Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.34.4.1
      1 /*	$NetBSD: zs.c,v 1.34.4.1 2001/10/13 17:42:36 fvdl Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/systm.h>
     58 #include <sys/proc.h>
     59 #include <sys/device.h>
     60 #include <sys/conf.h>
     61 #include <sys/file.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/malloc.h>
     64 #include <sys/tty.h>
     65 #include <sys/time.h>
     66 #include <sys/kernel.h>
     67 #include <sys/syslog.h>
     68 
     69 #include <machine/cpu.h>
     70 #include <machine/iomap.h>
     71 #include <machine/scu.h>
     72 #include <machine/mfp.h>
     73 #include <atari/dev/ym2149reg.h>
     74 
     75 #include <dev/ic/z8530reg.h>
     76 #include <atari/dev/zsvar.h>
     77 #include "zs.h"
     78 #if NZS > 1
     79 #error "This driver supports only 1 85C30!"
     80 #endif
     81 
     82 #if NZS > 0
     83 
     84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
     85 #define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
     86 
     87 #define splzs	spl5
     88 
     89 /*
     90  * Software state per found chip.
     91  */
     92 struct zs_softc {
     93     struct	device		zi_dev;    /* base device		  */
     94     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     95     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     96 };
     97 
     98 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
     99 /*
    100  * Define the registers for a closed port
    101  */
    102 static u_char zs_init_regs[16] = {
    103 /*  0 */	0,
    104 /*  1 */	0,
    105 /*  2 */	0x60,
    106 /*  3 */	0,
    107 /*  4 */	0,
    108 /*  5 */	0,
    109 /*  6 */	0,
    110 /*  7 */	0,
    111 /*  8 */	0,
    112 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
    113 /* 10 */	ZSWR10_NRZ,
    114 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    115 /* 12 */	0,
    116 /* 13 */	0,
    117 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    118 /* 15 */	0
    119 };
    120 
    121 /*
    122  * Define the machine dependant clock frequencies
    123  * If BRgen feeds sender/receiver we always use a
    124  * divisor 16, therefor the division by 16 can as
    125  * well be done here.
    126  */
    127 static u_long zs_freqs_tt[] = {
    128 	/*
    129 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    130 	 * which is set to 307.2KHz during initialisation
    131 	 * and never changed afterwards.
    132 	 */
    133 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    134 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    135 	3672000,	/* RTxCA, from PCLK4		*/
    136 	      0,	/* TRxCA, external		*/
    137 
    138 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    139 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    140 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    141 	2457600		/* TRxCB, from BCLK		*/
    142 };
    143 
    144 static u_long zs_freqs_falcon[] = {
    145 	/*
    146 	 * Atari Falcon, XXX no specs available, this might be wrong
    147 	 */
    148 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    149 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    150 	3672000,	/* RTxCA, ???			*/
    151 	      0,	/* TRxCA, external		*/
    152 
    153 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    154 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    155 	3672000,	/* RTxCB, ???			*/
    156 	2457600		/* TRxCB, ???			*/
    157 };
    158 
    159 static u_long zs_freqs_hades[] = {
    160 	/*
    161 	 * XXX: Channel-A unchecked!!!!!
    162 	 */
    163      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    164 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    165 	3672000,	/* RTxCA, from PCLK4		*/
    166 	      0,	/* TRxCA, external		*/
    167 
    168      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    169 	 235550,	/* BRgen, RTxCB, divisor 16	*/
    170 	3768800,	/* RTxCB, 3.7688MHz		*/
    171 	3768800		/* TRxCB, 3.7688MHz		*/
    172 };
    173 
    174 static u_long zs_freqs_generic[] = {
    175 	/*
    176 	 * other machines, assume only PCLK is available
    177 	 */
    178 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    179 	      0,	/* BRgen, RTxCA, divisor 16	*/
    180 	      0,	/* RTxCA, unknown		*/
    181 	      0,	/* TRxCA, unknown		*/
    182 
    183 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    184 	      0,	/* BRgen, RTxCB, divisor 16	*/
    185 	      0,	/* RTxCB, unknown		*/
    186 	      0		/* TRxCB, unknown		*/
    187 };
    188 static u_long *zs_frequencies;
    189 
    190 /* Definition of the driver for autoconfig. */
    191 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    192 static void	zsattach __P((struct device *, struct device *, void *));
    193 
    194 struct cfattach zs_ca = {
    195 	sizeof(struct zs_softc), zsmatch, zsattach
    196 };
    197 
    198 extern struct cfdriver zs_cd;
    199 
    200 /* {b,c}devsw[] function prototypes */
    201 dev_type_open(zsopen);
    202 dev_type_close(zsclose);
    203 dev_type_read(zsread);
    204 dev_type_write(zswrite);
    205 dev_type_poll(zspoll);
    206 dev_type_ioctl(zsioctl);
    207 dev_type_tty(zstty);
    208 
    209 /* Interrupt handlers. */
    210 int		zshard __P((long));
    211 static int	zssoft __P((long));
    212 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    213 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    214 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    215 
    216 static struct zs_chanstate *zslist;
    217 
    218 /* Routines called from other code. */
    219 static void	zsstart __P((struct tty *));
    220 void		zsstop __P((struct tty *, int));
    221 
    222 /* Routines purely local to this driver. */
    223 static void	zsoverrun __P((int, long *, char *));
    224 static int	zsparam __P((struct tty *, struct termios *));
    225 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    226 static int	zs_modem __P((struct zs_chanstate *, int, int));
    227 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    228 static void	zs_shutdown __P((struct zs_chanstate *));
    229 
    230 static int zsshortcuts;	/* number of "shortcut" software interrupts */
    231 
    232 static int
    233 zsmatch(pdp, cfp, auxp)
    234 struct device	*pdp;
    235 struct cfdata	*cfp;
    236 void		*auxp;
    237 {
    238 	static int	zs_matched = 0;
    239 
    240 	if(strcmp("zs", auxp) || zs_matched)
    241 		return(0);
    242 	zs_matched = 1;
    243 	return(1);
    244 }
    245 
    246 /*
    247  * Attach a found zs.
    248  */
    249 static void
    250 zsattach(parent, dev, aux)
    251 struct device	*parent;
    252 struct device	*dev;
    253 void		*aux;
    254 {
    255 	register struct zs_softc		*zi;
    256 	register struct zs_chanstate		*cs;
    257 	register volatile struct zsdevice	*addr;
    258 		 char				tmp;
    259 
    260 	addr      = (struct zsdevice *)AD_SCC;
    261 	zi        = (struct zs_softc *)dev;
    262 	zi->zi_zs = addr;
    263 	cs        = zi->zi_cs;
    264 
    265 	/*
    266 	 * Get the command register into a known state.
    267 	 */
    268 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    269 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    270 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    271 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    272 
    273 	/*
    274 	 * Do a hardware reset.
    275 	 */
    276 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    277 	delay(50000);	/*enough ? */
    278 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    279 
    280 	/*
    281 	 * Initialize both channels
    282 	 */
    283 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    284 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    285 
    286 	if(machineid & ATARI_TT) {
    287 		/*
    288 		 * ininitialise TT-MFP timer C: 307200Hz
    289 		 * timer C and D share one control register:
    290 		 *	bits 0-2 control timer D
    291 		 *	bits 4-6 control timer C
    292 		 */
    293 		int cr = MFP2->mf_tcdcr & 7;
    294 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    295 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    296 		cr |= T_Q004 << 4;		/* divisor 4     */
    297 		MFP2->mf_tcdcr = cr;		/* start timer C */
    298 		/*
    299 		 * enable scc related interrupts
    300 		 */
    301 		SCU->vme_mask |= SCU_SCC;
    302 
    303 		zs_frequencies = zs_freqs_tt;
    304 	} else if (machineid & ATARI_FALCON) {
    305 		zs_frequencies = zs_freqs_falcon;
    306 	} else if (machineid & ATARI_HADES) {
    307 		zs_frequencies = zs_freqs_hades;
    308 	} else {
    309 		zs_frequencies = zs_freqs_generic;
    310 	}
    311 
    312 	/* link into interrupt list with order (A,B) (B=A+1) */
    313 	cs[0].cs_next = &cs[1];
    314 	cs[1].cs_next = zslist;
    315 	zslist        = cs;
    316 
    317 	cs->cs_unit  = 0;
    318 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    319 	cs++;
    320 	cs->cs_unit  = 1;
    321 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    322 
    323 	printf(": serial2 on channel a and modem2 on channel b\n");
    324 }
    325 
    326 /*
    327  * Open a zs serial port.
    328  */
    329 int
    330 zsopen(devvp, flags, mode, p)
    331 struct vnode	*devvp;
    332 int		flags;
    333 int		mode;
    334 struct proc	*p;
    335 {
    336 	register struct tty		*tp;
    337 	register struct zs_chanstate	*cs;
    338 	struct zs_softc	*zi;
    339 	dev_t dev		= vdev_rdev(devvp);
    340 	int			unit = ZS_UNIT(dev);
    341 	int			zs = unit >> 1;
    342 	int			error, s;
    343 
    344 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
    345 		return (ENXIO);
    346 	cs = &zi->zi_cs[unit & 1];
    347 
    348 	/*
    349 	 * When port A (ser02) is selected on the TT, make sure
    350 	 * the port is enabled.
    351 	 */
    352 	if((machineid & ATARI_TT) && !(unit & 1))
    353 		ym2149_ser2(1);
    354 
    355 	if (cs->cs_rbuf == NULL) {
    356 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
    357 								   M_WAITOK);
    358 	}
    359 
    360 	tp = cs->cs_ttyp;
    361 	if(tp == NULL) {
    362 		cs->cs_ttyp = tp = ttymalloc();
    363 		tty_attach(tp);
    364 		tp->t_dev   = dev;
    365 		tp->t_oproc = zsstart;
    366 		tp->t_param = zsparam;
    367 	}
    368 
    369 	if ((tp->t_state & TS_ISOPEN) &&
    370 	    (tp->t_state & TS_XCLUDE) &&
    371 	    p->p_ucred->cr_uid != 0)
    372 		return (EBUSY);
    373 
    374 	s  = spltty();
    375 
    376 	/*
    377 	 * Do the following iff this is a first open.
    378 	 */
    379 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    380 		if(tp->t_ispeed == 0) {
    381 			tp->t_iflag = TTYDEF_IFLAG;
    382 			tp->t_oflag = TTYDEF_OFLAG;
    383 			tp->t_cflag = TTYDEF_CFLAG;
    384 			tp->t_lflag = TTYDEF_LFLAG;
    385 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    386 		}
    387 		ttychars(tp);
    388 		ttsetwater(tp);
    389 
    390 		(void)zsparam(tp, &tp->t_termios);
    391 
    392 		/*
    393 		 * Turn on DTR.  We must always do this, even if carrier is not
    394 		 * present, because otherwise we'd have to use TIOCSDTR
    395 		 * immediately after setting CLOCAL, which applications do not
    396 		 * expect.  We always assert DTR while the device is open
    397 		 * unless explicitly requested to deassert it.
    398 		 */
    399 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    400 		/* May never get a status intr. if DCD already on. -gwr */
    401 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
    402 			tp->t_state |= TS_CARR_ON;
    403 		if(cs->cs_softcar)
    404 			tp->t_state |= TS_CARR_ON;
    405 	}
    406 
    407 	splx(s);
    408 
    409 	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
    410 	if (error)
    411 		goto bad;
    412 
    413 	error = tp->t_linesw->l_open(devvp, tp);
    414 	if(error)
    415 		goto bad;
    416 	return (0);
    417 
    418 bad:
    419 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    420 		/*
    421 		 * We failed to open the device, and nobody else had it opened.
    422 		 * Clean up the state as appropriate.
    423 		 */
    424 		zs_shutdown(cs);
    425 	}
    426 	return(error);
    427 }
    428 
    429 /*
    430  * Close a zs serial port.
    431  */
    432 int
    433 zsclose(devvp, flags, mode, p)
    434 struct vnode	*devvp;
    435 int		flags;
    436 int		mode;
    437 struct proc	*p;
    438 {
    439 	register struct zs_chanstate	*cs;
    440 	register struct tty		*tp;
    441 	struct zs_softc	*zi;
    442 	dev_t dev = vdev_rdev(devvp);
    443 	int			unit = ZS_UNIT(dev);
    444 
    445 	zi = zs_cd.cd_devs[unit >> 1];
    446 	cs = &zi->zi_cs[unit & 1];
    447 	tp = cs->cs_ttyp;
    448 
    449 	tp->t_linesw->l_close(tp, flags);
    450 	ttyclose(tp);
    451 
    452 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    453 		/*
    454 		 * Although we got a last close, the device may still be in
    455 		 * use; e.g. if this was the dialout node, and there are still
    456 		 * processes waiting for carrier on the non-dialout node.
    457 		 */
    458 		zs_shutdown(cs);
    459 	}
    460 	return (0);
    461 }
    462 
    463 /*
    464  * Read/write zs serial port.
    465  */
    466 int
    467 zsread(devvp, uio, flags)
    468 struct vnode	*devvp;
    469 struct uio	*uio;
    470 int		flags;
    471 {
    472 	register struct zs_chanstate	*cs;
    473 	register struct zs_softc	*zi;
    474 	register struct tty		*tp;
    475 	int			unit;
    476 	dev_t			dev;
    477 
    478 	dev = vdev_rdev(devvp);
    479 	unit = ZS_UNIT(dev);
    480 	zi   = zs_cd.cd_devs[unit >> 1];
    481 	cs   = &zi->zi_cs[unit & 1];
    482 	tp   = cs->cs_ttyp;
    483 
    484 	return(tp->t_linesw->l_read(tp, uio, flags));
    485 }
    486 
    487 int
    488 zswrite(devvp, uio, flags)
    489 struct vnode	*devvp;
    490 struct uio	*uio;
    491 int		flags;
    492 {
    493 	register struct zs_chanstate	*cs;
    494 	register struct zs_softc	*zi;
    495 	register struct tty		*tp;
    496 	int			unit;
    497 	dev_t			dev;
    498 
    499 	dev = vdev_rdev(devvp);
    500 	unit = ZS_UNIT(dev);
    501 	zi   = zs_cd.cd_devs[unit >> 1];
    502 	cs   = &zi->zi_cs[unit & 1];
    503 	tp   = cs->cs_ttyp;
    504 
    505 	return(tp->t_linesw->l_write(tp, uio, flags));
    506 }
    507 
    508 int
    509 zspoll(devvp, events, p)
    510 struct vnode	*devvp;
    511 int		events;
    512 struct proc	*p;
    513 {
    514 	register struct zs_chanstate	*cs;
    515 	register struct zs_softc	*zi;
    516 	register struct tty		*tp;
    517 	int			unit;
    518 	dev_t			dev;
    519 
    520 	dev = vdev_rdev(devvp);
    521 	unit = ZS_UNIT(dev);
    522 	zi   = zs_cd.cd_devs[unit >> 1];
    523 	cs   = &zi->zi_cs[unit & 1];
    524 	tp   = cs->cs_ttyp;
    525 
    526 	return ((*tp->t_linesw->l_poll)(tp, events, p));
    527 }
    528 
    529 struct tty *
    530 zstty(devvp)
    531 struct vnode *devvp;
    532 {
    533 	register struct zs_chanstate	*cs;
    534 	register struct zs_softc	*zi;
    535 	int			unit;
    536 	dev_t			dev;
    537 
    538 	dev = vdev_rdev(devvp);
    539 	unit = ZS_UNIT(dev);
    540 	zi   = zs_cd.cd_devs[unit >> 1];
    541 	cs   = &zi->zi_cs[unit & 1];
    542 	return(cs->cs_ttyp);
    543 }
    544 
    545 /*
    546  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    547  * channels are kept in (A,B) pairs.
    548  *
    549  * Do just a little, then get out; set a software interrupt if more
    550  * work is needed.
    551  *
    552  * We deliberately ignore the vectoring Zilog gives us, and match up
    553  * only the number of `reset interrupt under service' operations, not
    554  * the order.
    555  */
    556 
    557 int
    558 zshard(sr)
    559 long sr;
    560 {
    561 	register struct zs_chanstate	*a;
    562 #define	b (a + 1)
    563 	register volatile struct zschan *zc;
    564 	register int			rr3, intflags = 0, v, i;
    565 
    566 	do {
    567 	    intflags &= ~4;
    568 	    for(a = zslist; a != NULL; a = b->cs_next) {
    569 		rr3 = ZS_READ(a->cs_zc, 3);
    570 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    571 			intflags |= 4|2;
    572 			zc = a->cs_zc;
    573 			i  = a->cs_rbput;
    574 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    575 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    576 				intflags |= 1;
    577 			}
    578 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    579 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    580 				intflags |= 1;
    581 			}
    582 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    583 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    584 				intflags |= 1;
    585 			}
    586 			a->cs_rbput = i;
    587 		}
    588 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    589 			intflags |= 4|2;
    590 			zc = b->cs_zc;
    591 			i  = b->cs_rbput;
    592 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    593 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    594 				intflags |= 1;
    595 			}
    596 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    597 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    598 				intflags |= 1;
    599 			}
    600 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    601 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    602 				intflags |= 1;
    603 			}
    604 			b->cs_rbput = i;
    605 		}
    606 	    }
    607 	} while(intflags & 4);
    608 #undef b
    609 
    610 	if(intflags & 1) {
    611 		if(BASEPRI(sr)) {
    612 			spl1();
    613 			zsshortcuts++;
    614 			return(zssoft(sr));
    615 		}
    616 		else if(!cb_scheduled) {
    617 			cb_scheduled++;
    618 			add_sicallback((si_farg)zssoft, 0, 0);
    619 		}
    620 	}
    621 	return(intflags & 2);
    622 }
    623 
    624 static int
    625 zsrint(cs, zc)
    626 register struct zs_chanstate	*cs;
    627 register volatile struct zschan	*zc;
    628 {
    629 	register int c;
    630 
    631 	/*
    632 	 * First read the status, because read of the received char
    633 	 * destroy the status of this char.
    634 	 */
    635 	c = ZS_READ(zc, 1);
    636 	c |= (zc->zc_data << 8);
    637 
    638 	/* clear receive error & interrupt condition */
    639 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    640 	zc->zc_csr = ZSWR0_CLR_INTR;
    641 
    642 	return(ZRING_MAKE(ZRING_RINT, c));
    643 }
    644 
    645 static int
    646 zsxint(cs, zc)
    647 register struct zs_chanstate	*cs;
    648 register volatile struct zschan	*zc;
    649 {
    650 	register int i = cs->cs_tbc;
    651 
    652 	if(i == 0) {
    653 		zc->zc_csr = ZSWR0_RESET_TXINT;
    654 		zc->zc_csr = ZSWR0_CLR_INTR;
    655 		return(ZRING_MAKE(ZRING_XINT, 0));
    656 	}
    657 	cs->cs_tbc = i - 1;
    658 	zc->zc_data = *cs->cs_tba++;
    659 	zc->zc_csr = ZSWR0_CLR_INTR;
    660 	return (0);
    661 }
    662 
    663 static int
    664 zssint(cs, zc)
    665 register struct zs_chanstate	*cs;
    666 register volatile struct zschan	*zc;
    667 {
    668 	register int rr0;
    669 
    670 	rr0 = zc->zc_csr;
    671 	zc->zc_csr = ZSWR0_RESET_STATUS;
    672 	zc->zc_csr = ZSWR0_CLR_INTR;
    673 	/*
    674 	 * The chip's hardware flow control is, as noted in zsreg.h,
    675 	 * busted---if the DCD line goes low the chip shuts off the
    676 	 * receiver (!).  If we want hardware CTS flow control but do
    677 	 * not have it, and carrier is now on, turn HFC on; if we have
    678 	 * HFC now but carrier has gone low, turn it off.
    679 	 */
    680 	if(rr0 & ZSRR0_DCD) {
    681 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    682 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    683 			cs->cs_creg[3] |= ZSWR3_HFC;
    684 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    685 		}
    686 	}
    687 	else {
    688 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    689 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    690 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    691 		}
    692 	}
    693 	return(ZRING_MAKE(ZRING_SINT, rr0));
    694 }
    695 
    696 /*
    697  * Print out a ring or fifo overrun error message.
    698  */
    699 static void
    700 zsoverrun(unit, ptime, what)
    701 int	unit;
    702 long	*ptime;
    703 char	*what;
    704 {
    705 
    706 	if(*ptime != time.tv_sec) {
    707 		*ptime = time.tv_sec;
    708 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    709 		    (unit & 1) + 'a', what);
    710 	}
    711 }
    712 
    713 /*
    714  * ZS software interrupt.  Scan all channels for deferred interrupts.
    715  */
    716 int
    717 zssoft(sr)
    718 long sr;
    719 {
    720     register struct zs_chanstate	*cs;
    721     register volatile struct zschan	*zc;
    722     register struct linesw		*line;
    723     register struct tty			*tp;
    724     register int			get, n, c, cc, unit, s;
    725  	     int			retval = 0;
    726 
    727     cb_scheduled = 0;
    728     s = spltty();
    729     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    730 	get = cs->cs_rbget;
    731 again:
    732 	n = cs->cs_rbput;	/* atomic			*/
    733 	if(get == n)		/* nothing more on this line	*/
    734 		continue;
    735 	retval = 1;
    736 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    737 	zc     = cs->cs_zc;
    738 	tp     = cs->cs_ttyp;
    739 	line   = tp->t_linesw;
    740 	/*
    741 	 * Compute the number of interrupts in the receive ring.
    742 	 * If the count is overlarge, we lost some events, and
    743 	 * must advance to the first valid one.  It may get
    744 	 * overwritten if more data are arriving, but this is
    745 	 * too expensive to check and gains nothing (we already
    746 	 * lost out; all we can do at this point is trade one
    747 	 * kind of loss for another).
    748 	 */
    749 	n -= get;
    750 	if(n > ZLRB_RING_SIZE) {
    751 		zsoverrun(unit, &cs->cs_rotime, "ring");
    752 		get += n - ZLRB_RING_SIZE;
    753 		n    = ZLRB_RING_SIZE;
    754 	}
    755 	while(--n >= 0) {
    756 		/* race to keep ahead of incoming interrupts */
    757 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    758 		switch (ZRING_TYPE(c)) {
    759 
    760 		case ZRING_RINT:
    761 			c = ZRING_VALUE(c);
    762 			if(c & ZSRR1_DO)
    763 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    764 			cc = c >> 8;
    765 			if(c & ZSRR1_FE)
    766 				cc |= TTY_FE;
    767 			if(c & ZSRR1_PE)
    768 				cc |= TTY_PE;
    769 			line->l_rint(cc, tp);
    770 			break;
    771 
    772 		case ZRING_XINT:
    773 			/*
    774 			 * Transmit done: change registers and resume,
    775 			 * or clear BUSY.
    776 			 */
    777 			if(cs->cs_heldchange) {
    778 				int sps;
    779 
    780 				sps = splzs();
    781 				c = zc->zc_csr;
    782 				if((c & ZSRR0_DCD) == 0)
    783 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    784 				bcopy((caddr_t)cs->cs_preg,
    785 				    (caddr_t)cs->cs_creg, 16);
    786 				zs_loadchannelregs(zc, cs->cs_creg);
    787 				splx(sps);
    788 				cs->cs_heldchange = 0;
    789 				if(cs->cs_heldtbc
    790 					&& (tp->t_state & TS_TTSTOP) == 0) {
    791 					cs->cs_tbc = cs->cs_heldtbc - 1;
    792 					zc->zc_data = *cs->cs_tba++;
    793 					goto again;
    794 				}
    795 			}
    796 			tp->t_state &= ~TS_BUSY;
    797 			if(tp->t_state & TS_FLUSH)
    798 				tp->t_state &= ~TS_FLUSH;
    799 			else ndflush(&tp->t_outq,cs->cs_tba
    800 						- (caddr_t)tp->t_outq.c_cf);
    801 			line->l_start(tp);
    802 			break;
    803 
    804 		case ZRING_SINT:
    805 			/*
    806 			 * Status line change.  HFC bit is run in
    807 			 * hardware interrupt, to avoid locking
    808 			 * at splzs here.
    809 			 */
    810 			c = ZRING_VALUE(c);
    811 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    812 				cc = (c & ZSRR0_DCD) != 0;
    813 				if(line->l_modem(tp, cc) == 0)
    814 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    815 							cc ? DMBIS : DMBIC);
    816 			}
    817 			cs->cs_rr0 = c;
    818 			break;
    819 
    820 		default:
    821 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    822 			    unit >> 1, (unit & 1) + 'a', c);
    823 			break;
    824 		}
    825 	}
    826 	cs->cs_rbget = get;
    827 	goto again;
    828     }
    829     splx(s);
    830     return (retval);
    831 }
    832 
    833 int
    834 zsioctl(devvp, cmd, data, flag, p)
    835 struct vnode	*devvp;
    836 u_long		cmd;
    837 caddr_t		data;
    838 int		flag;
    839 struct proc	*p;
    840 {
    841 	dev_t				dev = vdev_rdev(devvp);
    842 	int			unit = ZS_UNIT(dev);
    843 	struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    844 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    845 	register int			error, s;
    846 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    847 
    848 	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
    849 	if(error >= 0)
    850 		return(error);
    851 	error = ttioctl(tp, devvp, cmd, data, flag, p);
    852 	if(error >= 0)
    853 		return (error);
    854 
    855 	switch (cmd) {
    856 	case TIOCSBRK:
    857 		s = splzs();
    858 		cs->cs_preg[5] |= ZSWR5_BREAK;
    859 		cs->cs_creg[5] |= ZSWR5_BREAK;
    860 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    861 		splx(s);
    862 		break;
    863 	case TIOCCBRK:
    864 		s = splzs();
    865 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    866 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    867 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    868 		splx(s);
    869 		break;
    870 	case TIOCGFLAGS: {
    871 		int bits = 0;
    872 
    873 		if(cs->cs_softcar)
    874 			bits |= TIOCFLAG_SOFTCAR;
    875 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    876 			bits |= TIOCFLAG_CLOCAL;
    877 		if(cs->cs_creg[3] & ZSWR3_HFC)
    878 			bits |= TIOCFLAG_CRTSCTS;
    879 		*(int *)data = bits;
    880 		break;
    881 	}
    882 	case TIOCSFLAGS: {
    883 		int userbits = 0;
    884 
    885 		error = suser(p->p_ucred, &p->p_acflag);
    886 		if(error != 0)
    887 			return (EPERM);
    888 
    889 		userbits = *(int *)data;
    890 
    891 		/*
    892 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    893 		 # defaulting to software flow control.
    894 		 */
    895 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    896 			return(EINVAL);
    897 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    898 			return(ENODEV);
    899 
    900 		s = splzs();
    901 		if((userbits & TIOCFLAG_SOFTCAR)) {
    902 			cs->cs_softcar = 1;	/* turn on softcar */
    903 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    904 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    905 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    906 		}
    907 		else if(userbits & TIOCFLAG_CLOCAL) {
    908 			cs->cs_softcar = 0; 	/* turn off softcar */
    909 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    910 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    911 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    912 			tp->t_termios.c_cflag |= CLOCAL;
    913 		}
    914 		if(userbits & TIOCFLAG_CRTSCTS) {
    915 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    916 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    917 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    918 			cs->cs_preg[3] |= ZSWR3_HFC;
    919 			cs->cs_creg[3] |= ZSWR3_HFC;
    920 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    921 			tp->t_termios.c_cflag |= CRTSCTS;
    922 		}
    923 		else {
    924 			/* no mdmbuf, so we must want software flow control */
    925 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    926 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    927 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    928 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    929 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    930 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    931 			tp->t_termios.c_cflag &= ~CRTSCTS;
    932 		}
    933 		splx(s);
    934 		break;
    935 	}
    936 	case TIOCSDTR:
    937 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    938 		break;
    939 	case TIOCCDTR:
    940 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    941 		break;
    942 	case TIOCMGET:
    943 		zs_modem(cs, 0, DMGET);
    944 		break;
    945 	case TIOCMSET:
    946 	case TIOCMBIS:
    947 	case TIOCMBIC:
    948 	default:
    949 		return (ENOTTY);
    950 	}
    951 	return (0);
    952 }
    953 
    954 /*
    955  * Start or restart transmission.
    956  */
    957 static void
    958 zsstart(tp)
    959 register struct tty *tp;
    960 {
    961 	register struct zs_chanstate	*cs;
    962 	register int			s, nch;
    963 	int			unit = ZS_UNIT(tp->t_dev);
    964 	struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    965 
    966 	cs = &zi->zi_cs[unit & 1];
    967 	s  = spltty();
    968 
    969 	/*
    970 	 * If currently active or delaying, no need to do anything.
    971 	 */
    972 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    973 		goto out;
    974 
    975 	/*
    976 	 * If there are sleepers, and output has drained below low
    977 	 * water mark, awaken.
    978 	 */
    979 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    980 		if(tp->t_state & TS_ASLEEP) {
    981 			tp->t_state &= ~TS_ASLEEP;
    982 			wakeup((caddr_t)&tp->t_outq);
    983 		}
    984 		selwakeup(&tp->t_wsel);
    985 	}
    986 
    987 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    988 	if(nch) {
    989 		register char *p = tp->t_outq.c_cf;
    990 
    991 		/* mark busy, enable tx done interrupts, & send first byte */
    992 		tp->t_state |= TS_BUSY;
    993 		(void) splzs();
    994 		cs->cs_preg[1] |= ZSWR1_TIE;
    995 		cs->cs_creg[1] |= ZSWR1_TIE;
    996 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    997 		cs->cs_zc->zc_data = *p;
    998 		cs->cs_tba = p + 1;
    999 		cs->cs_tbc = nch - 1;
   1000 	} else {
   1001 		/*
   1002 		 * Nothing to send, turn off transmit done interrupts.
   1003 		 * This is useful if something is doing polled output.
   1004 		 */
   1005 		(void) splzs();
   1006 		cs->cs_preg[1] &= ~ZSWR1_TIE;
   1007 		cs->cs_creg[1] &= ~ZSWR1_TIE;
   1008 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1009 	}
   1010 out:
   1011 	splx(s);
   1012 }
   1013 
   1014 /*
   1015  * Stop output, e.g., for ^S or output flush.
   1016  */
   1017 void
   1018 zsstop(tp, flag)
   1019 register struct tty	*tp;
   1020 	 int		flag;
   1021 {
   1022 	register struct zs_chanstate	*cs;
   1023 	register int			s, unit = ZS_UNIT(tp->t_dev);
   1024 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
   1025 
   1026 	cs = &zi->zi_cs[unit & 1];
   1027 	s  = splzs();
   1028 	if(tp->t_state & TS_BUSY) {
   1029 		/*
   1030 		 * Device is transmitting; must stop it.
   1031 		 */
   1032 		cs->cs_tbc = 0;
   1033 		if ((tp->t_state & TS_TTSTOP) == 0)
   1034 			tp->t_state |= TS_FLUSH;
   1035 	}
   1036 	splx(s);
   1037 }
   1038 
   1039 static void
   1040 zs_shutdown(cs)
   1041 	struct zs_chanstate	*cs;
   1042 {
   1043 	struct tty	*tp = cs->cs_ttyp;
   1044 	int		s;
   1045 
   1046 	s = splzs();
   1047 
   1048 	/*
   1049 	 * Hang up if necessary.  Wait a bit, so the other side has time to
   1050 	 * notice even if we immediately open the port again.
   1051 	 */
   1052 	if(tp->t_cflag & HUPCL) {
   1053 		zs_modem(cs, 0, DMSET);
   1054 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
   1055 	}
   1056 
   1057 	/* Clear any break condition set with TIOCSBRK. */
   1058 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
   1059 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
   1060 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
   1061 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1062 	}
   1063 
   1064 	/*
   1065 	 * Drop all lines and cancel interrupts
   1066 	 */
   1067 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
   1068 	splx(s);
   1069 }
   1070 
   1071 /*
   1072  * Set ZS tty parameters from termios.
   1073  *
   1074  * This routine makes use of the fact that only registers
   1075  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
   1076  */
   1077 static int
   1078 zsparam(tp, t)
   1079 register struct tty	*tp;
   1080 register struct termios	*t;
   1081 {
   1082 		 int			unit = ZS_UNIT(tp->t_dev);
   1083 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
   1084 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
   1085 		 int			cdiv, clkm, brgm, tcon;
   1086 	register int			tmp, tmp5, cflag, s;
   1087 
   1088 	tmp  = t->c_ospeed;
   1089 	tmp5 = t->c_ispeed;
   1090 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
   1091 		return(EINVAL);
   1092 	if(tmp == 0) {
   1093 		/* stty 0 => drop DTR and RTS */
   1094 		zs_modem(cs, 0, DMSET);
   1095 		return(0);
   1096 	}
   1097 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
   1098 	if (tmp < 0)
   1099 		return(EINVAL);
   1100 	tp->t_ispeed = tp->t_ospeed = tmp;
   1101 
   1102 	cflag = tp->t_cflag = t->c_cflag;
   1103 	if (cflag & CSTOPB)
   1104 		cdiv |= ZSWR4_TWOSB;
   1105 	else
   1106 		cdiv |= ZSWR4_ONESB;
   1107 	if (!(cflag & PARODD))
   1108 		cdiv |= ZSWR4_EVENP;
   1109 	if (cflag & PARENB)
   1110 		cdiv |= ZSWR4_PARENB;
   1111 
   1112 	switch(cflag & CSIZE) {
   1113 	case CS5:
   1114 		tmp  = ZSWR3_RX_5;
   1115 		tmp5 = ZSWR5_TX_5;
   1116 		break;
   1117 	case CS6:
   1118 		tmp  = ZSWR3_RX_6;
   1119 		tmp5 = ZSWR5_TX_6;
   1120 		break;
   1121 	case CS7:
   1122 		tmp  = ZSWR3_RX_7;
   1123 		tmp5 = ZSWR5_TX_7;
   1124 		break;
   1125 	case CS8:
   1126 	default:
   1127 		tmp  = ZSWR3_RX_8;
   1128 		tmp5 = ZSWR5_TX_8;
   1129 		break;
   1130 	}
   1131 	tmp  |= ZSWR3_RX_ENABLE;
   1132 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1133 
   1134 	/*
   1135 	 * Block interrupts so that state will not
   1136 	 * be altered until we are done setting it up.
   1137 	 */
   1138 	s = splzs();
   1139 	cs->cs_preg[4]  = cdiv;
   1140 	cs->cs_preg[11] = clkm;
   1141 	cs->cs_preg[12] = tcon;
   1142 	cs->cs_preg[13] = tcon >> 8;
   1143 	cs->cs_preg[14] = brgm;
   1144 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1145 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1146 	cs->cs_preg[10] = ZSWR10_NRZ;
   1147 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1148 
   1149 	/*
   1150 	 * Output hardware flow control on the chip is horrendous: if
   1151 	 * carrier detect drops, the receiver is disabled.  Hence we
   1152 	 * can only do this when the carrier is on.
   1153 	 */
   1154 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1155 		tmp |= ZSWR3_HFC;
   1156 	cs->cs_preg[3] = tmp;
   1157 	cs->cs_preg[5] = tmp5;
   1158 
   1159 	/*
   1160 	 * If nothing is being transmitted, set up new current values,
   1161 	 * else mark them as pending.
   1162 	 */
   1163 	if(cs->cs_heldchange == 0) {
   1164 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1165 			cs->cs_heldtbc = cs->cs_tbc;
   1166 			cs->cs_tbc = 0;
   1167 			cs->cs_heldchange = 1;
   1168 		} else {
   1169 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1170 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1171 		}
   1172 	}
   1173 	splx(s);
   1174 	return (0);
   1175 }
   1176 
   1177 /*
   1178  * search for the best matching baudrate
   1179  */
   1180 static int
   1181 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1182 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1183 {
   1184 	int	bestdiff, bestbps, source;
   1185 
   1186 	bestdiff = bestbps = 0;
   1187 	unit = (unit & 1) << 2;
   1188 	for (source = 0; source < 4; ++source) {
   1189 		long	freq = zs_frequencies[unit + source];
   1190 		int	diff, bps, div, clkm, brgm, tcon;
   1191 
   1192 		bps = div = clkm = brgm = tcon = 0;
   1193 		switch (source) {
   1194 			case 0:	/* BRgen, PCLK */
   1195 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1196 				break;
   1197 			case 1:	/* BRgen, RTxC */
   1198 				brgm = ZSWR14_BAUD_ENA;
   1199 				break;
   1200 			case 2: /* RTxC */
   1201 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1202 				break;
   1203 			case 3: /* TRxC */
   1204 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1205 				break;
   1206 		}
   1207 		switch (source) {
   1208 			case 0:
   1209 			case 1:
   1210 				div  = ZSWR4_CLK_X16;
   1211 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1212 				tcon = BPS_TO_TCONST(freq, wanted);
   1213 				if (tcon < 0)
   1214 					tcon = 0;
   1215 				bps  = TCONST_TO_BPS(freq, tcon);
   1216 				break;
   1217 			case 2:
   1218 			case 3:
   1219 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1220 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1221 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1222 
   1223 				if (d1 < d2 && d1 < d3) {
   1224 					div = ZSWR4_CLK_X16;
   1225 					bps = b1;
   1226 				} else if (d2 < d3 && d2 < d1) {
   1227 					div = ZSWR4_CLK_X32;
   1228 					bps = b2;
   1229 				} else {
   1230 					div = ZSWR4_CLK_X64;
   1231 					bps = b3;
   1232 				}
   1233 				brgm = tcon = 0;
   1234 				break;
   1235 			}
   1236 		}
   1237 		diff = abs(bps - wanted);
   1238 		if (!source || diff < bestdiff) {
   1239 			*divisor   = div;
   1240 			*clockmode = clkm;
   1241 			*brgenmode = brgm;
   1242 			*timeconst = tcon;
   1243 			bestbps    = bps;
   1244 			bestdiff   = diff;
   1245 			if (diff == 0)
   1246 				break;
   1247 		}
   1248 	}
   1249 	/* Allow deviations upto 5% */
   1250 	if (20 * bestdiff > wanted)
   1251 		return -1;
   1252 	return bestbps;
   1253 }
   1254 
   1255 /*
   1256  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1257  * in transmission, the change is deferred.
   1258  */
   1259 static int
   1260 zs_modem(cs, bits, how)
   1261 struct zs_chanstate	*cs;
   1262 int			bits, how;
   1263 {
   1264 	int s, mbits;
   1265 
   1266 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1267 
   1268 	s = splzs();
   1269 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1270 
   1271 	switch(how) {
   1272 		case DMSET:
   1273 				mbits  = bits;
   1274 				break;
   1275 		case DMBIS:
   1276 				mbits |= bits;
   1277 				break;
   1278 		case DMBIC:
   1279 				mbits &= ~bits;
   1280 				break;
   1281 		case DMGET:
   1282 				splx(s);
   1283 				return(mbits);
   1284 	}
   1285 
   1286 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1287 	if(cs->cs_heldchange == 0) {
   1288 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1289 			cs->cs_heldtbc = cs->cs_tbc;
   1290 			cs->cs_tbc = 0;
   1291 			cs->cs_heldchange = 1;
   1292 		}
   1293 		else {
   1294 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1295 		}
   1296 	}
   1297 	splx(s);
   1298 	return(0);
   1299 }
   1300 
   1301 /*
   1302  * Write the given register set to the given zs channel in the proper order.
   1303  * The channel must not be transmitting at the time.  The receiver will
   1304  * be disabled for the time it takes to write all the registers.
   1305  */
   1306 static void
   1307 zs_loadchannelregs(zc, reg)
   1308 volatile struct zschan	*zc;
   1309 u_char			*reg;
   1310 {
   1311 	int i;
   1312 
   1313 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1314 	i = zc->zc_data;		/* drain fifo */
   1315 	i = zc->zc_data;
   1316 	i = zc->zc_data;
   1317 	ZS_WRITE(zc,  4, reg[4]);
   1318 	ZS_WRITE(zc, 10, reg[10]);
   1319 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1320 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1321 	ZS_WRITE(zc,  1, reg[1]);
   1322 	ZS_WRITE(zc,  9, reg[9]);
   1323 	ZS_WRITE(zc, 11, reg[11]);
   1324 	ZS_WRITE(zc, 12, reg[12]);
   1325 	ZS_WRITE(zc, 13, reg[13]);
   1326 	ZS_WRITE(zc, 14, reg[14]);
   1327 	ZS_WRITE(zc, 15, reg[15]);
   1328 	ZS_WRITE(zc,  3, reg[3]);
   1329 	ZS_WRITE(zc,  5, reg[5]);
   1330 }
   1331 #endif /* NZS > 1 */
   1332