zs.c revision 1.34.4.1 1 /* $NetBSD: zs.c,v 1.34.4.1 2001/10/13 17:42:36 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81
82 #if NZS > 0
83
84 #define PCLK (8053976) /* PCLK pin input clock rate */
85 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
86
87 #define splzs spl5
88
89 /*
90 * Software state per found chip.
91 */
92 struct zs_softc {
93 struct device zi_dev; /* base device */
94 volatile struct zsdevice *zi_zs; /* chip registers */
95 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
96 };
97
98 static u_char cb_scheduled = 0; /* Already asked for callback? */
99 /*
100 * Define the registers for a closed port
101 */
102 static u_char zs_init_regs[16] = {
103 /* 0 */ 0,
104 /* 1 */ 0,
105 /* 2 */ 0x60,
106 /* 3 */ 0,
107 /* 4 */ 0,
108 /* 5 */ 0,
109 /* 6 */ 0,
110 /* 7 */ 0,
111 /* 8 */ 0,
112 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */ ZSWR10_NRZ,
114 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */ 0,
116 /* 13 */ 0,
117 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */ 0
119 };
120
121 /*
122 * Define the machine dependant clock frequencies
123 * If BRgen feeds sender/receiver we always use a
124 * divisor 16, therefor the division by 16 can as
125 * well be done here.
126 */
127 static u_long zs_freqs_tt[] = {
128 /*
129 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 * which is set to 307.2KHz during initialisation
131 * and never changed afterwards.
132 */
133 PCLK/16, /* BRgen, PCLK, divisor 16 */
134 229500, /* BRgen, RTxCA, divisor 16 */
135 3672000, /* RTxCA, from PCLK4 */
136 0, /* TRxCA, external */
137
138 PCLK/16, /* BRgen, PCLK, divisor 16 */
139 19200, /* BRgen, RTxCB, divisor 16 */
140 307200, /* RTxCB, from TT-MFP TCO */
141 2457600 /* TRxCB, from BCLK */
142 };
143
144 static u_long zs_freqs_falcon[] = {
145 /*
146 * Atari Falcon, XXX no specs available, this might be wrong
147 */
148 PCLK/16, /* BRgen, PCLK, divisor 16 */
149 229500, /* BRgen, RTxCA, divisor 16 */
150 3672000, /* RTxCA, ??? */
151 0, /* TRxCA, external */
152
153 PCLK/16, /* BRgen, PCLK, divisor 16 */
154 229500, /* BRgen, RTxCB, divisor 16 */
155 3672000, /* RTxCB, ??? */
156 2457600 /* TRxCB, ??? */
157 };
158
159 static u_long zs_freqs_hades[] = {
160 /*
161 * XXX: Channel-A unchecked!!!!!
162 */
163 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
164 229500, /* BRgen, RTxCA, divisor 16 */
165 3672000, /* RTxCA, from PCLK4 */
166 0, /* TRxCA, external */
167
168 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
169 235550, /* BRgen, RTxCB, divisor 16 */
170 3768800, /* RTxCB, 3.7688MHz */
171 3768800 /* TRxCB, 3.7688MHz */
172 };
173
174 static u_long zs_freqs_generic[] = {
175 /*
176 * other machines, assume only PCLK is available
177 */
178 PCLK/16, /* BRgen, PCLK, divisor 16 */
179 0, /* BRgen, RTxCA, divisor 16 */
180 0, /* RTxCA, unknown */
181 0, /* TRxCA, unknown */
182
183 PCLK/16, /* BRgen, PCLK, divisor 16 */
184 0, /* BRgen, RTxCB, divisor 16 */
185 0, /* RTxCB, unknown */
186 0 /* TRxCB, unknown */
187 };
188 static u_long *zs_frequencies;
189
190 /* Definition of the driver for autoconfig. */
191 static int zsmatch __P((struct device *, struct cfdata *, void *));
192 static void zsattach __P((struct device *, struct device *, void *));
193
194 struct cfattach zs_ca = {
195 sizeof(struct zs_softc), zsmatch, zsattach
196 };
197
198 extern struct cfdriver zs_cd;
199
200 /* {b,c}devsw[] function prototypes */
201 dev_type_open(zsopen);
202 dev_type_close(zsclose);
203 dev_type_read(zsread);
204 dev_type_write(zswrite);
205 dev_type_poll(zspoll);
206 dev_type_ioctl(zsioctl);
207 dev_type_tty(zstty);
208
209 /* Interrupt handlers. */
210 int zshard __P((long));
211 static int zssoft __P((long));
212 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
213 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
214 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
215
216 static struct zs_chanstate *zslist;
217
218 /* Routines called from other code. */
219 static void zsstart __P((struct tty *));
220 void zsstop __P((struct tty *, int));
221
222 /* Routines purely local to this driver. */
223 static void zsoverrun __P((int, long *, char *));
224 static int zsparam __P((struct tty *, struct termios *));
225 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
226 static int zs_modem __P((struct zs_chanstate *, int, int));
227 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
228 static void zs_shutdown __P((struct zs_chanstate *));
229
230 static int zsshortcuts; /* number of "shortcut" software interrupts */
231
232 static int
233 zsmatch(pdp, cfp, auxp)
234 struct device *pdp;
235 struct cfdata *cfp;
236 void *auxp;
237 {
238 static int zs_matched = 0;
239
240 if(strcmp("zs", auxp) || zs_matched)
241 return(0);
242 zs_matched = 1;
243 return(1);
244 }
245
246 /*
247 * Attach a found zs.
248 */
249 static void
250 zsattach(parent, dev, aux)
251 struct device *parent;
252 struct device *dev;
253 void *aux;
254 {
255 register struct zs_softc *zi;
256 register struct zs_chanstate *cs;
257 register volatile struct zsdevice *addr;
258 char tmp;
259
260 addr = (struct zsdevice *)AD_SCC;
261 zi = (struct zs_softc *)dev;
262 zi->zi_zs = addr;
263 cs = zi->zi_cs;
264
265 /*
266 * Get the command register into a known state.
267 */
268 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
269 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
270 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
271 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
272
273 /*
274 * Do a hardware reset.
275 */
276 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
277 delay(50000); /*enough ? */
278 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
279
280 /*
281 * Initialize both channels
282 */
283 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
284 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
285
286 if(machineid & ATARI_TT) {
287 /*
288 * ininitialise TT-MFP timer C: 307200Hz
289 * timer C and D share one control register:
290 * bits 0-2 control timer D
291 * bits 4-6 control timer C
292 */
293 int cr = MFP2->mf_tcdcr & 7;
294 MFP2->mf_tcdcr = cr; /* stop timer C */
295 MFP2->mf_tcdr = 1; /* counter 1 */
296 cr |= T_Q004 << 4; /* divisor 4 */
297 MFP2->mf_tcdcr = cr; /* start timer C */
298 /*
299 * enable scc related interrupts
300 */
301 SCU->vme_mask |= SCU_SCC;
302
303 zs_frequencies = zs_freqs_tt;
304 } else if (machineid & ATARI_FALCON) {
305 zs_frequencies = zs_freqs_falcon;
306 } else if (machineid & ATARI_HADES) {
307 zs_frequencies = zs_freqs_hades;
308 } else {
309 zs_frequencies = zs_freqs_generic;
310 }
311
312 /* link into interrupt list with order (A,B) (B=A+1) */
313 cs[0].cs_next = &cs[1];
314 cs[1].cs_next = zslist;
315 zslist = cs;
316
317 cs->cs_unit = 0;
318 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
319 cs++;
320 cs->cs_unit = 1;
321 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
322
323 printf(": serial2 on channel a and modem2 on channel b\n");
324 }
325
326 /*
327 * Open a zs serial port.
328 */
329 int
330 zsopen(devvp, flags, mode, p)
331 struct vnode *devvp;
332 int flags;
333 int mode;
334 struct proc *p;
335 {
336 register struct tty *tp;
337 register struct zs_chanstate *cs;
338 struct zs_softc *zi;
339 dev_t dev = vdev_rdev(devvp);
340 int unit = ZS_UNIT(dev);
341 int zs = unit >> 1;
342 int error, s;
343
344 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
345 return (ENXIO);
346 cs = &zi->zi_cs[unit & 1];
347
348 /*
349 * When port A (ser02) is selected on the TT, make sure
350 * the port is enabled.
351 */
352 if((machineid & ATARI_TT) && !(unit & 1))
353 ym2149_ser2(1);
354
355 if (cs->cs_rbuf == NULL) {
356 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
357 M_WAITOK);
358 }
359
360 tp = cs->cs_ttyp;
361 if(tp == NULL) {
362 cs->cs_ttyp = tp = ttymalloc();
363 tty_attach(tp);
364 tp->t_dev = dev;
365 tp->t_oproc = zsstart;
366 tp->t_param = zsparam;
367 }
368
369 if ((tp->t_state & TS_ISOPEN) &&
370 (tp->t_state & TS_XCLUDE) &&
371 p->p_ucred->cr_uid != 0)
372 return (EBUSY);
373
374 s = spltty();
375
376 /*
377 * Do the following iff this is a first open.
378 */
379 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
380 if(tp->t_ispeed == 0) {
381 tp->t_iflag = TTYDEF_IFLAG;
382 tp->t_oflag = TTYDEF_OFLAG;
383 tp->t_cflag = TTYDEF_CFLAG;
384 tp->t_lflag = TTYDEF_LFLAG;
385 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
386 }
387 ttychars(tp);
388 ttsetwater(tp);
389
390 (void)zsparam(tp, &tp->t_termios);
391
392 /*
393 * Turn on DTR. We must always do this, even if carrier is not
394 * present, because otherwise we'd have to use TIOCSDTR
395 * immediately after setting CLOCAL, which applications do not
396 * expect. We always assert DTR while the device is open
397 * unless explicitly requested to deassert it.
398 */
399 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
400 /* May never get a status intr. if DCD already on. -gwr */
401 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
402 tp->t_state |= TS_CARR_ON;
403 if(cs->cs_softcar)
404 tp->t_state |= TS_CARR_ON;
405 }
406
407 splx(s);
408
409 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
410 if (error)
411 goto bad;
412
413 error = tp->t_linesw->l_open(devvp, tp);
414 if(error)
415 goto bad;
416 return (0);
417
418 bad:
419 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
420 /*
421 * We failed to open the device, and nobody else had it opened.
422 * Clean up the state as appropriate.
423 */
424 zs_shutdown(cs);
425 }
426 return(error);
427 }
428
429 /*
430 * Close a zs serial port.
431 */
432 int
433 zsclose(devvp, flags, mode, p)
434 struct vnode *devvp;
435 int flags;
436 int mode;
437 struct proc *p;
438 {
439 register struct zs_chanstate *cs;
440 register struct tty *tp;
441 struct zs_softc *zi;
442 dev_t dev = vdev_rdev(devvp);
443 int unit = ZS_UNIT(dev);
444
445 zi = zs_cd.cd_devs[unit >> 1];
446 cs = &zi->zi_cs[unit & 1];
447 tp = cs->cs_ttyp;
448
449 tp->t_linesw->l_close(tp, flags);
450 ttyclose(tp);
451
452 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
453 /*
454 * Although we got a last close, the device may still be in
455 * use; e.g. if this was the dialout node, and there are still
456 * processes waiting for carrier on the non-dialout node.
457 */
458 zs_shutdown(cs);
459 }
460 return (0);
461 }
462
463 /*
464 * Read/write zs serial port.
465 */
466 int
467 zsread(devvp, uio, flags)
468 struct vnode *devvp;
469 struct uio *uio;
470 int flags;
471 {
472 register struct zs_chanstate *cs;
473 register struct zs_softc *zi;
474 register struct tty *tp;
475 int unit;
476 dev_t dev;
477
478 dev = vdev_rdev(devvp);
479 unit = ZS_UNIT(dev);
480 zi = zs_cd.cd_devs[unit >> 1];
481 cs = &zi->zi_cs[unit & 1];
482 tp = cs->cs_ttyp;
483
484 return(tp->t_linesw->l_read(tp, uio, flags));
485 }
486
487 int
488 zswrite(devvp, uio, flags)
489 struct vnode *devvp;
490 struct uio *uio;
491 int flags;
492 {
493 register struct zs_chanstate *cs;
494 register struct zs_softc *zi;
495 register struct tty *tp;
496 int unit;
497 dev_t dev;
498
499 dev = vdev_rdev(devvp);
500 unit = ZS_UNIT(dev);
501 zi = zs_cd.cd_devs[unit >> 1];
502 cs = &zi->zi_cs[unit & 1];
503 tp = cs->cs_ttyp;
504
505 return(tp->t_linesw->l_write(tp, uio, flags));
506 }
507
508 int
509 zspoll(devvp, events, p)
510 struct vnode *devvp;
511 int events;
512 struct proc *p;
513 {
514 register struct zs_chanstate *cs;
515 register struct zs_softc *zi;
516 register struct tty *tp;
517 int unit;
518 dev_t dev;
519
520 dev = vdev_rdev(devvp);
521 unit = ZS_UNIT(dev);
522 zi = zs_cd.cd_devs[unit >> 1];
523 cs = &zi->zi_cs[unit & 1];
524 tp = cs->cs_ttyp;
525
526 return ((*tp->t_linesw->l_poll)(tp, events, p));
527 }
528
529 struct tty *
530 zstty(devvp)
531 struct vnode *devvp;
532 {
533 register struct zs_chanstate *cs;
534 register struct zs_softc *zi;
535 int unit;
536 dev_t dev;
537
538 dev = vdev_rdev(devvp);
539 unit = ZS_UNIT(dev);
540 zi = zs_cd.cd_devs[unit >> 1];
541 cs = &zi->zi_cs[unit & 1];
542 return(cs->cs_ttyp);
543 }
544
545 /*
546 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
547 * channels are kept in (A,B) pairs.
548 *
549 * Do just a little, then get out; set a software interrupt if more
550 * work is needed.
551 *
552 * We deliberately ignore the vectoring Zilog gives us, and match up
553 * only the number of `reset interrupt under service' operations, not
554 * the order.
555 */
556
557 int
558 zshard(sr)
559 long sr;
560 {
561 register struct zs_chanstate *a;
562 #define b (a + 1)
563 register volatile struct zschan *zc;
564 register int rr3, intflags = 0, v, i;
565
566 do {
567 intflags &= ~4;
568 for(a = zslist; a != NULL; a = b->cs_next) {
569 rr3 = ZS_READ(a->cs_zc, 3);
570 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
571 intflags |= 4|2;
572 zc = a->cs_zc;
573 i = a->cs_rbput;
574 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
575 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
576 intflags |= 1;
577 }
578 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
579 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
580 intflags |= 1;
581 }
582 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
583 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
584 intflags |= 1;
585 }
586 a->cs_rbput = i;
587 }
588 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
589 intflags |= 4|2;
590 zc = b->cs_zc;
591 i = b->cs_rbput;
592 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
593 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
594 intflags |= 1;
595 }
596 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
597 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
598 intflags |= 1;
599 }
600 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
601 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
602 intflags |= 1;
603 }
604 b->cs_rbput = i;
605 }
606 }
607 } while(intflags & 4);
608 #undef b
609
610 if(intflags & 1) {
611 if(BASEPRI(sr)) {
612 spl1();
613 zsshortcuts++;
614 return(zssoft(sr));
615 }
616 else if(!cb_scheduled) {
617 cb_scheduled++;
618 add_sicallback((si_farg)zssoft, 0, 0);
619 }
620 }
621 return(intflags & 2);
622 }
623
624 static int
625 zsrint(cs, zc)
626 register struct zs_chanstate *cs;
627 register volatile struct zschan *zc;
628 {
629 register int c;
630
631 /*
632 * First read the status, because read of the received char
633 * destroy the status of this char.
634 */
635 c = ZS_READ(zc, 1);
636 c |= (zc->zc_data << 8);
637
638 /* clear receive error & interrupt condition */
639 zc->zc_csr = ZSWR0_RESET_ERRORS;
640 zc->zc_csr = ZSWR0_CLR_INTR;
641
642 return(ZRING_MAKE(ZRING_RINT, c));
643 }
644
645 static int
646 zsxint(cs, zc)
647 register struct zs_chanstate *cs;
648 register volatile struct zschan *zc;
649 {
650 register int i = cs->cs_tbc;
651
652 if(i == 0) {
653 zc->zc_csr = ZSWR0_RESET_TXINT;
654 zc->zc_csr = ZSWR0_CLR_INTR;
655 return(ZRING_MAKE(ZRING_XINT, 0));
656 }
657 cs->cs_tbc = i - 1;
658 zc->zc_data = *cs->cs_tba++;
659 zc->zc_csr = ZSWR0_CLR_INTR;
660 return (0);
661 }
662
663 static int
664 zssint(cs, zc)
665 register struct zs_chanstate *cs;
666 register volatile struct zschan *zc;
667 {
668 register int rr0;
669
670 rr0 = zc->zc_csr;
671 zc->zc_csr = ZSWR0_RESET_STATUS;
672 zc->zc_csr = ZSWR0_CLR_INTR;
673 /*
674 * The chip's hardware flow control is, as noted in zsreg.h,
675 * busted---if the DCD line goes low the chip shuts off the
676 * receiver (!). If we want hardware CTS flow control but do
677 * not have it, and carrier is now on, turn HFC on; if we have
678 * HFC now but carrier has gone low, turn it off.
679 */
680 if(rr0 & ZSRR0_DCD) {
681 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
682 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
683 cs->cs_creg[3] |= ZSWR3_HFC;
684 ZS_WRITE(zc, 3, cs->cs_creg[3]);
685 }
686 }
687 else {
688 if (cs->cs_creg[3] & ZSWR3_HFC) {
689 cs->cs_creg[3] &= ~ZSWR3_HFC;
690 ZS_WRITE(zc, 3, cs->cs_creg[3]);
691 }
692 }
693 return(ZRING_MAKE(ZRING_SINT, rr0));
694 }
695
696 /*
697 * Print out a ring or fifo overrun error message.
698 */
699 static void
700 zsoverrun(unit, ptime, what)
701 int unit;
702 long *ptime;
703 char *what;
704 {
705
706 if(*ptime != time.tv_sec) {
707 *ptime = time.tv_sec;
708 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
709 (unit & 1) + 'a', what);
710 }
711 }
712
713 /*
714 * ZS software interrupt. Scan all channels for deferred interrupts.
715 */
716 int
717 zssoft(sr)
718 long sr;
719 {
720 register struct zs_chanstate *cs;
721 register volatile struct zschan *zc;
722 register struct linesw *line;
723 register struct tty *tp;
724 register int get, n, c, cc, unit, s;
725 int retval = 0;
726
727 cb_scheduled = 0;
728 s = spltty();
729 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
730 get = cs->cs_rbget;
731 again:
732 n = cs->cs_rbput; /* atomic */
733 if(get == n) /* nothing more on this line */
734 continue;
735 retval = 1;
736 unit = cs->cs_unit; /* set up to handle interrupts */
737 zc = cs->cs_zc;
738 tp = cs->cs_ttyp;
739 line = tp->t_linesw;
740 /*
741 * Compute the number of interrupts in the receive ring.
742 * If the count is overlarge, we lost some events, and
743 * must advance to the first valid one. It may get
744 * overwritten if more data are arriving, but this is
745 * too expensive to check and gains nothing (we already
746 * lost out; all we can do at this point is trade one
747 * kind of loss for another).
748 */
749 n -= get;
750 if(n > ZLRB_RING_SIZE) {
751 zsoverrun(unit, &cs->cs_rotime, "ring");
752 get += n - ZLRB_RING_SIZE;
753 n = ZLRB_RING_SIZE;
754 }
755 while(--n >= 0) {
756 /* race to keep ahead of incoming interrupts */
757 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
758 switch (ZRING_TYPE(c)) {
759
760 case ZRING_RINT:
761 c = ZRING_VALUE(c);
762 if(c & ZSRR1_DO)
763 zsoverrun(unit, &cs->cs_fotime, "fifo");
764 cc = c >> 8;
765 if(c & ZSRR1_FE)
766 cc |= TTY_FE;
767 if(c & ZSRR1_PE)
768 cc |= TTY_PE;
769 line->l_rint(cc, tp);
770 break;
771
772 case ZRING_XINT:
773 /*
774 * Transmit done: change registers and resume,
775 * or clear BUSY.
776 */
777 if(cs->cs_heldchange) {
778 int sps;
779
780 sps = splzs();
781 c = zc->zc_csr;
782 if((c & ZSRR0_DCD) == 0)
783 cs->cs_preg[3] &= ~ZSWR3_HFC;
784 bcopy((caddr_t)cs->cs_preg,
785 (caddr_t)cs->cs_creg, 16);
786 zs_loadchannelregs(zc, cs->cs_creg);
787 splx(sps);
788 cs->cs_heldchange = 0;
789 if(cs->cs_heldtbc
790 && (tp->t_state & TS_TTSTOP) == 0) {
791 cs->cs_tbc = cs->cs_heldtbc - 1;
792 zc->zc_data = *cs->cs_tba++;
793 goto again;
794 }
795 }
796 tp->t_state &= ~TS_BUSY;
797 if(tp->t_state & TS_FLUSH)
798 tp->t_state &= ~TS_FLUSH;
799 else ndflush(&tp->t_outq,cs->cs_tba
800 - (caddr_t)tp->t_outq.c_cf);
801 line->l_start(tp);
802 break;
803
804 case ZRING_SINT:
805 /*
806 * Status line change. HFC bit is run in
807 * hardware interrupt, to avoid locking
808 * at splzs here.
809 */
810 c = ZRING_VALUE(c);
811 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
812 cc = (c & ZSRR0_DCD) != 0;
813 if(line->l_modem(tp, cc) == 0)
814 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
815 cc ? DMBIS : DMBIC);
816 }
817 cs->cs_rr0 = c;
818 break;
819
820 default:
821 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
822 unit >> 1, (unit & 1) + 'a', c);
823 break;
824 }
825 }
826 cs->cs_rbget = get;
827 goto again;
828 }
829 splx(s);
830 return (retval);
831 }
832
833 int
834 zsioctl(devvp, cmd, data, flag, p)
835 struct vnode *devvp;
836 u_long cmd;
837 caddr_t data;
838 int flag;
839 struct proc *p;
840 {
841 dev_t dev = vdev_rdev(devvp);
842 int unit = ZS_UNIT(dev);
843 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
844 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
845 register int error, s;
846 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
847
848 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
849 if(error >= 0)
850 return(error);
851 error = ttioctl(tp, devvp, cmd, data, flag, p);
852 if(error >= 0)
853 return (error);
854
855 switch (cmd) {
856 case TIOCSBRK:
857 s = splzs();
858 cs->cs_preg[5] |= ZSWR5_BREAK;
859 cs->cs_creg[5] |= ZSWR5_BREAK;
860 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
861 splx(s);
862 break;
863 case TIOCCBRK:
864 s = splzs();
865 cs->cs_preg[5] &= ~ZSWR5_BREAK;
866 cs->cs_creg[5] &= ~ZSWR5_BREAK;
867 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
868 splx(s);
869 break;
870 case TIOCGFLAGS: {
871 int bits = 0;
872
873 if(cs->cs_softcar)
874 bits |= TIOCFLAG_SOFTCAR;
875 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
876 bits |= TIOCFLAG_CLOCAL;
877 if(cs->cs_creg[3] & ZSWR3_HFC)
878 bits |= TIOCFLAG_CRTSCTS;
879 *(int *)data = bits;
880 break;
881 }
882 case TIOCSFLAGS: {
883 int userbits = 0;
884
885 error = suser(p->p_ucred, &p->p_acflag);
886 if(error != 0)
887 return (EPERM);
888
889 userbits = *(int *)data;
890
891 /*
892 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
893 # defaulting to software flow control.
894 */
895 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
896 return(EINVAL);
897 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
898 return(ENODEV);
899
900 s = splzs();
901 if((userbits & TIOCFLAG_SOFTCAR)) {
902 cs->cs_softcar = 1; /* turn on softcar */
903 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
904 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
905 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
906 }
907 else if(userbits & TIOCFLAG_CLOCAL) {
908 cs->cs_softcar = 0; /* turn off softcar */
909 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
910 cs->cs_creg[15] |= ZSWR15_DCD_IE;
911 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
912 tp->t_termios.c_cflag |= CLOCAL;
913 }
914 if(userbits & TIOCFLAG_CRTSCTS) {
915 cs->cs_preg[15] |= ZSWR15_CTS_IE;
916 cs->cs_creg[15] |= ZSWR15_CTS_IE;
917 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
918 cs->cs_preg[3] |= ZSWR3_HFC;
919 cs->cs_creg[3] |= ZSWR3_HFC;
920 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
921 tp->t_termios.c_cflag |= CRTSCTS;
922 }
923 else {
924 /* no mdmbuf, so we must want software flow control */
925 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
926 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
927 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
928 cs->cs_preg[3] &= ~ZSWR3_HFC;
929 cs->cs_creg[3] &= ~ZSWR3_HFC;
930 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
931 tp->t_termios.c_cflag &= ~CRTSCTS;
932 }
933 splx(s);
934 break;
935 }
936 case TIOCSDTR:
937 zs_modem(cs, ZSWR5_DTR, DMBIS);
938 break;
939 case TIOCCDTR:
940 zs_modem(cs, ZSWR5_DTR, DMBIC);
941 break;
942 case TIOCMGET:
943 zs_modem(cs, 0, DMGET);
944 break;
945 case TIOCMSET:
946 case TIOCMBIS:
947 case TIOCMBIC:
948 default:
949 return (ENOTTY);
950 }
951 return (0);
952 }
953
954 /*
955 * Start or restart transmission.
956 */
957 static void
958 zsstart(tp)
959 register struct tty *tp;
960 {
961 register struct zs_chanstate *cs;
962 register int s, nch;
963 int unit = ZS_UNIT(tp->t_dev);
964 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
965
966 cs = &zi->zi_cs[unit & 1];
967 s = spltty();
968
969 /*
970 * If currently active or delaying, no need to do anything.
971 */
972 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
973 goto out;
974
975 /*
976 * If there are sleepers, and output has drained below low
977 * water mark, awaken.
978 */
979 if(tp->t_outq.c_cc <= tp->t_lowat) {
980 if(tp->t_state & TS_ASLEEP) {
981 tp->t_state &= ~TS_ASLEEP;
982 wakeup((caddr_t)&tp->t_outq);
983 }
984 selwakeup(&tp->t_wsel);
985 }
986
987 nch = ndqb(&tp->t_outq, 0); /* XXX */
988 if(nch) {
989 register char *p = tp->t_outq.c_cf;
990
991 /* mark busy, enable tx done interrupts, & send first byte */
992 tp->t_state |= TS_BUSY;
993 (void) splzs();
994 cs->cs_preg[1] |= ZSWR1_TIE;
995 cs->cs_creg[1] |= ZSWR1_TIE;
996 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
997 cs->cs_zc->zc_data = *p;
998 cs->cs_tba = p + 1;
999 cs->cs_tbc = nch - 1;
1000 } else {
1001 /*
1002 * Nothing to send, turn off transmit done interrupts.
1003 * This is useful if something is doing polled output.
1004 */
1005 (void) splzs();
1006 cs->cs_preg[1] &= ~ZSWR1_TIE;
1007 cs->cs_creg[1] &= ~ZSWR1_TIE;
1008 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1009 }
1010 out:
1011 splx(s);
1012 }
1013
1014 /*
1015 * Stop output, e.g., for ^S or output flush.
1016 */
1017 void
1018 zsstop(tp, flag)
1019 register struct tty *tp;
1020 int flag;
1021 {
1022 register struct zs_chanstate *cs;
1023 register int s, unit = ZS_UNIT(tp->t_dev);
1024 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1025
1026 cs = &zi->zi_cs[unit & 1];
1027 s = splzs();
1028 if(tp->t_state & TS_BUSY) {
1029 /*
1030 * Device is transmitting; must stop it.
1031 */
1032 cs->cs_tbc = 0;
1033 if ((tp->t_state & TS_TTSTOP) == 0)
1034 tp->t_state |= TS_FLUSH;
1035 }
1036 splx(s);
1037 }
1038
1039 static void
1040 zs_shutdown(cs)
1041 struct zs_chanstate *cs;
1042 {
1043 struct tty *tp = cs->cs_ttyp;
1044 int s;
1045
1046 s = splzs();
1047
1048 /*
1049 * Hang up if necessary. Wait a bit, so the other side has time to
1050 * notice even if we immediately open the port again.
1051 */
1052 if(tp->t_cflag & HUPCL) {
1053 zs_modem(cs, 0, DMSET);
1054 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1055 }
1056
1057 /* Clear any break condition set with TIOCSBRK. */
1058 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1059 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1060 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1061 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1062 }
1063
1064 /*
1065 * Drop all lines and cancel interrupts
1066 */
1067 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1068 splx(s);
1069 }
1070
1071 /*
1072 * Set ZS tty parameters from termios.
1073 *
1074 * This routine makes use of the fact that only registers
1075 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1076 */
1077 static int
1078 zsparam(tp, t)
1079 register struct tty *tp;
1080 register struct termios *t;
1081 {
1082 int unit = ZS_UNIT(tp->t_dev);
1083 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1084 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1085 int cdiv, clkm, brgm, tcon;
1086 register int tmp, tmp5, cflag, s;
1087
1088 tmp = t->c_ospeed;
1089 tmp5 = t->c_ispeed;
1090 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1091 return(EINVAL);
1092 if(tmp == 0) {
1093 /* stty 0 => drop DTR and RTS */
1094 zs_modem(cs, 0, DMSET);
1095 return(0);
1096 }
1097 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1098 if (tmp < 0)
1099 return(EINVAL);
1100 tp->t_ispeed = tp->t_ospeed = tmp;
1101
1102 cflag = tp->t_cflag = t->c_cflag;
1103 if (cflag & CSTOPB)
1104 cdiv |= ZSWR4_TWOSB;
1105 else
1106 cdiv |= ZSWR4_ONESB;
1107 if (!(cflag & PARODD))
1108 cdiv |= ZSWR4_EVENP;
1109 if (cflag & PARENB)
1110 cdiv |= ZSWR4_PARENB;
1111
1112 switch(cflag & CSIZE) {
1113 case CS5:
1114 tmp = ZSWR3_RX_5;
1115 tmp5 = ZSWR5_TX_5;
1116 break;
1117 case CS6:
1118 tmp = ZSWR3_RX_6;
1119 tmp5 = ZSWR5_TX_6;
1120 break;
1121 case CS7:
1122 tmp = ZSWR3_RX_7;
1123 tmp5 = ZSWR5_TX_7;
1124 break;
1125 case CS8:
1126 default:
1127 tmp = ZSWR3_RX_8;
1128 tmp5 = ZSWR5_TX_8;
1129 break;
1130 }
1131 tmp |= ZSWR3_RX_ENABLE;
1132 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1133
1134 /*
1135 * Block interrupts so that state will not
1136 * be altered until we are done setting it up.
1137 */
1138 s = splzs();
1139 cs->cs_preg[4] = cdiv;
1140 cs->cs_preg[11] = clkm;
1141 cs->cs_preg[12] = tcon;
1142 cs->cs_preg[13] = tcon >> 8;
1143 cs->cs_preg[14] = brgm;
1144 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1145 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1146 cs->cs_preg[10] = ZSWR10_NRZ;
1147 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1148
1149 /*
1150 * Output hardware flow control on the chip is horrendous: if
1151 * carrier detect drops, the receiver is disabled. Hence we
1152 * can only do this when the carrier is on.
1153 */
1154 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1155 tmp |= ZSWR3_HFC;
1156 cs->cs_preg[3] = tmp;
1157 cs->cs_preg[5] = tmp5;
1158
1159 /*
1160 * If nothing is being transmitted, set up new current values,
1161 * else mark them as pending.
1162 */
1163 if(cs->cs_heldchange == 0) {
1164 if (cs->cs_ttyp->t_state & TS_BUSY) {
1165 cs->cs_heldtbc = cs->cs_tbc;
1166 cs->cs_tbc = 0;
1167 cs->cs_heldchange = 1;
1168 } else {
1169 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1170 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1171 }
1172 }
1173 splx(s);
1174 return (0);
1175 }
1176
1177 /*
1178 * search for the best matching baudrate
1179 */
1180 static int
1181 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1182 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1183 {
1184 int bestdiff, bestbps, source;
1185
1186 bestdiff = bestbps = 0;
1187 unit = (unit & 1) << 2;
1188 for (source = 0; source < 4; ++source) {
1189 long freq = zs_frequencies[unit + source];
1190 int diff, bps, div, clkm, brgm, tcon;
1191
1192 bps = div = clkm = brgm = tcon = 0;
1193 switch (source) {
1194 case 0: /* BRgen, PCLK */
1195 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1196 break;
1197 case 1: /* BRgen, RTxC */
1198 brgm = ZSWR14_BAUD_ENA;
1199 break;
1200 case 2: /* RTxC */
1201 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1202 break;
1203 case 3: /* TRxC */
1204 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1205 break;
1206 }
1207 switch (source) {
1208 case 0:
1209 case 1:
1210 div = ZSWR4_CLK_X16;
1211 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1212 tcon = BPS_TO_TCONST(freq, wanted);
1213 if (tcon < 0)
1214 tcon = 0;
1215 bps = TCONST_TO_BPS(freq, tcon);
1216 break;
1217 case 2:
1218 case 3:
1219 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1220 int b2 = freq / 32, d2 = abs(b2 - wanted);
1221 int b3 = freq / 64, d3 = abs(b3 - wanted);
1222
1223 if (d1 < d2 && d1 < d3) {
1224 div = ZSWR4_CLK_X16;
1225 bps = b1;
1226 } else if (d2 < d3 && d2 < d1) {
1227 div = ZSWR4_CLK_X32;
1228 bps = b2;
1229 } else {
1230 div = ZSWR4_CLK_X64;
1231 bps = b3;
1232 }
1233 brgm = tcon = 0;
1234 break;
1235 }
1236 }
1237 diff = abs(bps - wanted);
1238 if (!source || diff < bestdiff) {
1239 *divisor = div;
1240 *clockmode = clkm;
1241 *brgenmode = brgm;
1242 *timeconst = tcon;
1243 bestbps = bps;
1244 bestdiff = diff;
1245 if (diff == 0)
1246 break;
1247 }
1248 }
1249 /* Allow deviations upto 5% */
1250 if (20 * bestdiff > wanted)
1251 return -1;
1252 return bestbps;
1253 }
1254
1255 /*
1256 * Raise or lower modem control (DTR/RTS) signals. If a character is
1257 * in transmission, the change is deferred.
1258 */
1259 static int
1260 zs_modem(cs, bits, how)
1261 struct zs_chanstate *cs;
1262 int bits, how;
1263 {
1264 int s, mbits;
1265
1266 bits &= ZSWR5_DTR | ZSWR5_RTS;
1267
1268 s = splzs();
1269 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1270
1271 switch(how) {
1272 case DMSET:
1273 mbits = bits;
1274 break;
1275 case DMBIS:
1276 mbits |= bits;
1277 break;
1278 case DMBIC:
1279 mbits &= ~bits;
1280 break;
1281 case DMGET:
1282 splx(s);
1283 return(mbits);
1284 }
1285
1286 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1287 if(cs->cs_heldchange == 0) {
1288 if(cs->cs_ttyp->t_state & TS_BUSY) {
1289 cs->cs_heldtbc = cs->cs_tbc;
1290 cs->cs_tbc = 0;
1291 cs->cs_heldchange = 1;
1292 }
1293 else {
1294 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1295 }
1296 }
1297 splx(s);
1298 return(0);
1299 }
1300
1301 /*
1302 * Write the given register set to the given zs channel in the proper order.
1303 * The channel must not be transmitting at the time. The receiver will
1304 * be disabled for the time it takes to write all the registers.
1305 */
1306 static void
1307 zs_loadchannelregs(zc, reg)
1308 volatile struct zschan *zc;
1309 u_char *reg;
1310 {
1311 int i;
1312
1313 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1314 i = zc->zc_data; /* drain fifo */
1315 i = zc->zc_data;
1316 i = zc->zc_data;
1317 ZS_WRITE(zc, 4, reg[4]);
1318 ZS_WRITE(zc, 10, reg[10]);
1319 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1320 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1321 ZS_WRITE(zc, 1, reg[1]);
1322 ZS_WRITE(zc, 9, reg[9]);
1323 ZS_WRITE(zc, 11, reg[11]);
1324 ZS_WRITE(zc, 12, reg[12]);
1325 ZS_WRITE(zc, 13, reg[13]);
1326 ZS_WRITE(zc, 14, reg[14]);
1327 ZS_WRITE(zc, 15, reg[15]);
1328 ZS_WRITE(zc, 3, reg[3]);
1329 ZS_WRITE(zc, 5, reg[5]);
1330 }
1331 #endif /* NZS > 1 */
1332