit = ZS_UNIT(dev);
507 zi = zs_cd.cd_devs[unit >> 1];
508 cs = &zi->zi_cs[unit & 1];
509 return(cs->cs_ttyp);
510 }
511
512 /*
513 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
514 * channels are kept in (A,B) pairs.
515 *
516 * Do just a little, then get out; set a software interrupt if more
517 * work is needed.
518 *
519 * We deliberately ignore the vectoring Zilog gives us, and match up
520 * only the number of `reset interrupt under service' operations, not
521 * the order.
522 */
523
524 int
525 zshard(sr)
526 long sr;
527 {
528 register struct zs_chanstate *a;
529 #define b (a + 1)
530 register volatile struct zschan *zc;
531 register int rr3, intflags = 0, v, i;
532
533 do {
534 intflags &= ~4;
535 for(a = zslist; a != NULL; a = b->cs_next) {
536 rr3 = ZS_READ(a->cs_zc, 3);
537 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
538 intflags |= 4|2;
539 zc = a->cs_zc;
540 i = a->cs_rbput;
541 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
542 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
543 intflags |= 1;
544 }
545 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
546 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
547 intflags |= 1;
548 }
549 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
550 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
551 intflags |= 1;
552 }
553 a->cs_rbput = i;
554 }
555 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
556 intflags |= 4|2;
557 zc = b->cs_zc;
558 i = b->cs_rbput;
559 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
560 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
561 intflags |= 1;
562 }
563 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
564 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
565 intflags |= 1;
566 }
567 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
568 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
569 intflags |= 1;
570 }
571 b->cs_rbput = i;
572 }
573 }
574 } while(intflags & 4);
575 #undef b
576
577 if(intflags & 1) {
578 if(BASEPRI(sr)) {
579 spl1();
580 zsshortcuts++;
581 return(zssoft(sr));
582 }
583 else if(!cb_scheduled) {
584 cb_scheduled++;
585 add_sicallback((si_farg)zssoft, 0, 0);
586 }
587 }
588 return(intflags & 2);
589 }
590
591 static int
592 zsrint(cs, zc)
593 register struct zs_chanstate *cs;
594 register volatile struct zschan *zc;
595 {
596 register int c;
597
598 /*
599 * First read the status, because read of the received char
600 * destroy the status of this char.
601 */
602 c = ZS_READ(zc, 1);
603 c |= (zc->zc_data << 8);
604
605 /* clear receive error & interrupt condition */
606 zc->zc_csr = ZSWR0_RESET_ERRORS;
607 zc->zc_csr = ZSWR0_CLR_INTR;
608
609 return(ZRING_MAKE(ZRING_RINT, c));
610 }
611
612 static int
613 zsxint(cs, zc)
614 register struct zs_chanstate *cs;
615 register volatile struct zschan *zc;
616 {
617 register int i = cs->cs_tbc;
618
619 if(i == 0) {
620 zc->zc_csr = ZSWR0_RESET_TXINT;
621 zc->zc_csr = ZSWR0_CLR_INTR;
622 return(ZRING_MAKE(ZRING_XINT, 0));
623 }
624 cs->cs_tbc = i - 1;
625 zc->zc_data = *cs->cs_tba++;
626 zc->zc_csr = ZSWR0_CLR_INTR;
627 return (0);
628 }
629
630 static int
631 zssint(cs, zc)
632 register struct zs_chanstate *cs;
633 register volatile struct zschan *zc;
634 {
635 register int rr0;
636
637 rr0 = zc->zc_csr;
638 zc->zc_csr = ZSWR0_RESET_STATUS;
639 zc->zc_csr = ZSWR0_CLR_INTR;
640 /*
641 * The chip's hardware flow control is, as noted in zsreg.h,
642 * busted---if the DCD line goes low the chip shuts off the
643 * receiver (!). If we want hardware CTS flow control but do
644 * not have it, and carrier is now on, turn HFC on; if we have
645 * HFC now but carrier has gone low, turn it off.
646 */
647 if(rr0 & ZSRR0_DCD) {
648 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
649 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
650 cs->cs_creg[3] |= ZSWR3_HFC;
651 ZS_WRITE(zc, 3, cs->cs_creg[3]);
652 }
653 }
654 else {
655 if (cs->cs_creg[3] & ZSWR3_HFC) {
656 cs->cs_creg[3] &= ~ZSWR3_HFC;
657 ZS_WRITE(zc, 3, cs->cs_creg[3]);
658 }
659 }
660 return(ZRING_MAKE(ZRING_SINT, rr0));
661 }
662
663 /*
664 * Print out a ring or fifo overrun error message.
665 */
666 static void
667 zsoverrun(unit, ptime, what)
668 int unit;
669 long *ptime;
670 char *what;
671 {
672
673 if(*ptime != time.tv_sec) {
674 *ptime = time.tv_sec;
675 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
676 (unit & 1) + 'a', what);
677 }
678 }
679
680 /*
681 * ZS software interrupt. Scan all channels for deferred interrupts.
682 */
683 int
684 zssoft(sr)
685 long sr;
686 {
687 register struct zs_chanstate *cs;
688 register volatile struct zschan *zc;
689 register struct linesw *line;
690 register struct tty *tp;
691 register int get, n, c, cc, unit, s;
692 int retval = 0;
693
694 cb_scheduled = 0;
695 s = spltty();
696 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
697 get = cs->cs_rbget;
698 again:
699 n = cs->cs_rbput; /* atomic */
700 if(get == n) /* nothing more on this line */
701 continue;
702 retval = 1;
703 unit = cs->cs_unit; /* set up to handle interrupts */
704 zc = cs->cs_zc;
705 tp = cs->cs_ttyp;
706 line = &linesw[tp->t_line];
707 /*
708 * Compute the number of interrupts in the receive ring.
709 * If the count is overlarge, we lost some events, and
710 * must advance to the first valid one. It may get
711 * overwritten if more data are arriving, but this is
712 * too expensive to check and gains nothing (we already
713 * lost out; all we can do at this point is trade one
714 * kind of loss for another).
715 */
716 n -= get;
717 if(n > ZLRB_RING_SIZE) {
718 zsoverrun(unit, &cs->cs_rotime, "ring");
719 get += n - ZLRB_RING_SIZE;
720 n = ZLRB_RING_SIZE;
721 }
722 while(--n >= 0) {
723 /* race to keep ahead of incoming interrupts */
724 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
725 switch (ZRING_TYPE(c)) {
726
727 case ZRING_RINT:
728 c = ZRING_VALUE(c);
729 if(c & ZSRR1_DO)
730 zsoverrun(unit, &cs->cs_fotime, "fifo");
731 cc = c >> 8;
732 if(c & ZSRR1_FE)
733 cc |= TTY_FE;
734 if(c & ZSRR1_PE)
735 cc |= TTY_PE;
736 line->l_rint(cc, tp);
737 break;
738
739 case ZRING_XINT:
740 /*
741 * Transmit done: change registers and resume,
742 * or clear BUSY.
743 */
744 if(cs->cs_heldchange) {
745 int sps;
746
747 sps = splzs();
748 c = zc->zc_csr;
749 if((c & ZSRR0_DCD) == 0)
750 cs->cs_preg[3] &= ~ZSWR3_HFC;
751 bcopy((caddr_t)cs->cs_preg,
752 (caddr_t)cs->cs_creg, 16);
753 zs_loadchannelregs(zc, cs->cs_creg);
754 splx(sps);
755 cs->cs_heldchange = 0;
756 if(cs->cs_heldtbc
757 && (tp->t_state & TS_TTSTOP) == 0) {
758 cs->cs_tbc = cs->cs_heldtbc - 1;
759 zc->zc_data = *cs->cs_tba++;
760 goto again;
761 }
762 }
763 tp->t_state &= ~TS_BUSY;
764 if(tp->t_state & TS_FLUSH)
765 tp->t_state &= ~TS_FLUSH;
766 else ndflush(&tp->t_outq,cs->cs_tba
767 - (caddr_t)tp->t_outq.c_cf);
768 line->l_start(tp);
769 break;
770
771 case ZRING_SINT:
772 /*
773 * Status line change. HFC bit is run in
774 * hardware interrupt, to avoid locking
775 * at splzs here.
776 */
777 c = ZRING_VALUE(c);
778 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
779 cc = (c & ZSRR0_DCD) != 0;
780 if(line->l_modem(tp, cc) == 0)
781 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
782 cc ? DMBIS : DMBIC);
783 }
784 cs->cs_rr0 = c;
785 break;
786
787 default:
788 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
789 unit >> 1, (unit & 1) + 'a', c);
790 break;
791 }
792 }
793 cs->cs_rbget = get;
794 goto again;
795 }
796 splx(s);
797 return (retval);
798 }
799
800 int
801 zsioctl(dev, cmd, data, flag, p)
802 dev_t dev;
803 u_long cmd;
804 caddr_t data;
805 int flag;
806 struct proc *p;
807 {
808 int unit = ZS_UNIT(dev);
809 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
810 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
811 register int error, s;
812 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
813
814 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
815 if(error >= 0)
816 return(error);
817 error = ttioctl(tp, cmd, data, flag, p);
818 if(error >= 0)
819 return (error);
820
821 switch (cmd) {
822 case TIOCSBRK:
823 s = splzs();
824 cs->cs_preg[5] |= ZSWR5_BREAK;
825 cs->cs_creg[5] |= ZSWR5_BREAK;
826 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
827 splx(s);
828 break;
829 case TIOCCBRK:
830 s = splzs();
831 cs->cs_preg[5] &= ~ZSWR5_BREAK;
832 cs->cs_creg[5] &= ~ZSWR5_BREAK;
833 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
834 splx(s);
835 break;
836 case TIOCGFLAGS: {
837 int bits = 0;
838
839 if(cs->cs_softcar)
840 bits |= TIOCFLAG_SOFTCAR;
841 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
842 bits |= TIOCFLAG_CLOCAL;
843 if(cs->cs_creg[3] & ZSWR3_HFC)
844 bits |= TIOCFLAG_CRTSCTS;
845 *(int *)data = bits;
846 break;
847 }
848 case TIOCSFLAGS: {
849 int userbits = 0;
850
851 error = suser(p->p_ucred, &p->p_acflag);
852 if(error != 0)
853 return (EPERM);
854
855 userbits = *(int *)data;
856
857 /*
858 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
859 # defaulting to software flow control.
860 */
861 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
862 return(EINVAL);
863 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
864 return(ENODEV);
865
866 s = splzs();
867 if((userbits & TIOCFLAG_SOFTCAR)) {
868 cs->cs_softcar = 1; /* turn on softcar */
869 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
870 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
871 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
872 }
873 else if(userbits & TIOCFLAG_CLOCAL) {
874 cs->cs_softcar = 0; /* turn off softcar */
875 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
876 cs->cs_creg[15] |= ZSWR15_DCD_IE;
877 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
878 tp->t_termios.c_cflag |= CLOCAL;
879 }
880 if(userbits & TIOCFLAG_CRTSCTS) {
881 cs->cs_preg[15] |= ZSWR15_CTS_IE;
882 cs->cs_creg[15] |= ZSWR15_CTS_IE;
883 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
884 cs->cs_preg[3] |= ZSWR3_HFC;
885 cs->cs_creg[3] |= ZSWR3_HFC;
886 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
887 tp->t_termios.c_cflag |= CRTSCTS;
888 }
889 else {
890 /* no mdmbuf, so we must want software flow control */
891 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
892 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
893 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
894 cs->cs_preg[3] &= ~ZSWR3_HFC;
895 cs->cs_creg[3] &= ~ZSWR3_HFC;
896 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
897 tp->t_termios.c_cflag &= ~CRTSCTS;
898 }
899 splx(s);
900 break;
901 }
902 case TIOCSDTR:
903 zs_modem(cs, ZSWR5_DTR, DMBIS);
904 break;
905 case TIOCCDTR:
906 zs_modem(cs, ZSWR5_DTR, DMBIC);
907 break;
908 case TIOCMGET:
909 zs_modem(cs, 0, DMGET);
910 break;
911 case TIOCMSET:
912 case TIOCMBIS:
913 case TIOCMBIC:
914 default:
915 return (ENOTTY);
916 }
917 return (0);
918 }
919
920 /*
921 * Start or restart transmission.
922 */
923 static void
924 zsstart(tp)
925 register struct tty *tp;
926 {
927 register struct zs_chanstate *cs;
928 register int s, nch;
929 int unit = ZS_UNIT(tp->t_dev);
930 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
931
932 cs = &zi->zi_cs[unit & 1];
933 s = spltty();
934
935 /*
936 * If currently active or delaying, no need to do anything.
937 */
938 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
939 goto out;
940
941 /*
942 * If there are sleepers, and output has drained below low
943 * water mark, awaken.
944 */
945 if(tp->t_outq.c_cc <= tp->t_lowat) {
946 if(tp->t_state & TS_ASLEEP) {
947 tp->t_state &= ~TS_ASLEEP;
948 wakeup((caddr_t)&tp->t_outq);
949 }
950 selwakeup(&tp->t_wsel);
951 }
952
953 nch = ndqb(&tp->t_outq, 0); /* XXX */
954 if(nch) {
955 register char *p = tp->t_outq.c_cf;
956
957 /* mark busy, enable tx done interrupts, & send first byte */
958 tp->t_state |= TS_BUSY;
959 (void) splzs();
960 cs->cs_preg[1] |= ZSWR1_TIE;
961 cs->cs_creg[1] |= ZSWR1_TIE;
962 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
963 cs->cs_zc->zc_data = *p;
964 cs->cs_tba = p + 1;
965 cs->cs_tbc = nch - 1;
966 } else {
967 /*
968 * Nothing to send, turn off transmit done interrupts.
969 * This is useful if something is doing polled output.
970 */
971 (void) splzs();
972 cs->cs_preg[1] &= ~ZSWR1_TIE;
973 cs->cs_creg[1] &= ~ZSWR1_TIE;
974 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
975 }
976 out:
977 splx(s);
978 }
979
980 /*
981 * Stop output, e.g., for ^S or output flush.
982 */
983 void
984 zsstop(tp, flag)
985 register struct tty *tp;
986 int flag;
987 {
988 register struct zs_chanstate *cs;
989 register int s, unit = ZS_UNIT(tp->t_dev);
990 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
991
992 cs = &zi->zi_cs[unit & 1];
993 s = splzs();
994 if(tp->t_state & TS_BUSY) {
995 /*
996 * Device is transmitting; must stop it.
997 */
998 cs->cs_tbc = 0;
999 if ((tp->t_state & TS_TTSTOP) == 0)
1000 tp->t_state |= TS_FLUSH;
1001 }
1002 splx(s);
1003 }
1004
1005 static void
1006 zs_shutdown(cs)
1007 struct zs_chanstate *cs;
1008 {
1009 struct tty *tp = cs->cs_ttyp;
1010 int s;
1011
1012 s = splzs();
1013
1014 /*
1015 * Hang up if necessary. Wait a bit, so the other side has time to
1016 * notice even if we immediately open the port again.
1017 */
1018 if(tp->t_cflag & HUPCL) {
1019 zs_modem(cs, 0, DMSET);
1020 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1021 }
1022
1023 /* Clear any break condition set with TIOCSBRK. */
1024 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1025 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1026 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1027 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1028 }
1029
1030 /*
1031 * Drop all lines and cancel interrupts
1032 */
1033 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1034 splx(s);
1035 }
1036
1037 /*
1038 * Set ZS tty parameters from termios.
1039 *
1040 * This routine makes use of the fact that only registers
1041 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1042 */
1043 static int
1044 zsparam(tp, t)
1045 register struct tty *tp;
1046 register struct termios *t;
1047 {
1048 int unit = ZS_UNIT(tp->t_dev);
1049 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1050 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1051 int cdiv, clkm, brgm, tcon;
1052 register int tmp, tmp5, cflag, s;
1053
1054 tmp = t->c_ospeed;
1055 tmp5 = t->c_ispeed;
1056 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1057 return(EINVAL);
1058 if(tmp == 0) {
1059 /* stty 0 => drop DTR and RTS */
1060 zs_modem(cs, 0, DMSET);
1061 return(0);
1062 }
1063 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1064 if (tmp < 0)
1065 return(EINVAL);
1066 tp->t_ispeed = tp->t_ospeed = tmp;
1067
1068 cflag = tp->t_cflag = t->c_cflag;
1069 if (cflag & CSTOPB)
1070 cdiv |= ZSWR4_TWOSB;
1071 else
1072 cdiv |= ZSWR4_ONESB;
1073 if (!(cflag & PARODD))
1074 cdiv |= ZSWR4_EVENP;
1075 if (cflag & PARENB)
1076 cdiv |= ZSWR4_PARENB;
1077
1078 switch(cflag & CSIZE) {
1079 case CS5:
1080 tmp = ZSWR3_RX_5;
1081 tmp5 = ZSWR5_TX_5;
1082 break;
1083 case CS6:
1084 tmp = ZSWR3_RX_6;
1085 tmp5 = ZSWR5_TX_6;
1086 break;
1087 case CS7:
1088 tmp = ZSWR3_RX_7;
1089 tmp5 = ZSWR5_TX_7;
1090 break;
1091 case CS8:
1092 default:
1093 tmp = ZSWR3_RX_8;
1094 tmp5 = ZSWR5_TX_8;
1095 break;
1096 }
1097 tmp |= ZSWR3_RX_ENABLE;
1098 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1099
1100 /*
1101 * Block interrupts so that state will not
1102 * be altered until we are done setting it up.
1103 */
1104 s = splzs();
1105 cs->cs_preg[4] = cdiv;
1106 cs->cs_preg[11] = clkm;
1107 cs->cs_preg[12] = tcon;
1108 cs->cs_preg[13] = tcon >> 8;
1109 cs->cs_preg[14] = brgm;
1110 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1111 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1112 cs->cs_preg[10] = ZSWR10_NRZ;
1113 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1114
1115 /*
1116 * Output hardware flow control on the chip is horrendous: if
1117 * carrier detect drops, the receiver is disabled. Hence we
1118 * can only do this when the carrier is on.
1119 */
1120 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1121 tmp |= ZSWR3_HFC;
1122 cs->cs_preg[3] = tmp;
1123 cs->cs_preg[5] = tmp5;
1124
1125 /*
1126 * If nothing is being transmitted, set up new current values,
1127 * else mark them as pending.
1128 */
1129 if(cs->cs_heldchange == 0) {
1130 if (cs->cs_ttyp->t_state & TS_BUSY) {
1131 cs->cs_heldtbc = cs->cs_tbc;
1132 cs->cs_tbc = 0;
1133 cs->cs_heldchange = 1;
1134 } else {
1135 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1136 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1137 }
1138 }
1139 splx(s);
1140 return (0);
1141 }
1142
1143 /*
1144 * search for the best matching baudrate
1145 */
1146 static int
1147 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1148 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1149 {
1150 int bestdiff, bestbps, source;
1151
1152 bestdiff = bestbps = 0;
1153 unit = (unit & 1) << 2;
1154 for (source = 0; source < 4; ++source) {
1155 long freq = zs_frequencies[unit + source];
1156 int diff, bps, div, clkm, brgm, tcon;
1157
1158 bps = div = clkm = brgm = tcon = 0;
1159 switch (source) {
1160 case 0: /* BRgen, PCLK */
1161 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1162 break;
1163 case 1: /* BRgen, RTxC */
1164 brgm = ZSWR14_BAUD_ENA;
1165 break;
1166 case 2: /* RTxC */
1167 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1168 break;
1169 case 3: /* TRxC */
1170 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1171 break;
1172 }
1173 switch (source) {
1174 case 0:
1175 case 1:
1176 div = ZSWR4_CLK_X16;
1177 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1178 tcon = BPS_TO_TCONST(freq, wanted);
1179 if (tcon < 0)
1180 tcon = 0;
1181 bps = TCONST_TO_BPS(freq, tcon);
1182 break;
1183 case 2:
1184 case 3:
1185 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1186 int b2 = freq / 32, d2 = abs(b2 - wanted);
1187 int b3 = freq / 64, d3 = abs(b3 - wanted);
1188
1189 if (d1 < d2 && d1 < d3) {
1190 div = ZSWR4_CLK_X16;
1191 bps = b1;
1192 } else if (d2 < d3 && d2 < d1) {
1193 div = ZSWR4_CLK_X32;
1194 bps = b2;
1195 } else {
1196 div = ZSWR4_CLK_X64;
1197 bps = b3;
1198 }
1199 brgm = tcon = 0;
1200 break;
1201 }
1202 }
1203 diff = abs(bps - wanted);
1204 if (!source || diff < bestdiff) {
1205 *divisor = div;
1206 *clockmode = clkm;
1207 *brgenmode = brgm;
1208 *timeconst = tcon;
1209 bestbps = bps;
1210 bestdiff = diff;
1211 if (diff == 0)
1212 break;
1213 }
1214 }
1215 /* Allow deviations upto 5% */
1216 if (20 * bestdiff > wanted)
1217 return -1;
1218 return bestbps;
1219 }
1220
1221 /*
1222 * Raise or lower modem control (DTR/RTS) signals. If a character is
1223 * in transmission, the change is deferred.
1224 */
1225 static int
1226 zs_modem(cs, bits, how)
1227 struct zs_chanstate *cs;
1228 int bits, how;
1229 {
1230 int s, mbits;
1231
1232 bits &= ZSWR5_DTR | ZSWR5_RTS;
1233
1234 s = splzs();
1235 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1236
1237 switch(how) {
1238 case DMSET:
1239 mbits = bits;
1240 break;
1241 case DMBIS:
1242 mbits |= bits;
1243 break;
1244 case DMBIC:
1245 mbits &= ~bits;
1246 break;
1247 case DMGET:
1248 splx(s);
1249 return(mbits);
1250 }
1251
1252 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1253 if(cs->cs_heldchange == 0) {
1254 if(cs->cs_ttyp->t_state & TS_BUSY) {
1255 cs->cs_heldtbc = cs->cs_tbc;
1256 cs->cs_tbc = 0;
1257 cs->cs_heldchange = 1;
1258 }
1259 else {
1260 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1261 }
1262 }
1263 splx(s);
1264 return(0);
1265 }
1266
1267 /*
1268 * Write the given register set to the given zs channel in the proper order.
1269 * The channel must not be transmitting at the time. The receiver will
1270 * be disabled for the time it takes to write all the registers.
1271 */
1272 static void
1273 zs_loadchannelregs(zc, reg)
1274 volatile struct zschan *zc;
1275 u_char *reg;
1276 {
1277 int i;
1278
1279 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1280 i = zc->zc_data; /* drain fifo */
1281 i = zc->zc_data;
1282 i = zc->zc_data;
1283 ZS_WRITE(zc, 4, reg[4]);
1284 ZS_WRITE(zc, 10, reg[10]);
1285 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1286 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1287 ZS_WRITE(zc, 1, reg[1]);
1288 ZS_WRITE(zc, 9, reg[9]);
1289 ZS_WRITE(zc, 11, reg[11]);
1290 ZS_WRITE(zc, 12, reg[12]);
1291 ZS_WRITE(zc, 13, reg[13]);
1292 ZS_WRITE(zc, 14, reg[14]);
1293 ZS_WRITE(zc, 15, reg[15]);
1294 ZS_WRITE(zc, 3, reg[3]);
1295 ZS_WRITE(zc, 5, reg[5]);
1296 }
1297 #endif /* NZS > 1 */
1298