Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.30.8.3
      1 /*	$NetBSD: zs.c,v 1.30.8.3 2001/02/11 19:09:10 bouyer Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/systm.h>
     58 #include <sys/proc.h>
     59 #include <sys/device.h>
     60 #include <sys/conf.h>
     61 #include <sys/file.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/malloc.h>
     64 #include <sys/tty.h>
     65 #include <sys/time.h>
     66 #include <sys/kernel.h>
     67 #include <sys/syslog.h>
     68 
     69 #include <machine/cpu.h>
     70 #include <machine/iomap.h>
     71 #include <machine/scu.h>
     72 #include <machine/mfp.h>
     73 #include <atari/dev/ym2149reg.h>
     74 
     75 #include <dev/ic/z8530reg.h>
     76 #include <atari/dev/zsvar.h>
     77 #include "zs.h"
     78 #if NZS > 1
     79 #error "This driver supports only 1 85C30!"
     80 #endif
     81 
     82 #if NZS > 0
     83 
     84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
     85 #define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
     86 
     87 #define splzs	spl5
     88 
     89 /*
     90  * Software state per found chip.
     91  */
     92 struct zs_softc {
     93     struct	device		zi_dev;    /* base device		  */
     94     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     95     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     96 };
     97 
     98 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
     99 /*
    100  * Define the registers for a closed port
    101  */
    102 static u_char zs_init_regs[16] = {
    103 /*  0 */	0,
    104 /*  1 */	0,
    105 /*  2 */	0x60,
    106 /*  3 */	0,
    107 /*  4 */	0,
    108 /*  5 */	0,
    109 /*  6 */	0,
    110 /*  7 */	0,
    111 /*  8 */	0,
    112 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
    113 /* 10 */	ZSWR10_NRZ,
    114 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    115 /* 12 */	0,
    116 /* 13 */	0,
    117 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    118 /* 15 */	0
    119 };
    120 
    121 /*
    122  * Define the machine dependant clock frequencies
    123  * If BRgen feeds sender/receiver we always use a
    124  * divisor 16, therefor the division by 16 can as
    125  * well be done here.
    126  */
    127 static u_long zs_freqs_tt[] = {
    128 	/*
    129 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    130 	 * which is set to 307.2KHz during initialisation
    131 	 * and never changed afterwards.
    132 	 */
    133 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    134 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    135 	3672000,	/* RTxCA, from PCLK4		*/
    136 	      0,	/* TRxCA, external		*/
    137 
    138 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    139 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    140 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    141 	2457600		/* TRxCB, from BCLK		*/
    142 };
    143 
    144 static u_long zs_freqs_falcon[] = {
    145 	/*
    146 	 * Atari Falcon, XXX no specs available, this might be wrong
    147 	 */
    148 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    149 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    150 	3672000,	/* RTxCA, ???			*/
    151 	      0,	/* TRxCA, external		*/
    152 
    153 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    154 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    155 	3672000,	/* RTxCB, ???			*/
    156 	2457600		/* TRxCB, ???			*/
    157 };
    158 
    159 static u_long zs_freqs_hades[] = {
    160 	/*
    161 	 * XXX: Channel-A unchecked!!!!!
    162 	 */
    163      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    164 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    165 	3672000,	/* RTxCA, from PCLK4		*/
    166 	      0,	/* TRxCA, external		*/
    167 
    168      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    169 	 235550,	/* BRgen, RTxCB, divisor 16	*/
    170 	3768800,	/* RTxCB, 3.7688MHz		*/
    171 	3768800		/* TRxCB, 3.7688MHz		*/
    172 };
    173 
    174 static u_long zs_freqs_generic[] = {
    175 	/*
    176 	 * other machines, assume only PCLK is available
    177 	 */
    178 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    179 	      0,	/* BRgen, RTxCA, divisor 16	*/
    180 	      0,	/* RTxCA, unknown		*/
    181 	      0,	/* TRxCA, unknown		*/
    182 
    183 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    184 	      0,	/* BRgen, RTxCB, divisor 16	*/
    185 	      0,	/* RTxCB, unknown		*/
    186 	      0		/* TRxCB, unknown		*/
    187 };
    188 static u_long *zs_frequencies;
    189 
    190 /* Definition of the driver for autoconfig. */
    191 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    192 static void	zsattach __P((struct device *, struct device *, void *));
    193 
    194 struct cfattach zs_ca = {
    195 	sizeof(struct zs_softc), zsmatch, zsattach
    196 };
    197 
    198 extern struct cfdriver zs_cd;
    199 
    200 /* {b,c}devsw[] function prototypes */
    201 dev_type_open(zsopen);
    202 dev_type_close(zsclose);
    203 dev_type_read(zsread);
    204 dev_type_write(zswrite);
    205 dev_type_ioctl(zsioctl);
    206 dev_type_tty(zstty);
    207 
    208 /* Interrupt handlers. */
    209 int		zshard __P((long));
    210 static int	zssoft __P((long));
    211 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    212 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    213 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    214 
    215 static struct zs_chanstate *zslist;
    216 
    217 /* Routines called from other code. */
    218 static void	zsstart __P((struct tty *));
    219 void		zsstop __P((struct tty *, int));
    220 
    221 /* Routines purely local to this driver. */
    222 static void	zsoverrun __P((int, long *, char *));
    223 static int	zsparam __P((struct tty *, struct termios *));
    224 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    225 static int	zs_modem __P((struct zs_chanstate *, int, int));
    226 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    227 static void	zs_shutdown __P((struct zs_chanstate *));
    228 
    229 static int zsshortcuts;	/* number of "shortcut" software interrupts */
    230 
    231 static int
    232 zsmatch(pdp, cfp, auxp)
    233 struct device	*pdp;
    234 struct cfdata	*cfp;
    235 void		*auxp;
    236 {
    237 	static int	zs_matched = 0;
    238 
    239 	if(strcmp("zs", auxp) || zs_matched)
    240 		return(0);
    241 	zs_matched = 1;
    242 	return(1);
    243 }
    244 
    245 /*
    246  * Attach a found zs.
    247  */
    248 static void
    249 zsattach(parent, dev, aux)
    250 struct device	*parent;
    251 struct device	*dev;
    252 void		*aux;
    253 {
    254 	register struct zs_softc		*zi;
    255 	register struct zs_chanstate		*cs;
    256 	register volatile struct zsdevice	*addr;
    257 		 char				tmp;
    258 
    259 	addr      = (struct zsdevice *)AD_SCC;
    260 	zi        = (struct zs_softc *)dev;
    261 	zi->zi_zs = addr;
    262 	cs        = zi->zi_cs;
    263 
    264 	/*
    265 	 * Get the command register into a known state.
    266 	 */
    267 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    268 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    269 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    270 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    271 
    272 	/*
    273 	 * Do a hardware reset.
    274 	 */
    275 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    276 	delay(50000);	/*enough ? */
    277 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    278 
    279 	/*
    280 	 * Initialize both channels
    281 	 */
    282 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    283 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    284 
    285 	if(machineid & ATARI_TT) {
    286 		/*
    287 		 * ininitialise TT-MFP timer C: 307200Hz
    288 		 * timer C and D share one control register:
    289 		 *	bits 0-2 control timer D
    290 		 *	bits 4-6 control timer C
    291 		 */
    292 		int cr = MFP2->mf_tcdcr & 7;
    293 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    294 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    295 		cr |= T_Q004 << 4;		/* divisor 4     */
    296 		MFP2->mf_tcdcr = cr;		/* start timer C */
    297 		/*
    298 		 * enable scc related interrupts
    299 		 */
    300 		SCU->vme_mask |= SCU_SCC;
    301 
    302 		zs_frequencies = zs_freqs_tt;
    303 	} else if (machineid & ATARI_FALCON) {
    304 		zs_frequencies = zs_freqs_falcon;
    305 	} else if (machineid & ATARI_HADES) {
    306 		zs_frequencies = zs_freqs_hades;
    307 	} else {
    308 		zs_frequencies = zs_freqs_generic;
    309 	}
    310 
    311 	/* link into interrupt list with order (A,B) (B=A+1) */
    312 	cs[0].cs_next = &cs[1];
    313 	cs[1].cs_next = zslist;
    314 	zslist        = cs;
    315 
    316 	cs->cs_unit  = 0;
    317 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    318 	cs++;
    319 	cs->cs_unit  = 1;
    320 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    321 
    322 	printf(": serial2 on channel a and modem2 on channel b\n");
    323 }
    324 
    325 /*
    326  * Open a zs serial port.
    327  */
    328 int
    329 zsopen(dev, flags, mode, p)
    330 dev_t		dev;
    331 int		flags;
    332 int		mode;
    333 struct proc	*p;
    334 {
    335 	register struct tty		*tp;
    336 	register struct zs_chanstate	*cs;
    337 		 struct zs_softc	*zi;
    338 		 int			unit = ZS_UNIT(dev);
    339 		 int			zs = unit >> 1;
    340 		 int			error, s;
    341 
    342 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
    343 		return (ENXIO);
    344 	cs = &zi->zi_cs[unit & 1];
    345 
    346 	/*
    347 	 * When port A (ser02) is selected on the TT, make sure
    348 	 * the port is enabled.
    349 	 */
    350 	if((machineid & ATARI_TT) && !(unit & 1))
    351 		ym2149_ser2(1);
    352 
    353 	if (cs->cs_rbuf == NULL) {
    354 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
    355 								   M_WAITOK);
    356 	}
    357 
    358 	tp = cs->cs_ttyp;
    359 	if(tp == NULL) {
    360 		cs->cs_ttyp = tp = ttymalloc();
    361 		tty_attach(tp);
    362 		tp->t_dev   = dev;
    363 		tp->t_oproc = zsstart;
    364 		tp->t_param = zsparam;
    365 	}
    366 
    367 	if ((tp->t_state & TS_ISOPEN) &&
    368 	    (tp->t_state & TS_XCLUDE) &&
    369 	    p->p_ucred->cr_uid != 0)
    370 		return (EBUSY);
    371 
    372 	s  = spltty();
    373 
    374 	/*
    375 	 * Do the following iff this is a first open.
    376 	 */
    377 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    378 		if(tp->t_ispeed == 0) {
    379 			tp->t_iflag = TTYDEF_IFLAG;
    380 			tp->t_oflag = TTYDEF_OFLAG;
    381 			tp->t_cflag = TTYDEF_CFLAG;
    382 			tp->t_lflag = TTYDEF_LFLAG;
    383 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    384 		}
    385 		ttychars(tp);
    386 		ttsetwater(tp);
    387 
    388 		(void)zsparam(tp, &tp->t_termios);
    389 
    390 		/*
    391 		 * Turn on DTR.  We must always do this, even if carrier is not
    392 		 * present, because otherwise we'd have to use TIOCSDTR
    393 		 * immediately after setting CLOCAL, which applications do not
    394 		 * expect.  We always assert DTR while the device is open
    395 		 * unless explicitly requested to deassert it.
    396 		 */
    397 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    398 		/* May never get a status intr. if DCD already on. -gwr */
    399 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
    400 			tp->t_state |= TS_CARR_ON;
    401 		if(cs->cs_softcar)
    402 			tp->t_state |= TS_CARR_ON;
    403 	}
    404 
    405 	splx(s);
    406 
    407 	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
    408 	if (error)
    409 		goto bad;
    410 
    411 	error = tp->t_linesw->l_open(dev, tp);
    412 	if(error)
    413 		goto bad;
    414 	return (0);
    415 
    416 bad:
    417 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    418 		/*
    419 		 * We failed to open the device, and nobody else had it opened.
    420 		 * Clean up the state as appropriate.
    421 		 */
    422 		zs_shutdown(cs);
    423 	}
    424 	return(error);
    425 }
    426 
    427 /*
    428  * Close a zs serial port.
    429  */
    430 int
    431 zsclose(dev, flags, mode, p)
    432 dev_t		dev;
    433 int		flags;
    434 int		mode;
    435 struct proc	*p;
    436 {
    437 	register struct zs_chanstate	*cs;
    438 	register struct tty		*tp;
    439 		 struct zs_softc	*zi;
    440 		 int			unit = ZS_UNIT(dev);
    441 
    442 	zi = zs_cd.cd_devs[unit >> 1];
    443 	cs = &zi->zi_cs[unit & 1];
    444 	tp = cs->cs_ttyp;
    445 
    446 	tp->t_linesw->l_close(tp, flags);
    447 	ttyclose(tp);
    448 
    449 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    450 		/*
    451 		 * Although we got a last close, the device may still be in
    452 		 * use; e.g. if this was the dialout node, and there are still
    453 		 * processes waiting for carrier on the non-dialout node.
    454 		 */
    455 		zs_shutdown(cs);
    456 	}
    457 	return (0);
    458 }
    459 
    460 /*
    461  * Read/write zs serial port.
    462  */
    463 int
    464 zsread(dev, uio, flags)
    465 dev_t		dev;
    466 struct uio	*uio;
    467 int		flags;
    468 {
    469 	register struct zs_chanstate	*cs;
    470 	register struct zs_softc	*zi;
    471 	register struct tty		*tp;
    472 		 int			unit;
    473 
    474 	unit = ZS_UNIT(dev);
    475 	zi   = zs_cd.cd_devs[unit >> 1];
    476 	cs   = &zi->zi_cs[unit & 1];
    477 	tp   = cs->cs_ttyp;
    478 
    479 	return(tp->t_linesw->l_read(tp, uio, flags));
    480 }
    481 
    482 int
    483 zswrite(dev, uio, flags)
    484 dev_t		dev;
    485 struct uio	*uio;
    486 int		flags;
    487 {
    488 	register struct zs_chanstate	*cs;
    489 	register struct zs_softc	*zi;
    490 	register struct tty		*tp;
    491 		 int			unit;
    492 
    493 	unit = ZS_UNIT(dev);
    494 	zi   = zs_cd.cd_devs[unit >> 1];
    495 	cs   = &zi->zi_cs[unit & 1];
    496 	tp   = cs->cs_ttyp;
    497 
    498 	return(tp->t_linesw->l_write(tp, uio, flags));
    499 }
    500 
    501 struct tty *
    502 zstty(dev)
    503 dev_t	dev;
    504 {
    505 	register struct zs_chanstate	*cs;
    506 	register struct zs_softc	*zi;
    507 		 int			unit;
    508 
    509 	unit = ZS_UNIT(dev);
    510 	zi   = zs_cd.cd_devs[unit >> 1];
    511 	cs   = &zi->zi_cs[unit & 1];
    512 	return(cs->cs_ttyp);
    513 }
    514 
    515 /*
    516  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    517  * channels are kept in (A,B) pairs.
    518  *
    519  * Do just a little, then get out; set a software interrupt if more
    520  * work is needed.
    521  *
    522  * We deliberately ignore the vectoring Zilog gives us, and match up
    523  * only the number of `reset interrupt under service' operations, not
    524  * the order.
    525  */
    526 
    527 int
    528 zshard(sr)
    529 long sr;
    530 {
    531 	register struct zs_chanstate	*a;
    532 #define	b (a + 1)
    533 	register volatile struct zschan *zc;
    534 	register int			rr3, intflags = 0, v, i;
    535 
    536 	do {
    537 	    intflags &= ~4;
    538 	    for(a = zslist; a != NULL; a = b->cs_next) {
    539 		rr3 = ZS_READ(a->cs_zc, 3);
    540 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    541 			intflags |= 4|2;
    542 			zc = a->cs_zc;
    543 			i  = a->cs_rbput;
    544 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    545 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    546 				intflags |= 1;
    547 			}
    548 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    549 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    550 				intflags |= 1;
    551 			}
    552 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    553 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    554 				intflags |= 1;
    555 			}
    556 			a->cs_rbput = i;
    557 		}
    558 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    559 			intflags |= 4|2;
    560 			zc = b->cs_zc;
    561 			i  = b->cs_rbput;
    562 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    563 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    564 				intflags |= 1;
    565 			}
    566 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    567 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    568 				intflags |= 1;
    569 			}
    570 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    571 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    572 				intflags |= 1;
    573 			}
    574 			b->cs_rbput = i;
    575 		}
    576 	    }
    577 	} while(intflags & 4);
    578 #undef b
    579 
    580 	if(intflags & 1) {
    581 		if(BASEPRI(sr)) {
    582 			spl1();
    583 			zsshortcuts++;
    584 			return(zssoft(sr));
    585 		}
    586 		else if(!cb_scheduled) {
    587 			cb_scheduled++;
    588 			add_sicallback((si_farg)zssoft, 0, 0);
    589 		}
    590 	}
    591 	return(intflags & 2);
    592 }
    593 
    594 static int
    595 zsrint(cs, zc)
    596 register struct zs_chanstate	*cs;
    597 register volatile struct zschan	*zc;
    598 {
    599 	register int c;
    600 
    601 	/*
    602 	 * First read the status, because read of the received char
    603 	 * destroy the status of this char.
    604 	 */
    605 	c = ZS_READ(zc, 1);
    606 	c |= (zc->zc_data << 8);
    607 
    608 	/* clear receive error & interrupt condition */
    609 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    610 	zc->zc_csr = ZSWR0_CLR_INTR;
    611 
    612 	return(ZRING_MAKE(ZRING_RINT, c));
    613 }
    614 
    615 static int
    616 zsxint(cs, zc)
    617 register struct zs_chanstate	*cs;
    618 register volatile struct zschan	*zc;
    619 {
    620 	register int i = cs->cs_tbc;
    621 
    622 	if(i == 0) {
    623 		zc->zc_csr = ZSWR0_RESET_TXINT;
    624 		zc->zc_csr = ZSWR0_CLR_INTR;
    625 		return(ZRING_MAKE(ZRING_XINT, 0));
    626 	}
    627 	cs->cs_tbc = i - 1;
    628 	zc->zc_data = *cs->cs_tba++;
    629 	zc->zc_csr = ZSWR0_CLR_INTR;
    630 	return (0);
    631 }
    632 
    633 static int
    634 zssint(cs, zc)
    635 register struct zs_chanstate	*cs;
    636 register volatile struct zschan	*zc;
    637 {
    638 	register int rr0;
    639 
    640 	rr0 = zc->zc_csr;
    641 	zc->zc_csr = ZSWR0_RESET_STATUS;
    642 	zc->zc_csr = ZSWR0_CLR_INTR;
    643 	/*
    644 	 * The chip's hardware flow control is, as noted in zsreg.h,
    645 	 * busted---if the DCD line goes low the chip shuts off the
    646 	 * receiver (!).  If we want hardware CTS flow control but do
    647 	 * not have it, and carrier is now on, turn HFC on; if we have
    648 	 * HFC now but carrier has gone low, turn it off.
    649 	 */
    650 	if(rr0 & ZSRR0_DCD) {
    651 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    652 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    653 			cs->cs_creg[3] |= ZSWR3_HFC;
    654 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    655 		}
    656 	}
    657 	else {
    658 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    659 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    660 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    661 		}
    662 	}
    663 	return(ZRING_MAKE(ZRING_SINT, rr0));
    664 }
    665 
    666 /*
    667  * Print out a ring or fifo overrun error message.
    668  */
    669 static void
    670 zsoverrun(unit, ptime, what)
    671 int	unit;
    672 long	*ptime;
    673 char	*what;
    674 {
    675 
    676 	if(*ptime != time.tv_sec) {
    677 		*ptime = time.tv_sec;
    678 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    679 		    (unit & 1) + 'a', what);
    680 	}
    681 }
    682 
    683 /*
    684  * ZS software interrupt.  Scan all channels for deferred interrupts.
    685  */
    686 int
    687 zssoft(sr)
    688 long sr;
    689 {
    690     register struct zs_chanstate	*cs;
    691     register volatile struct zschan	*zc;
    692     register struct linesw		*line;
    693     register struct tty			*tp;
    694     register int			get, n, c, cc, unit, s;
    695  	     int			retval = 0;
    696 
    697     cb_scheduled = 0;
    698     s = spltty();
    699     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    700 	get = cs->cs_rbget;
    701 again:
    702 	n = cs->cs_rbput;	/* atomic			*/
    703 	if(get == n)		/* nothing more on this line	*/
    704 		continue;
    705 	retval = 1;
    706 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    707 	zc     = cs->cs_zc;
    708 	tp     = cs->cs_ttyp;
    709 	line   = tp->t_linesw;
    710 	/*
    711 	 * Compute the number of interrupts in the receive ring.
    712 	 * If the count is overlarge, we lost some events, and
    713 	 * must advance to the first valid one.  It may get
    714 	 * overwritten if more data are arriving, but this is
    715 	 * too expensive to check and gains nothing (we already
    716 	 * lost out; all we can do at this point is trade one
    717 	 * kind of loss for another).
    718 	 */
    719 	n -= get;
    720 	if(n > ZLRB_RING_SIZE) {
    721 		zsoverrun(unit, &cs->cs_rotime, "ring");
    722 		get += n - ZLRB_RING_SIZE;
    723 		n    = ZLRB_RING_SIZE;
    724 	}
    725 	while(--n >= 0) {
    726 		/* race to keep ahead of incoming interrupts */
    727 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    728 		switch (ZRING_TYPE(c)) {
    729 
    730 		case ZRING_RINT:
    731 			c = ZRING_VALUE(c);
    732 			if(c & ZSRR1_DO)
    733 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    734 			cc = c >> 8;
    735 			if(c & ZSRR1_FE)
    736 				cc |= TTY_FE;
    737 			if(c & ZSRR1_PE)
    738 				cc |= TTY_PE;
    739 			line->l_rint(cc, tp);
    740 			break;
    741 
    742 		case ZRING_XINT:
    743 			/*
    744 			 * Transmit done: change registers and resume,
    745 			 * or clear BUSY.
    746 			 */
    747 			if(cs->cs_heldchange) {
    748 				int sps;
    749 
    750 				sps = splzs();
    751 				c = zc->zc_csr;
    752 				if((c & ZSRR0_DCD) == 0)
    753 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    754 				bcopy((caddr_t)cs->cs_preg,
    755 				    (caddr_t)cs->cs_creg, 16);
    756 				zs_loadchannelregs(zc, cs->cs_creg);
    757 				splx(sps);
    758 				cs->cs_heldchange = 0;
    759 				if(cs->cs_heldtbc
    760 					&& (tp->t_state & TS_TTSTOP) == 0) {
    761 					cs->cs_tbc = cs->cs_heldtbc - 1;
    762 					zc->zc_data = *cs->cs_tba++;
    763 					goto again;
    764 				}
    765 			}
    766 			tp->t_state &= ~TS_BUSY;
    767 			if(tp->t_state & TS_FLUSH)
    768 				tp->t_state &= ~TS_FLUSH;
    769 			else ndflush(&tp->t_outq,cs->cs_tba
    770 						- (caddr_t)tp->t_outq.c_cf);
    771 			line->l_start(tp);
    772 			break;
    773 
    774 		case ZRING_SINT:
    775 			/*
    776 			 * Status line change.  HFC bit is run in
    777 			 * hardware interrupt, to avoid locking
    778 			 * at splzs here.
    779 			 */
    780 			c = ZRING_VALUE(c);
    781 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    782 				cc = (c & ZSRR0_DCD) != 0;
    783 				if(line->l_modem(tp, cc) == 0)
    784 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    785 							cc ? DMBIS : DMBIC);
    786 			}
    787 			cs->cs_rr0 = c;
    788 			break;
    789 
    790 		default:
    791 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    792 			    unit >> 1, (unit & 1) + 'a', c);
    793 			break;
    794 		}
    795 	}
    796 	cs->cs_rbget = get;
    797 	goto again;
    798     }
    799     splx(s);
    800     return (retval);
    801 }
    802 
    803 int
    804 zsioctl(dev, cmd, data, flag, p)
    805 dev_t		dev;
    806 u_long		cmd;
    807 caddr_t		data;
    808 int		flag;
    809 struct proc	*p;
    810 {
    811 		 int			unit = ZS_UNIT(dev);
    812 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    813 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    814 	register int			error, s;
    815 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    816 
    817 	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
    818 	if(error >= 0)
    819 		return(error);
    820 	error = ttioctl(tp, cmd, data, flag, p);
    821 	if(error >= 0)
    822 		return (error);
    823 
    824 	switch (cmd) {
    825 	case TIOCSBRK:
    826 		s = splzs();
    827 		cs->cs_preg[5] |= ZSWR5_BREAK;
    828 		cs->cs_creg[5] |= ZSWR5_BREAK;
    829 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    830 		splx(s);
    831 		break;
    832 	case TIOCCBRK:
    833 		s = splzs();
    834 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    835 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    836 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    837 		splx(s);
    838 		break;
    839 	case TIOCGFLAGS: {
    840 		int bits = 0;
    841 
    842 		if(cs->cs_softcar)
    843 			bits |= TIOCFLAG_SOFTCAR;
    844 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    845 			bits |= TIOCFLAG_CLOCAL;
    846 		if(cs->cs_creg[3] & ZSWR3_HFC)
    847 			bits |= TIOCFLAG_CRTSCTS;
    848 		*(int *)data = bits;
    849 		break;
    850 	}
    851 	case TIOCSFLAGS: {
    852 		int userbits = 0;
    853 
    854 		error = suser(p->p_ucred, &p->p_acflag);
    855 		if(error != 0)
    856 			return (EPERM);
    857 
    858 		userbits = *(int *)data;
    859 
    860 		/*
    861 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    862 		 # defaulting to software flow control.
    863 		 */
    864 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    865 			return(EINVAL);
    866 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    867 			return(ENODEV);
    868 
    869 		s = splzs();
    870 		if((userbits & TIOCFLAG_SOFTCAR)) {
    871 			cs->cs_softcar = 1;	/* turn on softcar */
    872 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    873 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    874 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    875 		}
    876 		else if(userbits & TIOCFLAG_CLOCAL) {
    877 			cs->cs_softcar = 0; 	/* turn off softcar */
    878 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    879 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    880 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    881 			tp->t_termios.c_cflag |= CLOCAL;
    882 		}
    883 		if(userbits & TIOCFLAG_CRTSCTS) {
    884 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    885 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    886 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    887 			cs->cs_preg[3] |= ZSWR3_HFC;
    888 			cs->cs_creg[3] |= ZSWR3_HFC;
    889 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    890 			tp->t_termios.c_cflag |= CRTSCTS;
    891 		}
    892 		else {
    893 			/* no mdmbuf, so we must want software flow control */
    894 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    895 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    896 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    897 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    898 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    899 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    900 			tp->t_termios.c_cflag &= ~CRTSCTS;
    901 		}
    902 		splx(s);
    903 		break;
    904 	}
    905 	case TIOCSDTR:
    906 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    907 		break;
    908 	case TIOCCDTR:
    909 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    910 		break;
    911 	case TIOCMGET:
    912 		zs_modem(cs, 0, DMGET);
    913 		break;
    914 	case TIOCMSET:
    915 	case TIOCMBIS:
    916 	case TIOCMBIC:
    917 	default:
    918 		return (ENOTTY);
    919 	}
    920 	return (0);
    921 }
    922 
    923 /*
    924  * Start or restart transmission.
    925  */
    926 static void
    927 zsstart(tp)
    928 register struct tty *tp;
    929 {
    930 	register struct zs_chanstate	*cs;
    931 	register int			s, nch;
    932 		 int			unit = ZS_UNIT(tp->t_dev);
    933 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    934 
    935 	cs = &zi->zi_cs[unit & 1];
    936 	s  = spltty();
    937 
    938 	/*
    939 	 * If currently active or delaying, no need to do anything.
    940 	 */
    941 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    942 		goto out;
    943 
    944 	/*
    945 	 * If there are sleepers, and output has drained below low
    946 	 * water mark, awaken.
    947 	 */
    948 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    949 		if(tp->t_state & TS_ASLEEP) {
    950 			tp->t_state &= ~TS_ASLEEP;
    951 			wakeup((caddr_t)&tp->t_outq);
    952 		}
    953 		selwakeup(&tp->t_wsel);
    954 	}
    955 
    956 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    957 	if(nch) {
    958 		register char *p = tp->t_outq.c_cf;
    959 
    960 		/* mark busy, enable tx done interrupts, & send first byte */
    961 		tp->t_state |= TS_BUSY;
    962 		(void) splzs();
    963 		cs->cs_preg[1] |= ZSWR1_TIE;
    964 		cs->cs_creg[1] |= ZSWR1_TIE;
    965 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    966 		cs->cs_zc->zc_data = *p;
    967 		cs->cs_tba = p + 1;
    968 		cs->cs_tbc = nch - 1;
    969 	} else {
    970 		/*
    971 		 * Nothing to send, turn off transmit done interrupts.
    972 		 * This is useful if something is doing polled output.
    973 		 */
    974 		(void) splzs();
    975 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    976 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    977 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    978 	}
    979 out:
    980 	splx(s);
    981 }
    982 
    983 /*
    984  * Stop output, e.g., for ^S or output flush.
    985  */
    986 void
    987 zsstop(tp, flag)
    988 register struct tty	*tp;
    989 	 int		flag;
    990 {
    991 	register struct zs_chanstate	*cs;
    992 	register int			s, unit = ZS_UNIT(tp->t_dev);
    993 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    994 
    995 	cs = &zi->zi_cs[unit & 1];
    996 	s  = splzs();
    997 	if(tp->t_state & TS_BUSY) {
    998 		/*
    999 		 * Device is transmitting; must stop it.
   1000 		 */
   1001 		cs->cs_tbc = 0;
   1002 		if ((tp->t_state & TS_TTSTOP) == 0)
   1003 			tp->t_state |= TS_FLUSH;
   1004 	}
   1005 	splx(s);
   1006 }
   1007 
   1008 static void
   1009 zs_shutdown(cs)
   1010 	struct zs_chanstate	*cs;
   1011 {
   1012 	struct tty	*tp = cs->cs_ttyp;
   1013 	int		s;
   1014 
   1015 	s = splzs();
   1016 
   1017 	/*
   1018 	 * Hang up if necessary.  Wait a bit, so the other side has time to
   1019 	 * notice even if we immediately open the port again.
   1020 	 */
   1021 	if(tp->t_cflag & HUPCL) {
   1022 		zs_modem(cs, 0, DMSET);
   1023 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
   1024 	}
   1025 
   1026 	/* Clear any break condition set with TIOCSBRK. */
   1027 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
   1028 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
   1029 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
   1030 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1031 	}
   1032 
   1033 	/*
   1034 	 * Drop all lines and cancel interrupts
   1035 	 */
   1036 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
   1037 	splx(s);
   1038 }
   1039 
   1040 /*
   1041  * Set ZS tty parameters from termios.
   1042  *
   1043  * This routine makes use of the fact that only registers
   1044  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
   1045  */
   1046 static int
   1047 zsparam(tp, t)
   1048 register struct tty	*tp;
   1049 register struct termios	*t;
   1050 {
   1051 		 int			unit = ZS_UNIT(tp->t_dev);
   1052 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
   1053 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
   1054 		 int			cdiv, clkm, brgm, tcon;
   1055 	register int			tmp, tmp5, cflag, s;
   1056 
   1057 	tmp  = t->c_ospeed;
   1058 	tmp5 = t->c_ispeed;
   1059 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
   1060 		return(EINVAL);
   1061 	if(tmp == 0) {
   1062 		/* stty 0 => drop DTR and RTS */
   1063 		zs_modem(cs, 0, DMSET);
   1064 		return(0);
   1065 	}
   1066 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
   1067 	if (tmp < 0)
   1068 		return(EINVAL);
   1069 	tp->t_ispeed = tp->t_ospeed = tmp;
   1070 
   1071 	cflag = tp->t_cflag = t->c_cflag;
   1072 	if (cflag & CSTOPB)
   1073 		cdiv |= ZSWR4_TWOSB;
   1074 	else
   1075 		cdiv |= ZSWR4_ONESB;
   1076 	if (!(cflag & PARODD))
   1077 		cdiv |= ZSWR4_EVENP;
   1078 	if (cflag & PARENB)
   1079 		cdiv |= ZSWR4_PARENB;
   1080 
   1081 	switch(cflag & CSIZE) {
   1082 	case CS5:
   1083 		tmp  = ZSWR3_RX_5;
   1084 		tmp5 = ZSWR5_TX_5;
   1085 		break;
   1086 	case CS6:
   1087 		tmp  = ZSWR3_RX_6;
   1088 		tmp5 = ZSWR5_TX_6;
   1089 		break;
   1090 	case CS7:
   1091 		tmp  = ZSWR3_RX_7;
   1092 		tmp5 = ZSWR5_TX_7;
   1093 		break;
   1094 	case CS8:
   1095 	default:
   1096 		tmp  = ZSWR3_RX_8;
   1097 		tmp5 = ZSWR5_TX_8;
   1098 		break;
   1099 	}
   1100 	tmp  |= ZSWR3_RX_ENABLE;
   1101 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1102 
   1103 	/*
   1104 	 * Block interrupts so that state will not
   1105 	 * be altered until we are done setting it up.
   1106 	 */
   1107 	s = splzs();
   1108 	cs->cs_preg[4]  = cdiv;
   1109 	cs->cs_preg[11] = clkm;
   1110 	cs->cs_preg[12] = tcon;
   1111 	cs->cs_preg[13] = tcon >> 8;
   1112 	cs->cs_preg[14] = brgm;
   1113 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1114 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1115 	cs->cs_preg[10] = ZSWR10_NRZ;
   1116 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1117 
   1118 	/*
   1119 	 * Output hardware flow control on the chip is horrendous: if
   1120 	 * carrier detect drops, the receiver is disabled.  Hence we
   1121 	 * can only do this when the carrier is on.
   1122 	 */
   1123 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1124 		tmp |= ZSWR3_HFC;
   1125 	cs->cs_preg[3] = tmp;
   1126 	cs->cs_preg[5] = tmp5;
   1127 
   1128 	/*
   1129 	 * If nothing is being transmitted, set up new current values,
   1130 	 * else mark them as pending.
   1131 	 */
   1132 	if(cs->cs_heldchange == 0) {
   1133 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1134 			cs->cs_heldtbc = cs->cs_tbc;
   1135 			cs->cs_tbc = 0;
   1136 			cs->cs_heldchange = 1;
   1137 		} else {
   1138 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1139 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1140 		}
   1141 	}
   1142 	splx(s);
   1143 	return (0);
   1144 }
   1145 
   1146 /*
   1147  * search for the best matching baudrate
   1148  */
   1149 static int
   1150 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1151 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1152 {
   1153 	int	bestdiff, bestbps, source;
   1154 
   1155 	bestdiff = bestbps = 0;
   1156 	unit = (unit & 1) << 2;
   1157 	for (source = 0; source < 4; ++source) {
   1158 		long	freq = zs_frequencies[unit + source];
   1159 		int	diff, bps, div, clkm, brgm, tcon;
   1160 
   1161 		bps = div = clkm = brgm = tcon = 0;
   1162 		switch (source) {
   1163 			case 0:	/* BRgen, PCLK */
   1164 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1165 				break;
   1166 			case 1:	/* BRgen, RTxC */
   1167 				brgm = ZSWR14_BAUD_ENA;
   1168 				break;
   1169 			case 2: /* RTxC */
   1170 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1171 				break;
   1172 			case 3: /* TRxC */
   1173 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1174 				break;
   1175 		}
   1176 		switch (source) {
   1177 			case 0:
   1178 			case 1:
   1179 				div  = ZSWR4_CLK_X16;
   1180 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1181 				tcon = BPS_TO_TCONST(freq, wanted);
   1182 				if (tcon < 0)
   1183 					tcon = 0;
   1184 				bps  = TCONST_TO_BPS(freq, tcon);
   1185 				break;
   1186 			case 2:
   1187 			case 3:
   1188 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1189 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1190 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1191 
   1192 				if (d1 < d2 && d1 < d3) {
   1193 					div = ZSWR4_CLK_X16;
   1194 					bps = b1;
   1195 				} else if (d2 < d3 && d2 < d1) {
   1196 					div = ZSWR4_CLK_X32;
   1197 					bps = b2;
   1198 				} else {
   1199 					div = ZSWR4_CLK_X64;
   1200 					bps = b3;
   1201 				}
   1202 				brgm = tcon = 0;
   1203 				break;
   1204 			}
   1205 		}
   1206 		diff = abs(bps - wanted);
   1207 		if (!source || diff < bestdiff) {
   1208 			*divisor   = div;
   1209 			*clockmode = clkm;
   1210 			*brgenmode = brgm;
   1211 			*timeconst = tcon;
   1212 			bestbps    = bps;
   1213 			bestdiff   = diff;
   1214 			if (diff == 0)
   1215 				break;
   1216 		}
   1217 	}
   1218 	/* Allow deviations upto 5% */
   1219 	if (20 * bestdiff > wanted)
   1220 		return -1;
   1221 	return bestbps;
   1222 }
   1223 
   1224 /*
   1225  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1226  * in transmission, the change is deferred.
   1227  */
   1228 static int
   1229 zs_modem(cs, bits, how)
   1230 struct zs_chanstate	*cs;
   1231 int			bits, how;
   1232 {
   1233 	int s, mbits;
   1234 
   1235 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1236 
   1237 	s = splzs();
   1238 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1239 
   1240 	switch(how) {
   1241 		case DMSET:
   1242 				mbits  = bits;
   1243 				break;
   1244 		case DMBIS:
   1245 				mbits |= bits;
   1246 				break;
   1247 		case DMBIC:
   1248 				mbits &= ~bits;
   1249 				break;
   1250 		case DMGET:
   1251 				splx(s);
   1252 				return(mbits);
   1253 	}
   1254 
   1255 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1256 	if(cs->cs_heldchange == 0) {
   1257 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1258 			cs->cs_heldtbc = cs->cs_tbc;
   1259 			cs->cs_tbc = 0;
   1260 			cs->cs_heldchange = 1;
   1261 		}
   1262 		else {
   1263 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1264 		}
   1265 	}
   1266 	splx(s);
   1267 	return(0);
   1268 }
   1269 
   1270 /*
   1271  * Write the given register set to the given zs channel in the proper order.
   1272  * The channel must not be transmitting at the time.  The receiver will
   1273  * be disabled for the time it takes to write all the registers.
   1274  */
   1275 static void
   1276 zs_loadchannelregs(zc, reg)
   1277 volatile struct zschan	*zc;
   1278 u_char			*reg;
   1279 {
   1280 	int i;
   1281 
   1282 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1283 	i = zc->zc_data;		/* drain fifo */
   1284 	i = zc->zc_data;
   1285 	i = zc->zc_data;
   1286 	ZS_WRITE(zc,  4, reg[4]);
   1287 	ZS_WRITE(zc, 10, reg[10]);
   1288 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1289 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1290 	ZS_WRITE(zc,  1, reg[1]);
   1291 	ZS_WRITE(zc,  9, reg[9]);
   1292 	ZS_WRITE(zc, 11, reg[11]);
   1293 	ZS_WRITE(zc, 12, reg[12]);
   1294 	ZS_WRITE(zc, 13, reg[13]);
   1295 	ZS_WRITE(zc, 14, reg[14]);
   1296 	ZS_WRITE(zc, 15, reg[15]);
   1297 	ZS_WRITE(zc,  3, reg[3]);
   1298 	ZS_WRITE(zc,  5, reg[5]);
   1299 }
   1300 #endif /* NZS > 1 */
   1301