zs.c revision 1.34.2.1 1 /* $NetBSD: zs.c,v 1.34.2.1 2002/06/23 17:35:16 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81
82 #if NZS > 0
83
84 #define PCLK (8053976) /* PCLK pin input clock rate */
85 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
86
87 #define splzs spl5
88
89 /*
90 * Software state per found chip.
91 */
92 struct zs_softc {
93 struct device zi_dev; /* base device */
94 volatile struct zsdevice *zi_zs; /* chip registers */
95 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
96 };
97
98 static u_char cb_scheduled = 0; /* Already asked for callback? */
99 /*
100 * Define the registers for a closed port
101 */
102 static u_char zs_init_regs[16] = {
103 /* 0 */ 0,
104 /* 1 */ 0,
105 /* 2 */ 0x60,
106 /* 3 */ 0,
107 /* 4 */ 0,
108 /* 5 */ 0,
109 /* 6 */ 0,
110 /* 7 */ 0,
111 /* 8 */ 0,
112 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */ ZSWR10_NRZ,
114 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */ 0,
116 /* 13 */ 0,
117 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */ 0
119 };
120
121 /*
122 * Define the machine dependant clock frequencies
123 * If BRgen feeds sender/receiver we always use a
124 * divisor 16, therefor the division by 16 can as
125 * well be done here.
126 */
127 static u_long zs_freqs_tt[] = {
128 /*
129 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 * which is set to 307.2KHz during initialisation
131 * and never changed afterwards.
132 */
133 PCLK/16, /* BRgen, PCLK, divisor 16 */
134 229500, /* BRgen, RTxCA, divisor 16 */
135 3672000, /* RTxCA, from PCLK4 */
136 0, /* TRxCA, external */
137
138 PCLK/16, /* BRgen, PCLK, divisor 16 */
139 19200, /* BRgen, RTxCB, divisor 16 */
140 307200, /* RTxCB, from TT-MFP TCO */
141 2457600 /* TRxCB, from BCLK */
142 };
143
144 static u_long zs_freqs_falcon[] = {
145 /*
146 * Atari Falcon, XXX no specs available, this might be wrong
147 */
148 PCLK/16, /* BRgen, PCLK, divisor 16 */
149 229500, /* BRgen, RTxCA, divisor 16 */
150 3672000, /* RTxCA, ??? */
151 0, /* TRxCA, external */
152
153 PCLK/16, /* BRgen, PCLK, divisor 16 */
154 229500, /* BRgen, RTxCB, divisor 16 */
155 3672000, /* RTxCB, ??? */
156 2457600 /* TRxCB, ??? */
157 };
158
159 static u_long zs_freqs_hades[] = {
160 /*
161 * XXX: Channel-A unchecked!!!!!
162 */
163 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
164 229500, /* BRgen, RTxCA, divisor 16 */
165 3672000, /* RTxCA, from PCLK4 */
166 0, /* TRxCA, external */
167
168 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
169 235550, /* BRgen, RTxCB, divisor 16 */
170 3768800, /* RTxCB, 3.7688MHz */
171 3768800 /* TRxCB, 3.7688MHz */
172 };
173
174 static u_long zs_freqs_generic[] = {
175 /*
176 * other machines, assume only PCLK is available
177 */
178 PCLK/16, /* BRgen, PCLK, divisor 16 */
179 0, /* BRgen, RTxCA, divisor 16 */
180 0, /* RTxCA, unknown */
181 0, /* TRxCA, unknown */
182
183 PCLK/16, /* BRgen, PCLK, divisor 16 */
184 0, /* BRgen, RTxCB, divisor 16 */
185 0, /* RTxCB, unknown */
186 0 /* TRxCB, unknown */
187 };
188 static u_long *zs_frequencies;
189
190 /* Definition of the driver for autoconfig. */
191 static int zsmatch __P((struct device *, struct cfdata *, void *));
192 static void zsattach __P((struct device *, struct device *, void *));
193
194 struct cfattach zs_ca = {
195 sizeof(struct zs_softc), zsmatch, zsattach
196 };
197
198 extern struct cfdriver zs_cd;
199
200 /* {b,c}devsw[] function prototypes */
201 dev_type_open(zsopen);
202 dev_type_close(zsclose);
203 dev_type_read(zsread);
204 dev_type_write(zswrite);
205 dev_type_poll(zspoll);
206 dev_type_ioctl(zsioctl);
207 dev_type_tty(zstty);
208
209 /* Interrupt handlers. */
210 int zshard __P((long));
211 static int zssoft __P((long));
212 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
213 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
214 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
215
216 static struct zs_chanstate *zslist;
217
218 /* Routines called from other code. */
219 static void zsstart __P((struct tty *));
220 void zsstop __P((struct tty *, int));
221
222 /* Routines purely local to this driver. */
223 static void zsoverrun __P((int, long *, char *));
224 static int zsparam __P((struct tty *, struct termios *));
225 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
226 static int zs_modem __P((struct zs_chanstate *, int, int));
227 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
228 static void zs_shutdown __P((struct zs_chanstate *));
229
230 static int zsshortcuts; /* number of "shortcut" software interrupts */
231
232 static int
233 zsmatch(pdp, cfp, auxp)
234 struct device *pdp;
235 struct cfdata *cfp;
236 void *auxp;
237 {
238 static int zs_matched = 0;
239
240 if(strcmp("zs", auxp) || zs_matched)
241 return(0);
242 zs_matched = 1;
243 return(1);
244 }
245
246 /*
247 * Attach a found zs.
248 */
249 static void
250 zsattach(parent, dev, aux)
251 struct device *parent;
252 struct device *dev;
253 void *aux;
254 {
255 register struct zs_softc *zi;
256 register struct zs_chanstate *cs;
257 register volatile struct zsdevice *addr;
258 char tmp;
259
260 addr = (struct zsdevice *)AD_SCC;
261 zi = (struct zs_softc *)dev;
262 zi->zi_zs = addr;
263 cs = zi->zi_cs;
264
265 /*
266 * Get the command register into a known state.
267 */
268 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
269 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
270 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
271 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
272
273 /*
274 * Do a hardware reset.
275 */
276 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
277 delay(50000); /*enough ? */
278 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
279
280 /*
281 * Initialize both channels
282 */
283 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
284 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
285
286 if(machineid & ATARI_TT) {
287 /*
288 * ininitialise TT-MFP timer C: 307200Hz
289 * timer C and D share one control register:
290 * bits 0-2 control timer D
291 * bits 4-6 control timer C
292 */
293 int cr = MFP2->mf_tcdcr & 7;
294 MFP2->mf_tcdcr = cr; /* stop timer C */
295 MFP2->mf_tcdr = 1; /* counter 1 */
296 cr |= T_Q004 << 4; /* divisor 4 */
297 MFP2->mf_tcdcr = cr; /* start timer C */
298 /*
299 * enable scc related interrupts
300 */
301 SCU->vme_mask |= SCU_SCC;
302
303 zs_frequencies = zs_freqs_tt;
304 } else if (machineid & ATARI_FALCON) {
305 zs_frequencies = zs_freqs_falcon;
306 } else if (machineid & ATARI_HADES) {
307 zs_frequencies = zs_freqs_hades;
308 } else {
309 zs_frequencies = zs_freqs_generic;
310 }
311
312 /* link into interrupt list with order (A,B) (B=A+1) */
313 cs[0].cs_next = &cs[1];
314 cs[1].cs_next = zslist;
315 zslist = cs;
316
317 cs->cs_unit = 0;
318 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
319 cs++;
320 cs->cs_unit = 1;
321 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
322
323 printf(": serial2 on channel a and modem2 on channel b\n");
324 }
325
326 /*
327 * Open a zs serial port.
328 */
329 int
330 zsopen(dev, flags, mode, p)
331 dev_t dev;
332 int flags;
333 int mode;
334 struct proc *p;
335 {
336 register struct tty *tp;
337 register struct zs_chanstate *cs;
338 struct zs_softc *zi;
339 int unit = ZS_UNIT(dev);
340 int zs = unit >> 1;
341 int error, s;
342
343 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
344 return (ENXIO);
345 cs = &zi->zi_cs[unit & 1];
346
347 /*
348 * When port A (ser02) is selected on the TT, make sure
349 * the port is enabled.
350 */
351 if((machineid & ATARI_TT) && !(unit & 1))
352 ym2149_ser2(1);
353
354 if (cs->cs_rbuf == NULL) {
355 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
356 M_WAITOK);
357 }
358
359 tp = cs->cs_ttyp;
360 if(tp == NULL) {
361 cs->cs_ttyp = tp = ttymalloc();
362 tty_attach(tp);
363 tp->t_dev = dev;
364 tp->t_oproc = zsstart;
365 tp->t_param = zsparam;
366 }
367
368 if ((tp->t_state & TS_ISOPEN) &&
369 (tp->t_state & TS_XCLUDE) &&
370 p->p_ucred->cr_uid != 0)
371 return (EBUSY);
372
373 s = spltty();
374
375 /*
376 * Do the following iff this is a first open.
377 */
378 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
379 if(tp->t_ispeed == 0) {
380 tp->t_iflag = TTYDEF_IFLAG;
381 tp->t_oflag = TTYDEF_OFLAG;
382 tp->t_cflag = TTYDEF_CFLAG;
383 tp->t_lflag = TTYDEF_LFLAG;
384 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
385 }
386 ttychars(tp);
387 ttsetwater(tp);
388
389 (void)zsparam(tp, &tp->t_termios);
390
391 /*
392 * Turn on DTR. We must always do this, even if carrier is not
393 * present, because otherwise we'd have to use TIOCSDTR
394 * immediately after setting CLOCAL, which applications do not
395 * expect. We always assert DTR while the device is open
396 * unless explicitly requested to deassert it.
397 */
398 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
399 /* May never get a status intr. if DCD already on. -gwr */
400 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
401 tp->t_state |= TS_CARR_ON;
402 if(cs->cs_softcar)
403 tp->t_state |= TS_CARR_ON;
404 }
405
406 splx(s);
407
408 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
409 if (error)
410 goto bad;
411
412 error = tp->t_linesw->l_open(dev, tp);
413 if(error)
414 goto bad;
415 return (0);
416
417 bad:
418 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
419 /*
420 * We failed to open the device, and nobody else had it opened.
421 * Clean up the state as appropriate.
422 */
423 zs_shutdown(cs);
424 }
425 return(error);
426 }
427
428 /*
429 * Close a zs serial port.
430 */
431 int
432 zsclose(dev, flags, mode, p)
433 dev_t dev;
434 int flags;
435 int mode;
436 struct proc *p;
437 {
438 register struct zs_chanstate *cs;
439 register struct tty *tp;
440 struct zs_softc *zi;
441 int unit = ZS_UNIT(dev);
442
443 zi = zs_cd.cd_devs[unit >> 1];
444 cs = &zi->zi_cs[unit & 1];
445 tp = cs->cs_ttyp;
446
447 tp->t_linesw->l_close(tp, flags);
448 ttyclose(tp);
449
450 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
451 /*
452 * Although we got a last close, the device may still be in
453 * use; e.g. if this was the dialout node, and there are still
454 * processes waiting for carrier on the non-dialout node.
455 */
456 zs_shutdown(cs);
457 }
458 return (0);
459 }
460
461 /*
462 * Read/write zs serial port.
463 */
464 int
465 zsread(dev, uio, flags)
466 dev_t dev;
467 struct uio *uio;
468 int flags;
469 {
470 register struct zs_chanstate *cs;
471 register struct zs_softc *zi;
472 register struct tty *tp;
473 int unit;
474
475 unit = ZS_UNIT(dev);
476 zi = zs_cd.cd_devs[unit >> 1];
477 cs = &zi->zi_cs[unit & 1];
478 tp = cs->cs_ttyp;
479
480 return(tp->t_linesw->l_read(tp, uio, flags));
481 }
482
483 int
484 zswrite(dev, uio, flags)
485 dev_t dev;
486 struct uio *uio;
487 int flags;
488 {
489 register struct zs_chanstate *cs;
490 register struct zs_softc *zi;
491 register struct tty *tp;
492 int unit;
493
494 unit = ZS_UNIT(dev);
495 zi = zs_cd.cd_devs[unit >> 1];
496 cs = &zi->zi_cs[unit & 1];
497 tp = cs->cs_ttyp;
498
499 return(tp->t_linesw->l_write(tp, uio, flags));
500 }
501
502 int
503 zspoll(dev, events, p)
504 dev_t dev;
505 int events;
506 struct proc *p;
507 {
508 register struct zs_chanstate *cs;
509 register struct zs_softc *zi;
510 register struct tty *tp;
511 int unit;
512
513 unit = ZS_UNIT(dev);
514 zi = zs_cd.cd_devs[unit >> 1];
515 cs = &zi->zi_cs[unit & 1];
516 tp = cs->cs_ttyp;
517
518 return ((*tp->t_linesw->l_poll)(tp, events, p));
519 }
520
521 struct tty *
522 zstty(dev)
523 dev_t dev;
524 {
525 register struct zs_chanstate *cs;
526 register struct zs_softc *zi;
527 int unit;
528
529 unit = ZS_UNIT(dev);
530 zi = zs_cd.cd_devs[unit >> 1];
531 cs = &zi->zi_cs[unit & 1];
532 return(cs->cs_ttyp);
533 }
534
535 /*
536 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
537 * channels are kept in (A,B) pairs.
538 *
539 * Do just a little, then get out; set a software interrupt if more
540 * work is needed.
541 *
542 * We deliberately ignore the vectoring Zilog gives us, and match up
543 * only the number of `reset interrupt under service' operations, not
544 * the order.
545 */
546
547 int
548 zshard(sr)
549 long sr;
550 {
551 register struct zs_chanstate *a;
552 #define b (a + 1)
553 register volatile struct zschan *zc;
554 register int rr3, intflags = 0, v, i;
555
556 do {
557 intflags &= ~4;
558 for(a = zslist; a != NULL; a = b->cs_next) {
559 rr3 = ZS_READ(a->cs_zc, 3);
560 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
561 intflags |= 4|2;
562 zc = a->cs_zc;
563 i = a->cs_rbput;
564 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
565 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
566 intflags |= 1;
567 }
568 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
569 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
570 intflags |= 1;
571 }
572 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
573 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
574 intflags |= 1;
575 }
576 a->cs_rbput = i;
577 }
578 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
579 intflags |= 4|2;
580 zc = b->cs_zc;
581 i = b->cs_rbput;
582 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
583 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
584 intflags |= 1;
585 }
586 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
587 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
588 intflags |= 1;
589 }
590 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
591 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
592 intflags |= 1;
593 }
594 b->cs_rbput = i;
595 }
596 }
597 } while(intflags & 4);
598 #undef b
599
600 if(intflags & 1) {
601 if(BASEPRI(sr)) {
602 spl1();
603 zsshortcuts++;
604 return(zssoft(sr));
605 }
606 else if(!cb_scheduled) {
607 cb_scheduled++;
608 add_sicallback((si_farg)zssoft, 0, 0);
609 }
610 }
611 return(intflags & 2);
612 }
613
614 static int
615 zsrint(cs, zc)
616 register struct zs_chanstate *cs;
617 register volatile struct zschan *zc;
618 {
619 register int c;
620
621 /*
622 * First read the status, because read of the received char
623 * destroy the status of this char.
624 */
625 c = ZS_READ(zc, 1);
626 c |= (zc->zc_data << 8);
627
628 /* clear receive error & interrupt condition */
629 zc->zc_csr = ZSWR0_RESET_ERRORS;
630 zc->zc_csr = ZSWR0_CLR_INTR;
631
632 return(ZRING_MAKE(ZRING_RINT, c));
633 }
634
635 static int
636 zsxint(cs, zc)
637 register struct zs_chanstate *cs;
638 register volatile struct zschan *zc;
639 {
640 register int i = cs->cs_tbc;
641
642 if(i == 0) {
643 zc->zc_csr = ZSWR0_RESET_TXINT;
644 zc->zc_csr = ZSWR0_CLR_INTR;
645 return(ZRING_MAKE(ZRING_XINT, 0));
646 }
647 cs->cs_tbc = i - 1;
648 zc->zc_data = *cs->cs_tba++;
649 zc->zc_csr = ZSWR0_CLR_INTR;
650 return (0);
651 }
652
653 static int
654 zssint(cs, zc)
655 register struct zs_chanstate *cs;
656 register volatile struct zschan *zc;
657 {
658 register int rr0;
659
660 rr0 = zc->zc_csr;
661 zc->zc_csr = ZSWR0_RESET_STATUS;
662 zc->zc_csr = ZSWR0_CLR_INTR;
663 /*
664 * The chip's hardware flow control is, as noted in zsreg.h,
665 * busted---if the DCD line goes low the chip shuts off the
666 * receiver (!). If we want hardware CTS flow control but do
667 * not have it, and carrier is now on, turn HFC on; if we have
668 * HFC now but carrier has gone low, turn it off.
669 */
670 if(rr0 & ZSRR0_DCD) {
671 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
672 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
673 cs->cs_creg[3] |= ZSWR3_HFC;
674 ZS_WRITE(zc, 3, cs->cs_creg[3]);
675 }
676 }
677 else {
678 if (cs->cs_creg[3] & ZSWR3_HFC) {
679 cs->cs_creg[3] &= ~ZSWR3_HFC;
680 ZS_WRITE(zc, 3, cs->cs_creg[3]);
681 }
682 }
683 return(ZRING_MAKE(ZRING_SINT, rr0));
684 }
685
686 /*
687 * Print out a ring or fifo overrun error message.
688 */
689 static void
690 zsoverrun(unit, ptime, what)
691 int unit;
692 long *ptime;
693 char *what;
694 {
695
696 if(*ptime != time.tv_sec) {
697 *ptime = time.tv_sec;
698 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
699 (unit & 1) + 'a', what);
700 }
701 }
702
703 /*
704 * ZS software interrupt. Scan all channels for deferred interrupts.
705 */
706 int
707 zssoft(sr)
708 long sr;
709 {
710 register struct zs_chanstate *cs;
711 register volatile struct zschan *zc;
712 register struct linesw *line;
713 register struct tty *tp;
714 register int get, n, c, cc, unit, s;
715 int retval = 0;
716
717 cb_scheduled = 0;
718 s = spltty();
719 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
720 get = cs->cs_rbget;
721 again:
722 n = cs->cs_rbput; /* atomic */
723 if(get == n) /* nothing more on this line */
724 continue;
725 retval = 1;
726 unit = cs->cs_unit; /* set up to handle interrupts */
727 zc = cs->cs_zc;
728 tp = cs->cs_ttyp;
729 line = tp->t_linesw;
730 /*
731 * Compute the number of interrupts in the receive ring.
732 * If the count is overlarge, we lost some events, and
733 * must advance to the first valid one. It may get
734 * overwritten if more data are arriving, but this is
735 * too expensive to check and gains nothing (we already
736 * lost out; all we can do at this point is trade one
737 * kind of loss for another).
738 */
739 n -= get;
740 if(n > ZLRB_RING_SIZE) {
741 zsoverrun(unit, &cs->cs_rotime, "ring");
742 get += n - ZLRB_RING_SIZE;
743 n = ZLRB_RING_SIZE;
744 }
745 while(--n >= 0) {
746 /* race to keep ahead of incoming interrupts */
747 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
748 switch (ZRING_TYPE(c)) {
749
750 case ZRING_RINT:
751 c = ZRING_VALUE(c);
752 if(c & ZSRR1_DO)
753 zsoverrun(unit, &cs->cs_fotime, "fifo");
754 cc = c >> 8;
755 if(c & ZSRR1_FE)
756 cc |= TTY_FE;
757 if(c & ZSRR1_PE)
758 cc |= TTY_PE;
759 line->l_rint(cc, tp);
760 break;
761
762 case ZRING_XINT:
763 /*
764 * Transmit done: change registers and resume,
765 * or clear BUSY.
766 */
767 if(cs->cs_heldchange) {
768 int sps;
769
770 sps = splzs();
771 c = zc->zc_csr;
772 if((c & ZSRR0_DCD) == 0)
773 cs->cs_preg[3] &= ~ZSWR3_HFC;
774 bcopy((caddr_t)cs->cs_preg,
775 (caddr_t)cs->cs_creg, 16);
776 zs_loadchannelregs(zc, cs->cs_creg);
777 splx(sps);
778 cs->cs_heldchange = 0;
779 if(cs->cs_heldtbc
780 && (tp->t_state & TS_TTSTOP) == 0) {
781 cs->cs_tbc = cs->cs_heldtbc - 1;
782 zc->zc_data = *cs->cs_tba++;
783 goto again;
784 }
785 }
786 tp->t_state &= ~TS_BUSY;
787 if(tp->t_state & TS_FLUSH)
788 tp->t_state &= ~TS_FLUSH;
789 else ndflush(&tp->t_outq,cs->cs_tba
790 - (caddr_t)tp->t_outq.c_cf);
791 line->l_start(tp);
792 break;
793
794 case ZRING_SINT:
795 /*
796 * Status line change. HFC bit is run in
797 * hardware interrupt, to avoid locking
798 * at splzs here.
799 */
800 c = ZRING_VALUE(c);
801 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
802 cc = (c & ZSRR0_DCD) != 0;
803 if(line->l_modem(tp, cc) == 0)
804 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
805 cc ? DMBIS : DMBIC);
806 }
807 cs->cs_rr0 = c;
808 break;
809
810 default:
811 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
812 unit >> 1, (unit & 1) + 'a', c);
813 break;
814 }
815 }
816 cs->cs_rbget = get;
817 goto again;
818 }
819 splx(s);
820 return (retval);
821 }
822
823 int
824 zsioctl(dev, cmd, data, flag, p)
825 dev_t dev;
826 u_long cmd;
827 caddr_t data;
828 int flag;
829 struct proc *p;
830 {
831 int unit = ZS_UNIT(dev);
832 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
833 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
834 register int error, s;
835 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
836
837 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
838 if(error != EPASSTHROUGH)
839 return(error);
840
841 error = ttioctl(tp, cmd, data, flag, p);
842 if(error !=EPASSTHROUGH)
843 return (error);
844
845 switch (cmd) {
846 case TIOCSBRK:
847 s = splzs();
848 cs->cs_preg[5] |= ZSWR5_BREAK;
849 cs->cs_creg[5] |= ZSWR5_BREAK;
850 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
851 splx(s);
852 break;
853 case TIOCCBRK:
854 s = splzs();
855 cs->cs_preg[5] &= ~ZSWR5_BREAK;
856 cs->cs_creg[5] &= ~ZSWR5_BREAK;
857 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
858 splx(s);
859 break;
860 case TIOCGFLAGS: {
861 int bits = 0;
862
863 if(cs->cs_softcar)
864 bits |= TIOCFLAG_SOFTCAR;
865 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
866 bits |= TIOCFLAG_CLOCAL;
867 if(cs->cs_creg[3] & ZSWR3_HFC)
868 bits |= TIOCFLAG_CRTSCTS;
869 *(int *)data = bits;
870 break;
871 }
872 case TIOCSFLAGS: {
873 int userbits = 0;
874
875 error = suser(p->p_ucred, &p->p_acflag);
876 if(error != 0)
877 return (EPERM);
878
879 userbits = *(int *)data;
880
881 /*
882 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
883 # defaulting to software flow control.
884 */
885 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
886 return(EINVAL);
887 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
888 return(ENODEV);
889
890 s = splzs();
891 if((userbits & TIOCFLAG_SOFTCAR)) {
892 cs->cs_softcar = 1; /* turn on softcar */
893 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
894 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
895 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
896 }
897 else if(userbits & TIOCFLAG_CLOCAL) {
898 cs->cs_softcar = 0; /* turn off softcar */
899 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
900 cs->cs_creg[15] |= ZSWR15_DCD_IE;
901 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
902 tp->t_termios.c_cflag |= CLOCAL;
903 }
904 if(userbits & TIOCFLAG_CRTSCTS) {
905 cs->cs_preg[15] |= ZSWR15_CTS_IE;
906 cs->cs_creg[15] |= ZSWR15_CTS_IE;
907 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
908 cs->cs_preg[3] |= ZSWR3_HFC;
909 cs->cs_creg[3] |= ZSWR3_HFC;
910 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
911 tp->t_termios.c_cflag |= CRTSCTS;
912 }
913 else {
914 /* no mdmbuf, so we must want software flow control */
915 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
916 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
917 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
918 cs->cs_preg[3] &= ~ZSWR3_HFC;
919 cs->cs_creg[3] &= ~ZSWR3_HFC;
920 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
921 tp->t_termios.c_cflag &= ~CRTSCTS;
922 }
923 splx(s);
924 break;
925 }
926 case TIOCSDTR:
927 zs_modem(cs, ZSWR5_DTR, DMBIS);
928 break;
929 case TIOCCDTR:
930 zs_modem(cs, ZSWR5_DTR, DMBIC);
931 break;
932 case TIOCMGET:
933 zs_modem(cs, 0, DMGET);
934 break;
935 case TIOCMSET:
936 case TIOCMBIS:
937 case TIOCMBIC:
938 default:
939 return (EPASSTHROUGH);
940 }
941 return (0);
942 }
943
944 /*
945 * Start or restart transmission.
946 */
947 static void
948 zsstart(tp)
949 register struct tty *tp;
950 {
951 register struct zs_chanstate *cs;
952 register int s, nch;
953 int unit = ZS_UNIT(tp->t_dev);
954 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
955
956 cs = &zi->zi_cs[unit & 1];
957 s = spltty();
958
959 /*
960 * If currently active or delaying, no need to do anything.
961 */
962 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
963 goto out;
964
965 /*
966 * If there are sleepers, and output has drained below low
967 * water mark, awaken.
968 */
969 if(tp->t_outq.c_cc <= tp->t_lowat) {
970 if(tp->t_state & TS_ASLEEP) {
971 tp->t_state &= ~TS_ASLEEP;
972 wakeup((caddr_t)&tp->t_outq);
973 }
974 selwakeup(&tp->t_wsel);
975 }
976
977 nch = ndqb(&tp->t_outq, 0); /* XXX */
978 if(nch) {
979 register char *p = tp->t_outq.c_cf;
980
981 /* mark busy, enable tx done interrupts, & send first byte */
982 tp->t_state |= TS_BUSY;
983 (void) splzs();
984 cs->cs_preg[1] |= ZSWR1_TIE;
985 cs->cs_creg[1] |= ZSWR1_TIE;
986 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
987 cs->cs_zc->zc_data = *p;
988 cs->cs_tba = p + 1;
989 cs->cs_tbc = nch - 1;
990 } else {
991 /*
992 * Nothing to send, turn off transmit done interrupts.
993 * This is useful if something is doing polled output.
994 */
995 (void) splzs();
996 cs->cs_preg[1] &= ~ZSWR1_TIE;
997 cs->cs_creg[1] &= ~ZSWR1_TIE;
998 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
999 }
1000 out:
1001 splx(s);
1002 }
1003
1004 /*
1005 * Stop output, e.g., for ^S or output flush.
1006 */
1007 void
1008 zsstop(tp, flag)
1009 register struct tty *tp;
1010 int flag;
1011 {
1012 register struct zs_chanstate *cs;
1013 register int s, unit = ZS_UNIT(tp->t_dev);
1014 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1015
1016 cs = &zi->zi_cs[unit & 1];
1017 s = splzs();
1018 if(tp->t_state & TS_BUSY) {
1019 /*
1020 * Device is transmitting; must stop it.
1021 */
1022 cs->cs_tbc = 0;
1023 if ((tp->t_state & TS_TTSTOP) == 0)
1024 tp->t_state |= TS_FLUSH;
1025 }
1026 splx(s);
1027 }
1028
1029 static void
1030 zs_shutdown(cs)
1031 struct zs_chanstate *cs;
1032 {
1033 struct tty *tp = cs->cs_ttyp;
1034 int s;
1035
1036 s = splzs();
1037
1038 /*
1039 * Hang up if necessary. Wait a bit, so the other side has time to
1040 * notice even if we immediately open the port again.
1041 */
1042 if(tp->t_cflag & HUPCL) {
1043 zs_modem(cs, 0, DMSET);
1044 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1045 }
1046
1047 /* Clear any break condition set with TIOCSBRK. */
1048 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1049 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1050 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1051 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1052 }
1053
1054 /*
1055 * Drop all lines and cancel interrupts
1056 */
1057 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1058 splx(s);
1059 }
1060
1061 /*
1062 * Set ZS tty parameters from termios.
1063 *
1064 * This routine makes use of the fact that only registers
1065 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1066 */
1067 static int
1068 zsparam(tp, t)
1069 register struct tty *tp;
1070 register struct termios *t;
1071 {
1072 int unit = ZS_UNIT(tp->t_dev);
1073 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1074 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1075 int cdiv, clkm, brgm, tcon;
1076 register int tmp, tmp5, cflag, s;
1077
1078 tmp = t->c_ospeed;
1079 tmp5 = t->c_ispeed;
1080 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1081 return(EINVAL);
1082 if(tmp == 0) {
1083 /* stty 0 => drop DTR and RTS */
1084 zs_modem(cs, 0, DMSET);
1085 return(0);
1086 }
1087 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1088 if (tmp < 0)
1089 return(EINVAL);
1090 tp->t_ispeed = tp->t_ospeed = tmp;
1091
1092 cflag = tp->t_cflag = t->c_cflag;
1093 if (cflag & CSTOPB)
1094 cdiv |= ZSWR4_TWOSB;
1095 else
1096 cdiv |= ZSWR4_ONESB;
1097 if (!(cflag & PARODD))
1098 cdiv |= ZSWR4_EVENP;
1099 if (cflag & PARENB)
1100 cdiv |= ZSWR4_PARENB;
1101
1102 switch(cflag & CSIZE) {
1103 case CS5:
1104 tmp = ZSWR3_RX_5;
1105 tmp5 = ZSWR5_TX_5;
1106 break;
1107 case CS6:
1108 tmp = ZSWR3_RX_6;
1109 tmp5 = ZSWR5_TX_6;
1110 break;
1111 case CS7:
1112 tmp = ZSWR3_RX_7;
1113 tmp5 = ZSWR5_TX_7;
1114 break;
1115 case CS8:
1116 default:
1117 tmp = ZSWR3_RX_8;
1118 tmp5 = ZSWR5_TX_8;
1119 break;
1120 }
1121 tmp |= ZSWR3_RX_ENABLE;
1122 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1123
1124 /*
1125 * Block interrupts so that state will not
1126 * be altered until we are done setting it up.
1127 */
1128 s = splzs();
1129 cs->cs_preg[4] = cdiv;
1130 cs->cs_preg[11] = clkm;
1131 cs->cs_preg[12] = tcon;
1132 cs->cs_preg[13] = tcon >> 8;
1133 cs->cs_preg[14] = brgm;
1134 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1135 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1136 cs->cs_preg[10] = ZSWR10_NRZ;
1137 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1138
1139 /*
1140 * Output hardware flow control on the chip is horrendous: if
1141 * carrier detect drops, the receiver is disabled. Hence we
1142 * can only do this when the carrier is on.
1143 */
1144 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1145 tmp |= ZSWR3_HFC;
1146 cs->cs_preg[3] = tmp;
1147 cs->cs_preg[5] = tmp5;
1148
1149 /*
1150 * If nothing is being transmitted, set up new current values,
1151 * else mark them as pending.
1152 */
1153 if(cs->cs_heldchange == 0) {
1154 if (cs->cs_ttyp->t_state & TS_BUSY) {
1155 cs->cs_heldtbc = cs->cs_tbc;
1156 cs->cs_tbc = 0;
1157 cs->cs_heldchange = 1;
1158 } else {
1159 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1160 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1161 }
1162 }
1163 splx(s);
1164 return (0);
1165 }
1166
1167 /*
1168 * search for the best matching baudrate
1169 */
1170 static int
1171 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1172 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1173 {
1174 int bestdiff, bestbps, source;
1175
1176 bestdiff = bestbps = 0;
1177 unit = (unit & 1) << 2;
1178 for (source = 0; source < 4; ++source) {
1179 long freq = zs_frequencies[unit + source];
1180 int diff, bps, div, clkm, brgm, tcon;
1181
1182 bps = div = clkm = brgm = tcon = 0;
1183 switch (source) {
1184 case 0: /* BRgen, PCLK */
1185 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1186 break;
1187 case 1: /* BRgen, RTxC */
1188 brgm = ZSWR14_BAUD_ENA;
1189 break;
1190 case 2: /* RTxC */
1191 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1192 break;
1193 case 3: /* TRxC */
1194 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1195 break;
1196 }
1197 switch (source) {
1198 case 0:
1199 case 1:
1200 div = ZSWR4_CLK_X16;
1201 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1202 tcon = BPS_TO_TCONST(freq, wanted);
1203 if (tcon < 0)
1204 tcon = 0;
1205 bps = TCONST_TO_BPS(freq, tcon);
1206 break;
1207 case 2:
1208 case 3:
1209 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1210 int b2 = freq / 32, d2 = abs(b2 - wanted);
1211 int b3 = freq / 64, d3 = abs(b3 - wanted);
1212
1213 if (d1 < d2 && d1 < d3) {
1214 div = ZSWR4_CLK_X16;
1215 bps = b1;
1216 } else if (d2 < d3 && d2 < d1) {
1217 div = ZSWR4_CLK_X32;
1218 bps = b2;
1219 } else {
1220 div = ZSWR4_CLK_X64;
1221 bps = b3;
1222 }
1223 brgm = tcon = 0;
1224 break;
1225 }
1226 }
1227 diff = abs(bps - wanted);
1228 if (!source || diff < bestdiff) {
1229 *divisor = div;
1230 *clockmode = clkm;
1231 *brgenmode = brgm;
1232 *timeconst = tcon;
1233 bestbps = bps;
1234 bestdiff = diff;
1235 if (diff == 0)
1236 break;
1237 }
1238 }
1239 /* Allow deviations upto 5% */
1240 if (20 * bestdiff > wanted)
1241 return -1;
1242 return bestbps;
1243 }
1244
1245 /*
1246 * Raise or lower modem control (DTR/RTS) signals. If a character is
1247 * in transmission, the change is deferred.
1248 */
1249 static int
1250 zs_modem(cs, bits, how)
1251 struct zs_chanstate *cs;
1252 int bits, how;
1253 {
1254 int s, mbits;
1255
1256 bits &= ZSWR5_DTR | ZSWR5_RTS;
1257
1258 s = splzs();
1259 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1260
1261 switch(how) {
1262 case DMSET:
1263 mbits = bits;
1264 break;
1265 case DMBIS:
1266 mbits |= bits;
1267 break;
1268 case DMBIC:
1269 mbits &= ~bits;
1270 break;
1271 case DMGET:
1272 splx(s);
1273 return(mbits);
1274 }
1275
1276 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1277 if(cs->cs_heldchange == 0) {
1278 if(cs->cs_ttyp->t_state & TS_BUSY) {
1279 cs->cs_heldtbc = cs->cs_tbc;
1280 cs->cs_tbc = 0;
1281 cs->cs_heldchange = 1;
1282 }
1283 else {
1284 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1285 }
1286 }
1287 splx(s);
1288 return(0);
1289 }
1290
1291 /*
1292 * Write the given register set to the given zs channel in the proper order.
1293 * The channel must not be transmitting at the time. The receiver will
1294 * be disabled for the time it takes to write all the registers.
1295 */
1296 static void
1297 zs_loadchannelregs(zc, reg)
1298 volatile struct zschan *zc;
1299 u_char *reg;
1300 {
1301 int i;
1302
1303 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1304 i = zc->zc_data; /* drain fifo */
1305 i = zc->zc_data;
1306 i = zc->zc_data;
1307 ZS_WRITE(zc, 4, reg[4]);
1308 ZS_WRITE(zc, 10, reg[10]);
1309 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1310 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1311 ZS_WRITE(zc, 1, reg[1]);
1312 ZS_WRITE(zc, 9, reg[9]);
1313 ZS_WRITE(zc, 11, reg[11]);
1314 ZS_WRITE(zc, 12, reg[12]);
1315 ZS_WRITE(zc, 13, reg[13]);
1316 ZS_WRITE(zc, 14, reg[14]);
1317 ZS_WRITE(zc, 15, reg[15]);
1318 ZS_WRITE(zc, 3, reg[3]);
1319 ZS_WRITE(zc, 5, reg[5]);
1320 }
1321 #endif /* NZS > 1 */
1322