zs.c revision 1.30.8.1 1 /* $NetBSD: zs.c,v 1.30.8.1 2000/11/20 20:05:27 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81
82 #if NZS > 0
83
84 #define PCLK (8053976) /* PCLK pin input clock rate */
85 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
86
87 #define splzs spl5
88
89 /*
90 * Software state per found chip.
91 */
92 struct zs_softc {
93 struct device zi_dev; /* base device */
94 volatile struct zsdevice *zi_zs; /* chip registers */
95 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
96 };
97
98 static u_char cb_scheduled = 0; /* Already asked for callback? */
99 /*
100 * Define the registers for a closed port
101 */
102 static u_char zs_init_regs[16] = {
103 /* 0 */ 0,
104 /* 1 */ 0,
105 /* 2 */ 0x60,
106 /* 3 */ 0,
107 /* 4 */ 0,
108 /* 5 */ 0,
109 /* 6 */ 0,
110 /* 7 */ 0,
111 /* 8 */ 0,
112 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */ ZSWR10_NRZ,
114 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */ 0,
116 /* 13 */ 0,
117 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */ 0
119 };
120
121 /*
122 * Define the machine dependant clock frequencies
123 * If BRgen feeds sender/receiver we always use a
124 * divisor 16, therefor the division by 16 can as
125 * well be done here.
126 */
127 static u_long zs_freqs_tt[] = {
128 /*
129 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 * which is set to 307.2KHz during initialisation
131 * and never changed afterwards.
132 */
133 PCLK/16, /* BRgen, PCLK, divisor 16 */
134 229500, /* BRgen, RTxCA, divisor 16 */
135 3672000, /* RTxCA, from PCLK4 */
136 0, /* TRxCA, external */
137
138 PCLK/16, /* BRgen, PCLK, divisor 16 */
139 19200, /* BRgen, RTxCB, divisor 16 */
140 307200, /* RTxCB, from TT-MFP TCO */
141 2457600 /* TRxCB, from BCLK */
142 };
143
144 static u_long zs_freqs_falcon[] = {
145 /*
146 * Atari Falcon, XXX no specs available, this might be wrong
147 */
148 PCLK/16, /* BRgen, PCLK, divisor 16 */
149 229500, /* BRgen, RTxCA, divisor 16 */
150 3672000, /* RTxCA, ??? */
151 0, /* TRxCA, external */
152
153 PCLK/16, /* BRgen, PCLK, divisor 16 */
154 229500, /* BRgen, RTxCB, divisor 16 */
155 3672000, /* RTxCB, ??? */
156 2457600 /* TRxCB, ??? */
157 };
158
159 static u_long zs_freqs_hades[] = {
160 /*
161 * XXX: Channel-A unchecked!!!!!
162 */
163 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
164 229500, /* BRgen, RTxCA, divisor 16 */
165 3672000, /* RTxCA, from PCLK4 */
166 0, /* TRxCA, external */
167
168 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
169 235550, /* BRgen, RTxCB, divisor 16 */
170 3768800, /* RTxCB, 3.7688MHz */
171 3768800 /* TRxCB, 3.7688MHz */
172 };
173
174 static u_long zs_freqs_generic[] = {
175 /*
176 * other machines, assume only PCLK is available
177 */
178 PCLK/16, /* BRgen, PCLK, divisor 16 */
179 0, /* BRgen, RTxCA, divisor 16 */
180 0, /* RTxCA, unknown */
181 0, /* TRxCA, unknown */
182
183 PCLK/16, /* BRgen, PCLK, divisor 16 */
184 0, /* BRgen, RTxCB, divisor 16 */
185 0, /* RTxCB, unknown */
186 0 /* TRxCB, unknown */
187 };
188 static u_long *zs_frequencies;
189
190 /* Definition of the driver for autoconfig. */
191 static int zsmatch __P((struct device *, struct cfdata *, void *));
192 static void zsattach __P((struct device *, struct device *, void *));
193
194 struct cfattach zs_ca = {
195 sizeof(struct zs_softc), zsmatch, zsattach
196 };
197
198 extern struct cfdriver zs_cd;
199
200 /* {b,c}devsw[] function prototypes */
201 dev_type_open(zsopen);
202 dev_type_close(zsclose);
203 dev_type_read(zsread);
204 dev_type_write(zswrite);
205 dev_type_ioctl(zsioctl);
206 dev_type_tty(zstty);
207
208 /* Interrupt handlers. */
209 int zshard __P((long));
210 static int zssoft __P((long));
211 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
212 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
213 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
214
215 static struct zs_chanstate *zslist;
216
217 /* Routines called from other code. */
218 static void zsstart __P((struct tty *));
219 void zsstop __P((struct tty *, int));
220
221 /* Routines purely local to this driver. */
222 static void zsoverrun __P((int, long *, char *));
223 static int zsparam __P((struct tty *, struct termios *));
224 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
225 static int zs_modem __P((struct zs_chanstate *, int, int));
226 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
227 static void zs_shutdown __P((struct zs_chanstate *));
228
229 static int zsshortcuts; /* number of "shortcut" software interrupts */
230
231 static int
232 zsmatch(pdp, cfp, auxp)
233 struct device *pdp;
234 struct cfdata *cfp;
235 void *auxp;
236 {
237 static int zs_matched = 0;
238
239 if(strcmp("zs", auxp) || zs_matched)
240 return(0);
241 zs_matched = 1;
242 return(1);
243 }
244
245 /*
246 * Attach a found zs.
247 */
248 static void
249 zsattach(parent, dev, aux)
250 struct device *parent;
251 struct device *dev;
252 void *aux;
253 {
254 register struct zs_softc *zi;
255 register struct zs_chanstate *cs;
256 register volatile struct zsdevice *addr;
257 char tmp;
258
259 addr = (struct zsdevice *)AD_SCC;
260 zi = (struct zs_softc *)dev;
261 zi->zi_zs = addr;
262 cs = zi->zi_cs;
263
264 /*
265 * Get the command register into a known state.
266 */
267 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
268 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
269 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
270 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
271
272 /*
273 * Do a hardware reset.
274 */
275 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
276 delay(50000); /*enough ? */
277 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
278
279 /*
280 * Initialize both channels
281 */
282 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
283 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
284
285 if(machineid & ATARI_TT) {
286 /*
287 * ininitialise TT-MFP timer C: 307200Hz
288 * timer C and D share one control register:
289 * bits 0-2 control timer D
290 * bits 4-6 control timer C
291 */
292 int cr = MFP2->mf_tcdcr & 7;
293 MFP2->mf_tcdcr = cr; /* stop timer C */
294 MFP2->mf_tcdr = 1; /* counter 1 */
295 cr |= T_Q004 << 4; /* divisor 4 */
296 MFP2->mf_tcdcr = cr; /* start timer C */
297 /*
298 * enable scc related interrupts
299 */
300 SCU->vme_mask |= SCU_SCC;
301
302 zs_frequencies = zs_freqs_tt;
303 } else if (machineid & ATARI_FALCON) {
304 zs_frequencies = zs_freqs_falcon;
305 } else if (machineid & ATARI_HADES) {
306 zs_frequencies = zs_freqs_hades;
307 } else {
308 zs_frequencies = zs_freqs_generic;
309 }
310
311 /* link into interrupt list with order (A,B) (B=A+1) */
312 cs[0].cs_next = &cs[1];
313 cs[1].cs_next = zslist;
314 zslist = cs;
315
316 cs->cs_unit = 0;
317 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
318 cs++;
319 cs->cs_unit = 1;
320 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
321
322 printf(": serial2 on channel a and modem2 on channel b\n");
323 }
324
325 /*
326 * Open a zs serial port.
327 */
328 int
329 zsopen(dev, flags, mode, p)
330 dev_t dev;
331 int flags;
332 int mode;
333 struct proc *p;
334 {
335 register struct tty *tp;
336 register struct zs_chanstate *cs;
337 struct zs_softc *zi;
338 int unit = ZS_UNIT(dev);
339 int zs = unit >> 1;
340 int error, s;
341
342 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
343 return (ENXIO);
344 cs = &zi->zi_cs[unit & 1];
345
346 /*
347 * When port A (ser02) is selected on the TT, make sure
348 * the port is enabled.
349 */
350 if((machineid & ATARI_TT) && !(unit & 1))
351 ym2149_ser2(1);
352
353 if (cs->cs_rbuf == NULL) {
354 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
355 M_WAITOK);
356 }
357
358 tp = cs->cs_ttyp;
359 if(tp == NULL) {
360 cs->cs_ttyp = tp = ttymalloc();
361 tty_attach(tp);
362 tp->t_dev = dev;
363 tp->t_oproc = zsstart;
364 tp->t_param = zsparam;
365 }
366
367 if ((tp->t_state & TS_ISOPEN) &&
368 (tp->t_state & TS_XCLUDE) &&
369 p->p_ucred->cr_uid != 0)
370 return (EBUSY);
371
372 s = spltty();
373
374 /*
375 * Do the following iff this is a first open.
376 */
377 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
378 if(tp->t_ispeed == 0) {
379 tp->t_iflag = TTYDEF_IFLAG;
380 tp->t_oflag = TTYDEF_OFLAG;
381 tp->t_cflag = TTYDEF_CFLAG;
382 tp->t_lflag = TTYDEF_LFLAG;
383 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
384 }
385 ttychars(tp);
386 ttsetwater(tp);
387
388 (void)zsparam(tp, &tp->t_termios);
389
390 /*
391 * Turn on DTR. We must always do this, even if carrier is not
392 * present, because otherwise we'd have to use TIOCSDTR
393 * immediately after setting CLOCAL, which applications do not
394 * expect. We always assert DTR while the device is open
395 * unless explicitly requested to deassert it.
396 */
397 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
398 /* May never get a status intr. if DCD already on. -gwr */
399 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
400 tp->t_state |= TS_CARR_ON;
401 if(cs->cs_softcar)
402 tp->t_state |= TS_CARR_ON;
403 }
404
405 splx(s);
406
407 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
408 if (error)
409 goto bad;
410
411 error = linesw[tp->t_line].l_open(dev, tp);
412 if(error)
413 goto bad;
414 return (0);
415
416 bad:
417 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
418 /*
419 * We failed to open the device, and nobody else had it opened.
420 * Clean up the state as appropriate.
421 */
422 zs_shutdown(cs);
423 }
424 return(error);
425 }
426
427 /*
428 * Close a zs serial port.
429 */
430 int
431 zsclose(dev, flags, mode, p)
432 dev_t dev;
433 int flags;
434 int mode;
435 struct proc *p;
436 {
437 register struct zs_chanstate *cs;
438 register struct tty *tp;
439 struct zs_softc *zi;
440 int unit = ZS_UNIT(dev);
441
442 zi = zs_cd.cd_devs[unit >> 1];
443 cs = &zi->zi_cs[unit & 1];
444 tp = cs->cs_ttyp;
445
446 linesw[tp->t_line].l_close(tp, flags);
447 ttyclose(tp);
448
449 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
450 /*
451 * Although we got a last close, the device may still be in
452 * use; e.g. if this was the dialout node, and there are still
453 * processes waiting for carrier on the non-dialout node.
454 */
455 zs_shutdown(cs);
456 }
457 return (0);
458 }
459
460 /*
461 * Read/write zs serial port.
462 */
463 int
464 zsread(dev, uio, flags)
465 dev_t dev;
466 struct uio *uio;
467 int flags;
468 {
469 register struct zs_chanstate *cs;
470 register struct zs_softc *zi;
471 register struct tty *tp;
472 int unit;
473
474 unit = ZS_UNIT(dev);
475 zi = zs_cd.cd_devs[unit >> 1];
476 cs = &zi->zi_cs[unit & 1];
477 tp = cs->cs_ttyp;
478
479 return(linesw[tp->t_line].l_read(tp, uio, flags));
480 }
481
482 int
483 zswrite(dev, uio, flags)
484 dev_t dev;
485 struct uio *uio;
486 int flags;
487 {
488 register struct zs_chanstate *cs;
489 register struct zs_softc *zi;
490 register struct tty *tp;
491 int unit;
492
493 unit = ZS_UNIT(dev);
494 zi = zs_cd.cd_devs[unit >> 1];
495 cs = &zi->zi_cs[unit & 1];
496 tp = cs->cs_ttyp;
497
498 return(linesw[tp->t_line].l_write(tp, uio, flags));
499 }
500
501 struct tty *
502 zstty(dev)
503 dev_t dev;
504 {
505 register struct zs_chanstate *cs;
506 register struct zs_softc *zi;
507 int unit;
508
509 unit = ZS_UNIT(dev);
510 zi = zs_cd.cd_devs[unit >> 1];
511 cs = &zi->zi_cs[unit & 1];
512 return(cs->cs_ttyp);
513 }
514
515 /*
516 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
517 * channels are kept in (A,B) pairs.
518 *
519 * Do just a little, then get out; set a software interrupt if more
520 * work is needed.
521 *
522 * We deliberately ignore the vectoring Zilog gives us, and match up
523 * only the number of `reset interrupt under service' operations, not
524 * the order.
525 */
526
527 int
528 zshard(sr)
529 long sr;
530 {
531 register struct zs_chanstate *a;
532 #define b (a + 1)
533 register volatile struct zschan *zc;
534 register int rr3, intflags = 0, v, i;
535
536 do {
537 intflags &= ~4;
538 for(a = zslist; a != NULL; a = b->cs_next) {
539 rr3 = ZS_READ(a->cs_zc, 3);
540 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
541 intflags |= 4|2;
542 zc = a->cs_zc;
543 i = a->cs_rbput;
544 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
545 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
546 intflags |= 1;
547 }
548 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
549 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
550 intflags |= 1;
551 }
552 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
553 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
554 intflags |= 1;
555 }
556 a->cs_rbput = i;
557 }
558 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
559 intflags |= 4|2;
560 zc = b->cs_zc;
561 i = b->cs_rbput;
562 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
563 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
564 intflags |= 1;
565 }
566 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
567 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
568 intflags |= 1;
569 }
570 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
571 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
572 intflags |= 1;
573 }
574 b->cs_rbput = i;
575 }
576 }
577 } while(intflags & 4);
578 #undef b
579
580 if(intflags & 1) {
581 if(BASEPRI(sr)) {
582 spl1();
583 zsshortcuts++;
584 return(zssoft(sr));
585 }
586 else if(!cb_scheduled) {
587 cb_scheduled++;
588 add_sicallback((si_farg)zssoft, 0, 0);
589 }
590 }
591 return(intflags & 2);
592 }
593
594 static int
595 zsrint(cs, zc)
596 register struct zs_chanstate *cs;
597 register volatile struct zschan *zc;
598 {
599 register int c;
600
601 /*
602 * First read the status, because read of the received char
603 * destroy the status of this char.
604 */
605 c = ZS_READ(zc, 1);
606 c |= (zc->zc_data << 8);
607
608 /* clear receive error & interrupt condition */
609 zc->zc_csr = ZSWR0_RESET_ERRORS;
610 zc->zc_csr = ZSWR0_CLR_INTR;
611
612 return(ZRING_MAKE(ZRING_RINT, c));
613 }
614
615 static int
616 zsxint(cs, zc)
617 register struct zs_chanstate *cs;
618 register volatile struct zschan *zc;
619 {
620 register int i = cs->cs_tbc;
621
622 if(i == 0) {
623 zc->zc_csr = ZSWR0_RESET_TXINT;
624 zc->zc_csr = ZSWR0_CLR_INTR;
625 return(ZRING_MAKE(ZRING_XINT, 0));
626 }
627 cs->cs_tbc = i - 1;
628 zc->zc_data = *cs->cs_tba++;
629 zc->zc_csr = ZSWR0_CLR_INTR;
630 return (0);
631 }
632
633 static int
634 zssint(cs, zc)
635 register struct zs_chanstate *cs;
636 register volatile struct zschan *zc;
637 {
638 register int rr0;
639
640 rr0 = zc->zc_csr;
641 zc->zc_csr = ZSWR0_RESET_STATUS;
642 zc->zc_csr = ZSWR0_CLR_INTR;
643 /*
644 * The chip's hardware flow control is, as noted in zsreg.h,
645 * busted---if the DCD line goes low the chip shuts off the
646 * receiver (!). If we want hardware CTS flow control but do
647 * not have it, and carrier is now on, turn HFC on; if we have
648 * HFC now but carrier has gone low, turn it off.
649 */
650 if(rr0 & ZSRR0_DCD) {
651 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
652 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
653 cs->cs_creg[3] |= ZSWR3_HFC;
654 ZS_WRITE(zc, 3, cs->cs_creg[3]);
655 }
656 }
657 else {
658 if (cs->cs_creg[3] & ZSWR3_HFC) {
659 cs->cs_creg[3] &= ~ZSWR3_HFC;
660 ZS_WRITE(zc, 3, cs->cs_creg[3]);
661 }
662 }
663 return(ZRING_MAKE(ZRING_SINT, rr0));
664 }
665
666 /*
667 * Print out a ring or fifo overrun error message.
668 */
669 static void
670 zsoverrun(unit, ptime, what)
671 int unit;
672 long *ptime;
673 char *what;
674 {
675
676 if(*ptime != time.tv_sec) {
677 *ptime = time.tv_sec;
678 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
679 (unit & 1) + 'a', what);
680 }
681 }
682
683 /*
684 * ZS software interrupt. Scan all channels for deferred interrupts.
685 */
686 int
687 zssoft(sr)
688 long sr;
689 {
690 register struct zs_chanstate *cs;
691 register volatile struct zschan *zc;
692 register struct linesw *line;
693 register struct tty *tp;
694 register int get, n, c, cc, unit, s;
695 int retval = 0;
696
697 cb_scheduled = 0;
698 s = spltty();
699 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
700 get = cs->cs_rbget;
701 again:
702 n = cs->cs_rbput; /* atomic */
703 if(get == n) /* nothing more on this line */
704 continue;
705 retval = 1;
706 unit = cs->cs_unit; /* set up to handle interrupts */
707 zc = cs->cs_zc;
708 tp = cs->cs_ttyp;
709 line = &linesw[tp->t_line];
710 /*
711 * Compute the number of interrupts in the receive ring.
712 * If the count is overlarge, we lost some events, and
713 * must advance to the first valid one. It may get
714 * overwritten if more data are arriving, but this is
715 * too expensive to check and gains nothing (we already
716 * lost out; all we can do at this point is trade one
717 * kind of loss for another).
718 */
719 n -= get;
720 if(n > ZLRB_RING_SIZE) {
721 zsoverrun(unit, &cs->cs_rotime, "ring");
722 get += n - ZLRB_RING_SIZE;
723 n = ZLRB_RING_SIZE;
724 }
725 while(--n >= 0) {
726 /* race to keep ahead of incoming interrupts */
727 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
728 switch (ZRING_TYPE(c)) {
729
730 case ZRING_RINT:
731 c = ZRING_VALUE(c);
732 if(c & ZSRR1_DO)
733 zsoverrun(unit, &cs->cs_fotime, "fifo");
734 cc = c >> 8;
735 if(c & ZSRR1_FE)
736 cc |= TTY_FE;
737 if(c & ZSRR1_PE)
738 cc |= TTY_PE;
739 line->l_rint(cc, tp);
740 break;
741
742 case ZRING_XINT:
743 /*
744 * Transmit done: change registers and resume,
745 * or clear BUSY.
746 */
747 if(cs->cs_heldchange) {
748 int sps;
749
750 sps = splzs();
751 c = zc->zc_csr;
752 if((c & ZSRR0_DCD) == 0)
753 cs->cs_preg[3] &= ~ZSWR3_HFC;
754 bcopy((caddr_t)cs->cs_preg,
755 (caddr_t)cs->cs_creg, 16);
756 zs_loadchannelregs(zc, cs->cs_creg);
757 splx(sps);
758 cs->cs_heldchange = 0;
759 if(cs->cs_heldtbc
760 && (tp->t_state & TS_TTSTOP) == 0) {
761 cs->cs_tbc = cs->cs_heldtbc - 1;
762 zc->zc_data = *cs->cs_tba++;
763 goto again;
764 }
765 }
766 tp->t_state &= ~TS_BUSY;
767 if(tp->t_state & TS_FLUSH)
768 tp->t_state &= ~TS_FLUSH;
769 else ndflush(&tp->t_outq,cs->cs_tba
770 - (caddr_t)tp->t_outq.c_cf);
771 line->l_start(tp);
772 break;
773
774 case ZRING_SINT:
775 /*
776 * Status line change. HFC bit is run in
777 * hardware interrupt, to avoid locking
778 * at splzs here.
779 */
780 c = ZRING_VALUE(c);
781 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
782 cc = (c & ZSRR0_DCD) != 0;
783 if(line->l_modem(tp, cc) == 0)
784 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
785 cc ? DMBIS : DMBIC);
786 }
787 cs->cs_rr0 = c;
788 break;
789
790 default:
791 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
792 unit >> 1, (unit & 1) + 'a', c);
793 break;
794 }
795 }
796 cs->cs_rbget = get;
797 goto again;
798 }
799 splx(s);
800 return (retval);
801 }
802
803 int
804 zsioctl(dev, cmd, data, flag, p)
805 dev_t dev;
806 u_long cmd;
807 caddr_t data;
808 int flag;
809 struct proc *p;
810 {
811 int unit = ZS_UNIT(dev);
812 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
813 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
814 register int error, s;
815 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
816
817 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
818 if(error >= 0)
819 return(error);
820 error = ttioctl(tp, cmd, data, flag, p);
821 if(error >= 0)
822 return (error);
823
824 switch (cmd) {
825 case TIOCSBRK:
826 s = splzs();
827 cs->cs_preg[5] |= ZSWR5_BREAK;
828 cs->cs_creg[5] |= ZSWR5_BREAK;
829 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
830 splx(s);
831 break;
832 case TIOCCBRK:
833 s = splzs();
834 cs->cs_preg[5] &= ~ZSWR5_BREAK;
835 cs->cs_creg[5] &= ~ZSWR5_BREAK;
836 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
837 splx(s);
838 break;
839 case TIOCGFLAGS: {
840 int bits = 0;
841
842 if(cs->cs_softcar)
843 bits |= TIOCFLAG_SOFTCAR;
844 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
845 bits |= TIOCFLAG_CLOCAL;
846 if(cs->cs_creg[3] & ZSWR3_HFC)
847 bits |= TIOCFLAG_CRTSCTS;
848 *(int *)data = bits;
849 break;
850 }
851 case TIOCSFLAGS: {
852 int userbits = 0;
853
854 error = suser(p->p_ucred, &p->p_acflag);
855 if(error != 0)
856 return (EPERM);
857
858 userbits = *(int *)data;
859
860 /*
861 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
862 # defaulting to software flow control.
863 */
864 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
865 return(EINVAL);
866 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
867 return(ENODEV);
868
869 s = splzs();
870 if((userbits & TIOCFLAG_SOFTCAR)) {
871 cs->cs_softcar = 1; /* turn on softcar */
872 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
873 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
874 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
875 }
876 else if(userbits & TIOCFLAG_CLOCAL) {
877 cs->cs_softcar = 0; /* turn off softcar */
878 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
879 cs->cs_creg[15] |= ZSWR15_DCD_IE;
880 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
881 tp->t_termios.c_cflag |= CLOCAL;
882 }
883 if(userbits & TIOCFLAG_CRTSCTS) {
884 cs->cs_preg[15] |= ZSWR15_CTS_IE;
885 cs->cs_creg[15] |= ZSWR15_CTS_IE;
886 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
887 cs->cs_preg[3] |= ZSWR3_HFC;
888 cs->cs_creg[3] |= ZSWR3_HFC;
889 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
890 tp->t_termios.c_cflag |= CRTSCTS;
891 }
892 else {
893 /* no mdmbuf, so we must want software flow control */
894 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
895 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
896 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
897 cs->cs_preg[3] &= ~ZSWR3_HFC;
898 cs->cs_creg[3] &= ~ZSWR3_HFC;
899 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
900 tp->t_termios.c_cflag &= ~CRTSCTS;
901 }
902 splx(s);
903 break;
904 }
905 case TIOCSDTR:
906 zs_modem(cs, ZSWR5_DTR, DMBIS);
907 break;
908 case TIOCCDTR:
909 zs_modem(cs, ZSWR5_DTR, DMBIC);
910 break;
911 case TIOCMGET:
912 zs_modem(cs, 0, DMGET);
913 break;
914 case TIOCMSET:
915 case TIOCMBIS:
916 case TIOCMBIC:
917 default:
918 return (ENOTTY);
919 }
920 return (0);
921 }
922
923 /*
924 * Start or restart transmission.
925 */
926 static void
927 zsstart(tp)
928 register struct tty *tp;
929 {
930 register struct zs_chanstate *cs;
931 register int s, nch;
932 int unit = ZS_UNIT(tp->t_dev);
933 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
934
935 cs = &zi->zi_cs[unit & 1];
936 s = spltty();
937
938 /*
939 * If currently active or delaying, no need to do anything.
940 */
941 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
942 goto out;
943
944 /*
945 * If there are sleepers, and output has drained below low
946 * water mark, awaken.
947 */
948 if(tp->t_outq.c_cc <= tp->t_lowat) {
949 if(tp->t_state & TS_ASLEEP) {
950 tp->t_state &= ~TS_ASLEEP;
951 wakeup((caddr_t)&tp->t_outq);
952 }
953 selwakeup(&tp->t_wsel);
954 }
955
956 nch = ndqb(&tp->t_outq, 0); /* XXX */
957 if(nch) {
958 register char *p = tp->t_outq.c_cf;
959
960 /* mark busy, enable tx done interrupts, & send first byte */
961 tp->t_state |= TS_BUSY;
962 (void) splzs();
963 cs->cs_preg[1] |= ZSWR1_TIE;
964 cs->cs_creg[1] |= ZSWR1_TIE;
965 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
966 cs->cs_zc->zc_data = *p;
967 cs->cs_tba = p + 1;
968 cs->cs_tbc = nch - 1;
969 } else {
970 /*
971 * Nothing to send, turn off transmit done interrupts.
972 * This is useful if something is doing polled output.
973 */
974 (void) splzs();
975 cs->cs_preg[1] &= ~ZSWR1_TIE;
976 cs->cs_creg[1] &= ~ZSWR1_TIE;
977 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
978 }
979 out:
980 splx(s);
981 }
982
983 /*
984 * Stop output, e.g., for ^S or output flush.
985 */
986 void
987 zsstop(tp, flag)
988 register struct tty *tp;
989 int flag;
990 {
991 register struct zs_chanstate *cs;
992 register int s, unit = ZS_UNIT(tp->t_dev);
993 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
994
995 cs = &zi->zi_cs[unit & 1];
996 s = splzs();
997 if(tp->t_state & TS_BUSY) {
998 /*
999 * Device is transmitting; must stop it.
1000 */
1001 cs->cs_tbc = 0;
1002 if ((tp->t_state & TS_TTSTOP) == 0)
1003 tp->t_state |= TS_FLUSH;
1004 }
1005 splx(s);
1006 }
1007
1008 static void
1009 zs_shutdown(cs)
1010 struct zs_chanstate *cs;
1011 {
1012 struct tty *tp = cs->cs_ttyp;
1013 int s;
1014
1015 s = splzs();
1016
1017 /*
1018 * Hang up if necessary. Wait a bit, so the other side has time to
1019 * notice even if we immediately open the port again.
1020 */
1021 if(tp->t_cflag & HUPCL) {
1022 zs_modem(cs, 0, DMSET);
1023 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1024 }
1025
1026 /* Clear any break condition set with TIOCSBRK. */
1027 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1028 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1029 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1030 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1031 }
1032
1033 /*
1034 * Drop all lines and cancel interrupts
1035 */
1036 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1037 splx(s);
1038 }
1039
1040 /*
1041 * Set ZS tty parameters from termios.
1042 *
1043 * This routine makes use of the fact that only registers
1044 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1045 */
1046 static int
1047 zsparam(tp, t)
1048 register struct tty *tp;
1049 register struct termios *t;
1050 {
1051 int unit = ZS_UNIT(tp->t_dev);
1052 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1053 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1054 int cdiv, clkm, brgm, tcon;
1055 register int tmp, tmp5, cflag, s;
1056
1057 tmp = t->c_ospeed;
1058 tmp5 = t->c_ispeed;
1059 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1060 return(EINVAL);
1061 if(tmp == 0) {
1062 /* stty 0 => drop DTR and RTS */
1063 zs_modem(cs, 0, DMSET);
1064 return(0);
1065 }
1066 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1067 if (tmp < 0)
1068 return(EINVAL);
1069 tp->t_ispeed = tp->t_ospeed = tmp;
1070
1071 cflag = tp->t_cflag = t->c_cflag;
1072 if (cflag & CSTOPB)
1073 cdiv |= ZSWR4_TWOSB;
1074 else
1075 cdiv |= ZSWR4_ONESB;
1076 if (!(cflag & PARODD))
1077 cdiv |= ZSWR4_EVENP;
1078 if (cflag & PARENB)
1079 cdiv |= ZSWR4_PARENB;
1080
1081 switch(cflag & CSIZE) {
1082 case CS5:
1083 tmp = ZSWR3_RX_5;
1084 tmp5 = ZSWR5_TX_5;
1085 break;
1086 case CS6:
1087 tmp = ZSWR3_RX_6;
1088 tmp5 = ZSWR5_TX_6;
1089 break;
1090 case CS7:
1091 tmp = ZSWR3_RX_7;
1092 tmp5 = ZSWR5_TX_7;
1093 break;
1094 case CS8:
1095 default:
1096 tmp = ZSWR3_RX_8;
1097 tmp5 = ZSWR5_TX_8;
1098 break;
1099 }
1100 tmp |= ZSWR3_RX_ENABLE;
1101 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1102
1103 /*
1104 * Block interrupts so that state will not
1105 * be altered until we are done setting it up.
1106 */
1107 s = splzs();
1108 cs->cs_preg[4] = cdiv;
1109 cs->cs_preg[11] = clkm;
1110 cs->cs_preg[12] = tcon;
1111 cs->cs_preg[13] = tcon >> 8;
1112 cs->cs_preg[14] = brgm;
1113 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1114 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1115 cs->cs_preg[10] = ZSWR10_NRZ;
1116 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1117
1118 /*
1119 * Output hardware flow control on the chip is horrendous: if
1120 * carrier detect drops, the receiver is disabled. Hence we
1121 * can only do this when the carrier is on.
1122 */
1123 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1124 tmp |= ZSWR3_HFC;
1125 cs->cs_preg[3] = tmp;
1126 cs->cs_preg[5] = tmp5;
1127
1128 /*
1129 * If nothing is being transmitted, set up new current values,
1130 * else mark them as pending.
1131 */
1132 if(cs->cs_heldchange == 0) {
1133 if (cs->cs_ttyp->t_state & TS_BUSY) {
1134 cs->cs_heldtbc = cs->cs_tbc;
1135 cs->cs_tbc = 0;
1136 cs->cs_heldchange = 1;
1137 } else {
1138 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1139 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1140 }
1141 }
1142 splx(s);
1143 return (0);
1144 }
1145
1146 /*
1147 * search for the best matching baudrate
1148 */
1149 static int
1150 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1151 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1152 {
1153 int bestdiff, bestbps, source;
1154
1155 bestdiff = bestbps = 0;
1156 unit = (unit & 1) << 2;
1157 for (source = 0; source < 4; ++source) {
1158 long freq = zs_frequencies[unit + source];
1159 int diff, bps, div, clkm, brgm, tcon;
1160
1161 bps = div = clkm = brgm = tcon = 0;
1162 switch (source) {
1163 case 0: /* BRgen, PCLK */
1164 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1165 break;
1166 case 1: /* BRgen, RTxC */
1167 brgm = ZSWR14_BAUD_ENA;
1168 break;
1169 case 2: /* RTxC */
1170 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1171 break;
1172 case 3: /* TRxC */
1173 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1174 break;
1175 }
1176 switch (source) {
1177 case 0:
1178 case 1:
1179 div = ZSWR4_CLK_X16;
1180 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1181 tcon = BPS_TO_TCONST(freq, wanted);
1182 if (tcon < 0)
1183 tcon = 0;
1184 bps = TCONST_TO_BPS(freq, tcon);
1185 break;
1186 case 2:
1187 case 3:
1188 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1189 int b2 = freq / 32, d2 = abs(b2 - wanted);
1190 int b3 = freq / 64, d3 = abs(b3 - wanted);
1191
1192 if (d1 < d2 && d1 < d3) {
1193 div = ZSWR4_CLK_X16;
1194 bps = b1;
1195 } else if (d2 < d3 && d2 < d1) {
1196 div = ZSWR4_CLK_X32;
1197 bps = b2;
1198 } else {
1199 div = ZSWR4_CLK_X64;
1200 bps = b3;
1201 }
1202 brgm = tcon = 0;
1203 break;
1204 }
1205 }
1206 diff = abs(bps - wanted);
1207 if (!source || diff < bestdiff) {
1208 *divisor = div;
1209 *clockmode = clkm;
1210 *brgenmode = brgm;
1211 *timeconst = tcon;
1212 bestbps = bps;
1213 bestdiff = diff;
1214 if (diff == 0)
1215 break;
1216 }
1217 }
1218 /* Allow deviations upto 5% */
1219 if (20 * bestdiff > wanted)
1220 return -1;
1221 return bestbps;
1222 }
1223
1224 /*
1225 * Raise or lower modem control (DTR/RTS) signals. If a character is
1226 * in transmission, the change is deferred.
1227 */
1228 static int
1229 zs_modem(cs, bits, how)
1230 struct zs_chanstate *cs;
1231 int bits, how;
1232 {
1233 int s, mbits;
1234
1235 bits &= ZSWR5_DTR | ZSWR5_RTS;
1236
1237 s = splzs();
1238 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1239
1240 switch(how) {
1241 case DMSET:
1242 mbits = bits;
1243 break;
1244 case DMBIS:
1245 mbits |= bits;
1246 break;
1247 case DMBIC:
1248 mbits &= ~bits;
1249 break;
1250 case DMGET:
1251 splx(s);
1252 return(mbits);
1253 }
1254
1255 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1256 if(cs->cs_heldchange == 0) {
1257 if(cs->cs_ttyp->t_state & TS_BUSY) {
1258 cs->cs_heldtbc = cs->cs_tbc;
1259 cs->cs_tbc = 0;
1260 cs->cs_heldchange = 1;
1261 }
1262 else {
1263 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1264 }
1265 }
1266 splx(s);
1267 return(0);
1268 }
1269
1270 /*
1271 * Write the given register set to the given zs channel in the proper order.
1272 * The channel must not be transmitting at the time. The receiver will
1273 * be disabled for the time it takes to write all the registers.
1274 */
1275 static void
1276 zs_loadchannelregs(zc, reg)
1277 volatile struct zschan *zc;
1278 u_char *reg;
1279 {
1280 int i;
1281
1282 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1283 i = zc->zc_data; /* drain fifo */
1284 i = zc->zc_data;
1285 i = zc->zc_data;
1286 ZS_WRITE(zc, 4, reg[4]);
1287 ZS_WRITE(zc, 10, reg[10]);
1288 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1289 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1290 ZS_WRITE(zc, 1, reg[1]);
1291 ZS_WRITE(zc, 9, reg[9]);
1292 ZS_WRITE(zc, 11, reg[11]);
1293 ZS_WRITE(zc, 12, reg[12]);
1294 ZS_WRITE(zc, 13, reg[13]);
1295 ZS_WRITE(zc, 14, reg[14]);
1296 ZS_WRITE(zc, 15, reg[15]);
1297 ZS_WRITE(zc, 3, reg[3]);
1298 ZS_WRITE(zc, 5, reg[5]);
1299 }
1300 #endif /* NZS > 1 */
1301