zs.c revision 1.34.8.3 1 /* $NetBSD: zs.c,v 1.34.8.3 2002/09/17 21:13:49 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81
82 #if NZS > 0
83
84 #define PCLK (8053976) /* PCLK pin input clock rate */
85 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
86
87 #define splzs spl5
88
89 /*
90 * Software state per found chip.
91 */
92 struct zs_softc {
93 struct device zi_dev; /* base device */
94 volatile struct zsdevice *zi_zs; /* chip registers */
95 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
96 };
97
98 static u_char cb_scheduled = 0; /* Already asked for callback? */
99 /*
100 * Define the registers for a closed port
101 */
102 static u_char zs_init_regs[16] = {
103 /* 0 */ 0,
104 /* 1 */ 0,
105 /* 2 */ 0x60,
106 /* 3 */ 0,
107 /* 4 */ 0,
108 /* 5 */ 0,
109 /* 6 */ 0,
110 /* 7 */ 0,
111 /* 8 */ 0,
112 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */ ZSWR10_NRZ,
114 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */ 0,
116 /* 13 */ 0,
117 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */ 0
119 };
120
121 /*
122 * Define the machine dependant clock frequencies
123 * If BRgen feeds sender/receiver we always use a
124 * divisor 16, therefor the division by 16 can as
125 * well be done here.
126 */
127 static u_long zs_freqs_tt[] = {
128 /*
129 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 * which is set to 307.2KHz during initialisation
131 * and never changed afterwards.
132 */
133 PCLK/16, /* BRgen, PCLK, divisor 16 */
134 229500, /* BRgen, RTxCA, divisor 16 */
135 3672000, /* RTxCA, from PCLK4 */
136 0, /* TRxCA, external */
137
138 PCLK/16, /* BRgen, PCLK, divisor 16 */
139 19200, /* BRgen, RTxCB, divisor 16 */
140 307200, /* RTxCB, from TT-MFP TCO */
141 2457600 /* TRxCB, from BCLK */
142 };
143
144 static u_long zs_freqs_falcon[] = {
145 /*
146 * Atari Falcon, XXX no specs available, this might be wrong
147 */
148 PCLK/16, /* BRgen, PCLK, divisor 16 */
149 229500, /* BRgen, RTxCA, divisor 16 */
150 3672000, /* RTxCA, ??? */
151 0, /* TRxCA, external */
152
153 PCLK/16, /* BRgen, PCLK, divisor 16 */
154 229500, /* BRgen, RTxCB, divisor 16 */
155 3672000, /* RTxCB, ??? */
156 2457600 /* TRxCB, ??? */
157 };
158
159 static u_long zs_freqs_hades[] = {
160 /*
161 * XXX: Channel-A unchecked!!!!!
162 */
163 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
164 229500, /* BRgen, RTxCA, divisor 16 */
165 3672000, /* RTxCA, from PCLK4 */
166 0, /* TRxCA, external */
167
168 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
169 235550, /* BRgen, RTxCB, divisor 16 */
170 3768800, /* RTxCB, 3.7688MHz */
171 3768800 /* TRxCB, 3.7688MHz */
172 };
173
174 static u_long zs_freqs_generic[] = {
175 /*
176 * other machines, assume only PCLK is available
177 */
178 PCLK/16, /* BRgen, PCLK, divisor 16 */
179 0, /* BRgen, RTxCA, divisor 16 */
180 0, /* RTxCA, unknown */
181 0, /* TRxCA, unknown */
182
183 PCLK/16, /* BRgen, PCLK, divisor 16 */
184 0, /* BRgen, RTxCB, divisor 16 */
185 0, /* RTxCB, unknown */
186 0 /* TRxCB, unknown */
187 };
188 static u_long *zs_frequencies;
189
190 /* Definition of the driver for autoconfig. */
191 static int zsmatch __P((struct device *, struct cfdata *, void *));
192 static void zsattach __P((struct device *, struct device *, void *));
193
194 struct cfattach zs_ca = {
195 sizeof(struct zs_softc), zsmatch, zsattach
196 };
197
198 extern struct cfdriver zs_cd;
199
200 /* {b,c}devsw[] function prototypes */
201 dev_type_open(zsopen);
202 dev_type_close(zsclose);
203 dev_type_read(zsread);
204 dev_type_write(zswrite);
205 dev_type_ioctl(zsioctl);
206 dev_type_stop(zsstop);
207 dev_type_tty(zstty);
208 dev_type_poll(zspoll);
209
210 const struct cdevsw zs_cdevsw = {
211 zsopen, zsclose, zsread, zswrite, zsioctl,
212 zsstop, zstty, zspoll, nommap, D_TTY
213 };
214
215 /* Interrupt handlers. */
216 int zshard __P((long));
217 static int zssoft __P((long));
218 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
219 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
220 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
221
222 static struct zs_chanstate *zslist;
223
224 /* Routines called from other code. */
225 static void zsstart __P((struct tty *));
226
227 /* Routines purely local to this driver. */
228 static void zsoverrun __P((int, long *, char *));
229 static int zsparam __P((struct tty *, struct termios *));
230 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
231 static int zs_modem __P((struct zs_chanstate *, int, int));
232 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
233 static void zs_shutdown __P((struct zs_chanstate *));
234
235 static int zsshortcuts; /* number of "shortcut" software interrupts */
236
237 static int
238 zsmatch(pdp, cfp, auxp)
239 struct device *pdp;
240 struct cfdata *cfp;
241 void *auxp;
242 {
243 static int zs_matched = 0;
244
245 if(strcmp("zs", auxp) || zs_matched)
246 return(0);
247 zs_matched = 1;
248 return(1);
249 }
250
251 /*
252 * Attach a found zs.
253 */
254 static void
255 zsattach(parent, dev, aux)
256 struct device *parent;
257 struct device *dev;
258 void *aux;
259 {
260 register struct zs_softc *zi;
261 register struct zs_chanstate *cs;
262 register volatile struct zsdevice *addr;
263 char tmp;
264
265 addr = (struct zsdevice *)AD_SCC;
266 zi = (struct zs_softc *)dev;
267 zi->zi_zs = addr;
268 cs = zi->zi_cs;
269
270 /*
271 * Get the command register into a known state.
272 */
273 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
274 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
275 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
276 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
277
278 /*
279 * Do a hardware reset.
280 */
281 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
282 delay(50000); /*enough ? */
283 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
284
285 /*
286 * Initialize both channels
287 */
288 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
289 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
290
291 if(machineid & ATARI_TT) {
292 /*
293 * ininitialise TT-MFP timer C: 307200Hz
294 * timer C and D share one control register:
295 * bits 0-2 control timer D
296 * bits 4-6 control timer C
297 */
298 int cr = MFP2->mf_tcdcr & 7;
299 MFP2->mf_tcdcr = cr; /* stop timer C */
300 MFP2->mf_tcdr = 1; /* counter 1 */
301 cr |= T_Q004 << 4; /* divisor 4 */
302 MFP2->mf_tcdcr = cr; /* start timer C */
303 /*
304 * enable scc related interrupts
305 */
306 SCU->vme_mask |= SCU_SCC;
307
308 zs_frequencies = zs_freqs_tt;
309 } else if (machineid & ATARI_FALCON) {
310 zs_frequencies = zs_freqs_falcon;
311 } else if (machineid & ATARI_HADES) {
312 zs_frequencies = zs_freqs_hades;
313 } else {
314 zs_frequencies = zs_freqs_generic;
315 }
316
317 /* link into interrupt list with order (A,B) (B=A+1) */
318 cs[0].cs_next = &cs[1];
319 cs[1].cs_next = zslist;
320 zslist = cs;
321
322 cs->cs_unit = 0;
323 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
324 cs++;
325 cs->cs_unit = 1;
326 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
327
328 printf(": serial2 on channel a and modem2 on channel b\n");
329 }
330
331 /*
332 * Open a zs serial port.
333 */
334 int
335 zsopen(dev, flags, mode, p)
336 dev_t dev;
337 int flags;
338 int mode;
339 struct proc *p;
340 {
341 register struct tty *tp;
342 register struct zs_chanstate *cs;
343 struct zs_softc *zi;
344 int unit = ZS_UNIT(dev);
345 int zs = unit >> 1;
346 int error, s;
347
348 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
349 return (ENXIO);
350 cs = &zi->zi_cs[unit & 1];
351
352 /*
353 * When port A (ser02) is selected on the TT, make sure
354 * the port is enabled.
355 */
356 if((machineid & ATARI_TT) && !(unit & 1))
357 ym2149_ser2(1);
358
359 if (cs->cs_rbuf == NULL) {
360 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
361 M_WAITOK);
362 }
363
364 tp = cs->cs_ttyp;
365 if(tp == NULL) {
366 cs->cs_ttyp = tp = ttymalloc();
367 tty_attach(tp);
368 tp->t_dev = dev;
369 tp->t_oproc = zsstart;
370 tp->t_param = zsparam;
371 }
372
373 if ((tp->t_state & TS_ISOPEN) &&
374 (tp->t_state & TS_XCLUDE) &&
375 p->p_ucred->cr_uid != 0)
376 return (EBUSY);
377
378 s = spltty();
379
380 /*
381 * Do the following iff this is a first open.
382 */
383 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
384 if(tp->t_ispeed == 0) {
385 tp->t_iflag = TTYDEF_IFLAG;
386 tp->t_oflag = TTYDEF_OFLAG;
387 tp->t_cflag = TTYDEF_CFLAG;
388 tp->t_lflag = TTYDEF_LFLAG;
389 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
390 }
391 ttychars(tp);
392 ttsetwater(tp);
393
394 (void)zsparam(tp, &tp->t_termios);
395
396 /*
397 * Turn on DTR. We must always do this, even if carrier is not
398 * present, because otherwise we'd have to use TIOCSDTR
399 * immediately after setting CLOCAL, which applications do not
400 * expect. We always assert DTR while the device is open
401 * unless explicitly requested to deassert it.
402 */
403 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
404 /* May never get a status intr. if DCD already on. -gwr */
405 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
406 tp->t_state |= TS_CARR_ON;
407 if(cs->cs_softcar)
408 tp->t_state |= TS_CARR_ON;
409 }
410
411 splx(s);
412
413 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
414 if (error)
415 goto bad;
416
417 error = tp->t_linesw->l_open(dev, tp);
418 if(error)
419 goto bad;
420 return (0);
421
422 bad:
423 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
424 /*
425 * We failed to open the device, and nobody else had it opened.
426 * Clean up the state as appropriate.
427 */
428 zs_shutdown(cs);
429 }
430 return(error);
431 }
432
433 /*
434 * Close a zs serial port.
435 */
436 int
437 zsclose(dev, flags, mode, p)
438 dev_t dev;
439 int flags;
440 int mode;
441 struct proc *p;
442 {
443 register struct zs_chanstate *cs;
444 register struct tty *tp;
445 struct zs_softc *zi;
446 int unit = ZS_UNIT(dev);
447
448 zi = zs_cd.cd_devs[unit >> 1];
449 cs = &zi->zi_cs[unit & 1];
450 tp = cs->cs_ttyp;
451
452 tp->t_linesw->l_close(tp, flags);
453 ttyclose(tp);
454
455 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
456 /*
457 * Although we got a last close, the device may still be in
458 * use; e.g. if this was the dialout node, and there are still
459 * processes waiting for carrier on the non-dialout node.
460 */
461 zs_shutdown(cs);
462 }
463 return (0);
464 }
465
466 /*
467 * Read/write zs serial port.
468 */
469 int
470 zsread(dev, uio, flags)
471 dev_t dev;
472 struct uio *uio;
473 int flags;
474 {
475 register struct zs_chanstate *cs;
476 register struct zs_softc *zi;
477 register struct tty *tp;
478 int unit;
479
480 unit = ZS_UNIT(dev);
481 zi = zs_cd.cd_devs[unit >> 1];
482 cs = &zi->zi_cs[unit & 1];
483 tp = cs->cs_ttyp;
484
485 return(tp->t_linesw->l_read(tp, uio, flags));
486 }
487
488 int
489 zswrite(dev, uio, flags)
490 dev_t dev;
491 struct uio *uio;
492 int flags;
493 {
494 register struct zs_chanstate *cs;
495 register struct zs_softc *zi;
496 register struct tty *tp;
497 int unit;
498
499 unit = ZS_UNIT(dev);
500 zi = zs_cd.cd_devs[unit >> 1];
501 cs = &zi->zi_cs[unit & 1];
502 tp = cs->cs_ttyp;
503
504 return(tp->t_linesw->l_write(tp, uio, flags));
505 }
506
507 int
508 zspoll(dev, events, p)
509 dev_t dev;
510 int events;
511 struct proc *p;
512 {
513 register struct zs_chanstate *cs;
514 register struct zs_softc *zi;
515 register struct tty *tp;
516 int unit;
517
518 unit = ZS_UNIT(dev);
519 zi = zs_cd.cd_devs[unit >> 1];
520 cs = &zi->zi_cs[unit & 1];
521 tp = cs->cs_ttyp;
522
523 return ((*tp->t_linesw->l_poll)(tp, events, p));
524 }
525
526 struct tty *
527 zstty(dev)
528 dev_t dev;
529 {
530 register struct zs_chanstate *cs;
531 register struct zs_softc *zi;
532 int unit;
533
534 unit = ZS_UNIT(dev);
535 zi = zs_cd.cd_devs[unit >> 1];
536 cs = &zi->zi_cs[unit & 1];
537 return(cs->cs_ttyp);
538 }
539
540 /*
541 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
542 * channels are kept in (A,B) pairs.
543 *
544 * Do just a little, then get out; set a software interrupt if more
545 * work is needed.
546 *
547 * We deliberately ignore the vectoring Zilog gives us, and match up
548 * only the number of `reset interrupt under service' operations, not
549 * the order.
550 */
551
552 int
553 zshard(sr)
554 long sr;
555 {
556 register struct zs_chanstate *a;
557 #define b (a + 1)
558 register volatile struct zschan *zc;
559 register int rr3, intflags = 0, v, i;
560
561 do {
562 intflags &= ~4;
563 for(a = zslist; a != NULL; a = b->cs_next) {
564 rr3 = ZS_READ(a->cs_zc, 3);
565 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
566 intflags |= 4|2;
567 zc = a->cs_zc;
568 i = a->cs_rbput;
569 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
570 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
571 intflags |= 1;
572 }
573 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
574 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
575 intflags |= 1;
576 }
577 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
578 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
579 intflags |= 1;
580 }
581 a->cs_rbput = i;
582 }
583 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
584 intflags |= 4|2;
585 zc = b->cs_zc;
586 i = b->cs_rbput;
587 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
588 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
589 intflags |= 1;
590 }
591 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
592 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
593 intflags |= 1;
594 }
595 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
596 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
597 intflags |= 1;
598 }
599 b->cs_rbput = i;
600 }
601 }
602 } while(intflags & 4);
603 #undef b
604
605 if(intflags & 1) {
606 if(BASEPRI(sr)) {
607 spl1();
608 zsshortcuts++;
609 return(zssoft(sr));
610 }
611 else if(!cb_scheduled) {
612 cb_scheduled++;
613 add_sicallback((si_farg)zssoft, 0, 0);
614 }
615 }
616 return(intflags & 2);
617 }
618
619 static int
620 zsrint(cs, zc)
621 register struct zs_chanstate *cs;
622 register volatile struct zschan *zc;
623 {
624 register int c;
625
626 /*
627 * First read the status, because read of the received char
628 * destroy the status of this char.
629 */
630 c = ZS_READ(zc, 1);
631 c |= (zc->zc_data << 8);
632
633 /* clear receive error & interrupt condition */
634 zc->zc_csr = ZSWR0_RESET_ERRORS;
635 zc->zc_csr = ZSWR0_CLR_INTR;
636
637 return(ZRING_MAKE(ZRING_RINT, c));
638 }
639
640 static int
641 zsxint(cs, zc)
642 register struct zs_chanstate *cs;
643 register volatile struct zschan *zc;
644 {
645 register int i = cs->cs_tbc;
646
647 if(i == 0) {
648 zc->zc_csr = ZSWR0_RESET_TXINT;
649 zc->zc_csr = ZSWR0_CLR_INTR;
650 return(ZRING_MAKE(ZRING_XINT, 0));
651 }
652 cs->cs_tbc = i - 1;
653 zc->zc_data = *cs->cs_tba++;
654 zc->zc_csr = ZSWR0_CLR_INTR;
655 return (0);
656 }
657
658 static int
659 zssint(cs, zc)
660 register struct zs_chanstate *cs;
661 register volatile struct zschan *zc;
662 {
663 register int rr0;
664
665 rr0 = zc->zc_csr;
666 zc->zc_csr = ZSWR0_RESET_STATUS;
667 zc->zc_csr = ZSWR0_CLR_INTR;
668 /*
669 * The chip's hardware flow control is, as noted in zsreg.h,
670 * busted---if the DCD line goes low the chip shuts off the
671 * receiver (!). If we want hardware CTS flow control but do
672 * not have it, and carrier is now on, turn HFC on; if we have
673 * HFC now but carrier has gone low, turn it off.
674 */
675 if(rr0 & ZSRR0_DCD) {
676 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
677 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
678 cs->cs_creg[3] |= ZSWR3_HFC;
679 ZS_WRITE(zc, 3, cs->cs_creg[3]);
680 }
681 }
682 else {
683 if (cs->cs_creg[3] & ZSWR3_HFC) {
684 cs->cs_creg[3] &= ~ZSWR3_HFC;
685 ZS_WRITE(zc, 3, cs->cs_creg[3]);
686 }
687 }
688 return(ZRING_MAKE(ZRING_SINT, rr0));
689 }
690
691 /*
692 * Print out a ring or fifo overrun error message.
693 */
694 static void
695 zsoverrun(unit, ptime, what)
696 int unit;
697 long *ptime;
698 char *what;
699 {
700
701 if(*ptime != time.tv_sec) {
702 *ptime = time.tv_sec;
703 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
704 (unit & 1) + 'a', what);
705 }
706 }
707
708 /*
709 * ZS software interrupt. Scan all channels for deferred interrupts.
710 */
711 int
712 zssoft(sr)
713 long sr;
714 {
715 register struct zs_chanstate *cs;
716 register volatile struct zschan *zc;
717 register struct linesw *line;
718 register struct tty *tp;
719 register int get, n, c, cc, unit, s;
720 int retval = 0;
721
722 cb_scheduled = 0;
723 s = spltty();
724 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
725 get = cs->cs_rbget;
726 again:
727 n = cs->cs_rbput; /* atomic */
728 if(get == n) /* nothing more on this line */
729 continue;
730 retval = 1;
731 unit = cs->cs_unit; /* set up to handle interrupts */
732 zc = cs->cs_zc;
733 tp = cs->cs_ttyp;
734 line = tp->t_linesw;
735 /*
736 * Compute the number of interrupts in the receive ring.
737 * If the count is overlarge, we lost some events, and
738 * must advance to the first valid one. It may get
739 * overwritten if more data are arriving, but this is
740 * too expensive to check and gains nothing (we already
741 * lost out; all we can do at this point is trade one
742 * kind of loss for another).
743 */
744 n -= get;
745 if(n > ZLRB_RING_SIZE) {
746 zsoverrun(unit, &cs->cs_rotime, "ring");
747 get += n - ZLRB_RING_SIZE;
748 n = ZLRB_RING_SIZE;
749 }
750 while(--n >= 0) {
751 /* race to keep ahead of incoming interrupts */
752 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
753 switch (ZRING_TYPE(c)) {
754
755 case ZRING_RINT:
756 c = ZRING_VALUE(c);
757 if(c & ZSRR1_DO)
758 zsoverrun(unit, &cs->cs_fotime, "fifo");
759 cc = c >> 8;
760 if(c & ZSRR1_FE)
761 cc |= TTY_FE;
762 if(c & ZSRR1_PE)
763 cc |= TTY_PE;
764 line->l_rint(cc, tp);
765 break;
766
767 case ZRING_XINT:
768 /*
769 * Transmit done: change registers and resume,
770 * or clear BUSY.
771 */
772 if(cs->cs_heldchange) {
773 int sps;
774
775 sps = splzs();
776 c = zc->zc_csr;
777 if((c & ZSRR0_DCD) == 0)
778 cs->cs_preg[3] &= ~ZSWR3_HFC;
779 bcopy((caddr_t)cs->cs_preg,
780 (caddr_t)cs->cs_creg, 16);
781 zs_loadchannelregs(zc, cs->cs_creg);
782 splx(sps);
783 cs->cs_heldchange = 0;
784 if(cs->cs_heldtbc
785 && (tp->t_state & TS_TTSTOP) == 0) {
786 cs->cs_tbc = cs->cs_heldtbc - 1;
787 zc->zc_data = *cs->cs_tba++;
788 goto again;
789 }
790 }
791 tp->t_state &= ~TS_BUSY;
792 if(tp->t_state & TS_FLUSH)
793 tp->t_state &= ~TS_FLUSH;
794 else ndflush(&tp->t_outq,cs->cs_tba
795 - (caddr_t)tp->t_outq.c_cf);
796 line->l_start(tp);
797 break;
798
799 case ZRING_SINT:
800 /*
801 * Status line change. HFC bit is run in
802 * hardware interrupt, to avoid locking
803 * at splzs here.
804 */
805 c = ZRING_VALUE(c);
806 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
807 cc = (c & ZSRR0_DCD) != 0;
808 if(line->l_modem(tp, cc) == 0)
809 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
810 cc ? DMBIS : DMBIC);
811 }
812 cs->cs_rr0 = c;
813 break;
814
815 default:
816 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
817 unit >> 1, (unit & 1) + 'a', c);
818 break;
819 }
820 }
821 cs->cs_rbget = get;
822 goto again;
823 }
824 splx(s);
825 return (retval);
826 }
827
828 int
829 zsioctl(dev, cmd, data, flag, p)
830 dev_t dev;
831 u_long cmd;
832 caddr_t data;
833 int flag;
834 struct proc *p;
835 {
836 int unit = ZS_UNIT(dev);
837 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
838 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
839 register int error, s;
840 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
841
842 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
843 if(error != EPASSTHROUGH)
844 return(error);
845
846 error = ttioctl(tp, cmd, data, flag, p);
847 if(error !=EPASSTHROUGH)
848 return (error);
849
850 switch (cmd) {
851 case TIOCSBRK:
852 s = splzs();
853 cs->cs_preg[5] |= ZSWR5_BREAK;
854 cs->cs_creg[5] |= ZSWR5_BREAK;
855 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
856 splx(s);
857 break;
858 case TIOCCBRK:
859 s = splzs();
860 cs->cs_preg[5] &= ~ZSWR5_BREAK;
861 cs->cs_creg[5] &= ~ZSWR5_BREAK;
862 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
863 splx(s);
864 break;
865 case TIOCGFLAGS: {
866 int bits = 0;
867
868 if(cs->cs_softcar)
869 bits |= TIOCFLAG_SOFTCAR;
870 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
871 bits |= TIOCFLAG_CLOCAL;
872 if(cs->cs_creg[3] & ZSWR3_HFC)
873 bits |= TIOCFLAG_CRTSCTS;
874 *(int *)data = bits;
875 break;
876 }
877 case TIOCSFLAGS: {
878 int userbits = 0;
879
880 error = suser(p->p_ucred, &p->p_acflag);
881 if(error != 0)
882 return (EPERM);
883
884 userbits = *(int *)data;
885
886 /*
887 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
888 # defaulting to software flow control.
889 */
890 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
891 return(EINVAL);
892 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
893 return(ENODEV);
894
895 s = splzs();
896 if((userbits & TIOCFLAG_SOFTCAR)) {
897 cs->cs_softcar = 1; /* turn on softcar */
898 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
899 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
900 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
901 }
902 else if(userbits & TIOCFLAG_CLOCAL) {
903 cs->cs_softcar = 0; /* turn off softcar */
904 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
905 cs->cs_creg[15] |= ZSWR15_DCD_IE;
906 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
907 tp->t_termios.c_cflag |= CLOCAL;
908 }
909 if(userbits & TIOCFLAG_CRTSCTS) {
910 cs->cs_preg[15] |= ZSWR15_CTS_IE;
911 cs->cs_creg[15] |= ZSWR15_CTS_IE;
912 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
913 cs->cs_preg[3] |= ZSWR3_HFC;
914 cs->cs_creg[3] |= ZSWR3_HFC;
915 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
916 tp->t_termios.c_cflag |= CRTSCTS;
917 }
918 else {
919 /* no mdmbuf, so we must want software flow control */
920 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
921 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
922 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
923 cs->cs_preg[3] &= ~ZSWR3_HFC;
924 cs->cs_creg[3] &= ~ZSWR3_HFC;
925 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
926 tp->t_termios.c_cflag &= ~CRTSCTS;
927 }
928 splx(s);
929 break;
930 }
931 case TIOCSDTR:
932 zs_modem(cs, ZSWR5_DTR, DMBIS);
933 break;
934 case TIOCCDTR:
935 zs_modem(cs, ZSWR5_DTR, DMBIC);
936 break;
937 case TIOCMGET:
938 zs_modem(cs, 0, DMGET);
939 break;
940 case TIOCMSET:
941 case TIOCMBIS:
942 case TIOCMBIC:
943 default:
944 return (EPASSTHROUGH);
945 }
946 return (0);
947 }
948
949 /*
950 * Start or restart transmission.
951 */
952 static void
953 zsstart(tp)
954 register struct tty *tp;
955 {
956 register struct zs_chanstate *cs;
957 register int s, nch;
958 int unit = ZS_UNIT(tp->t_dev);
959 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
960
961 cs = &zi->zi_cs[unit & 1];
962 s = spltty();
963
964 /*
965 * If currently active or delaying, no need to do anything.
966 */
967 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
968 goto out;
969
970 /*
971 * If there are sleepers, and output has drained below low
972 * water mark, awaken.
973 */
974 if(tp->t_outq.c_cc <= tp->t_lowat) {
975 if(tp->t_state & TS_ASLEEP) {
976 tp->t_state &= ~TS_ASLEEP;
977 wakeup((caddr_t)&tp->t_outq);
978 }
979 selwakeup(&tp->t_wsel);
980 }
981
982 nch = ndqb(&tp->t_outq, 0); /* XXX */
983 if(nch) {
984 register char *p = tp->t_outq.c_cf;
985
986 /* mark busy, enable tx done interrupts, & send first byte */
987 tp->t_state |= TS_BUSY;
988 (void) splzs();
989 cs->cs_preg[1] |= ZSWR1_TIE;
990 cs->cs_creg[1] |= ZSWR1_TIE;
991 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
992 cs->cs_zc->zc_data = *p;
993 cs->cs_tba = p + 1;
994 cs->cs_tbc = nch - 1;
995 } else {
996 /*
997 * Nothing to send, turn off transmit done interrupts.
998 * This is useful if something is doing polled output.
999 */
1000 (void) splzs();
1001 cs->cs_preg[1] &= ~ZSWR1_TIE;
1002 cs->cs_creg[1] &= ~ZSWR1_TIE;
1003 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1004 }
1005 out:
1006 splx(s);
1007 }
1008
1009 /*
1010 * Stop output, e.g., for ^S or output flush.
1011 */
1012 void
1013 zsstop(tp, flag)
1014 register struct tty *tp;
1015 int flag;
1016 {
1017 register struct zs_chanstate *cs;
1018 register int s, unit = ZS_UNIT(tp->t_dev);
1019 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1020
1021 cs = &zi->zi_cs[unit & 1];
1022 s = splzs();
1023 if(tp->t_state & TS_BUSY) {
1024 /*
1025 * Device is transmitting; must stop it.
1026 */
1027 cs->cs_tbc = 0;
1028 if ((tp->t_state & TS_TTSTOP) == 0)
1029 tp->t_state |= TS_FLUSH;
1030 }
1031 splx(s);
1032 }
1033
1034 static void
1035 zs_shutdown(cs)
1036 struct zs_chanstate *cs;
1037 {
1038 struct tty *tp = cs->cs_ttyp;
1039 int s;
1040
1041 s = splzs();
1042
1043 /*
1044 * Hang up if necessary. Wait a bit, so the other side has time to
1045 * notice even if we immediately open the port again.
1046 */
1047 if(tp->t_cflag & HUPCL) {
1048 zs_modem(cs, 0, DMSET);
1049 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1050 }
1051
1052 /* Clear any break condition set with TIOCSBRK. */
1053 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1054 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1055 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1056 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1057 }
1058
1059 /*
1060 * Drop all lines and cancel interrupts
1061 */
1062 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1063 splx(s);
1064 }
1065
1066 /*
1067 * Set ZS tty parameters from termios.
1068 *
1069 * This routine makes use of the fact that only registers
1070 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1071 */
1072 static int
1073 zsparam(tp, t)
1074 register struct tty *tp;
1075 register struct termios *t;
1076 {
1077 int unit = ZS_UNIT(tp->t_dev);
1078 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1079 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1080 int cdiv, clkm, brgm, tcon;
1081 register int tmp, tmp5, cflag, s;
1082
1083 tmp = t->c_ospeed;
1084 tmp5 = t->c_ispeed;
1085 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1086 return(EINVAL);
1087 if(tmp == 0) {
1088 /* stty 0 => drop DTR and RTS */
1089 zs_modem(cs, 0, DMSET);
1090 return(0);
1091 }
1092 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1093 if (tmp < 0)
1094 return(EINVAL);
1095 tp->t_ispeed = tp->t_ospeed = tmp;
1096
1097 cflag = tp->t_cflag = t->c_cflag;
1098 if (cflag & CSTOPB)
1099 cdiv |= ZSWR4_TWOSB;
1100 else
1101 cdiv |= ZSWR4_ONESB;
1102 if (!(cflag & PARODD))
1103 cdiv |= ZSWR4_EVENP;
1104 if (cflag & PARENB)
1105 cdiv |= ZSWR4_PARENB;
1106
1107 switch(cflag & CSIZE) {
1108 case CS5:
1109 tmp = ZSWR3_RX_5;
1110 tmp5 = ZSWR5_TX_5;
1111 break;
1112 case CS6:
1113 tmp = ZSWR3_RX_6;
1114 tmp5 = ZSWR5_TX_6;
1115 break;
1116 case CS7:
1117 tmp = ZSWR3_RX_7;
1118 tmp5 = ZSWR5_TX_7;
1119 break;
1120 case CS8:
1121 default:
1122 tmp = ZSWR3_RX_8;
1123 tmp5 = ZSWR5_TX_8;
1124 break;
1125 }
1126 tmp |= ZSWR3_RX_ENABLE;
1127 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1128
1129 /*
1130 * Block interrupts so that state will not
1131 * be altered until we are done setting it up.
1132 */
1133 s = splzs();
1134 cs->cs_preg[4] = cdiv;
1135 cs->cs_preg[11] = clkm;
1136 cs->cs_preg[12] = tcon;
1137 cs->cs_preg[13] = tcon >> 8;
1138 cs->cs_preg[14] = brgm;
1139 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1140 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1141 cs->cs_preg[10] = ZSWR10_NRZ;
1142 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1143
1144 /*
1145 * Output hardware flow control on the chip is horrendous: if
1146 * carrier detect drops, the receiver is disabled. Hence we
1147 * can only do this when the carrier is on.
1148 */
1149 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1150 tmp |= ZSWR3_HFC;
1151 cs->cs_preg[3] = tmp;
1152 cs->cs_preg[5] = tmp5;
1153
1154 /*
1155 * If nothing is being transmitted, set up new current values,
1156 * else mark them as pending.
1157 */
1158 if(cs->cs_heldchange == 0) {
1159 if (cs->cs_ttyp->t_state & TS_BUSY) {
1160 cs->cs_heldtbc = cs->cs_tbc;
1161 cs->cs_tbc = 0;
1162 cs->cs_heldchange = 1;
1163 } else {
1164 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1165 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1166 }
1167 }
1168 splx(s);
1169 return (0);
1170 }
1171
1172 /*
1173 * search for the best matching baudrate
1174 */
1175 static int
1176 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1177 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1178 {
1179 int bestdiff, bestbps, source;
1180
1181 bestdiff = bestbps = 0;
1182 unit = (unit & 1) << 2;
1183 for (source = 0; source < 4; ++source) {
1184 long freq = zs_frequencies[unit + source];
1185 int diff, bps, div, clkm, brgm, tcon;
1186
1187 bps = div = clkm = brgm = tcon = 0;
1188 switch (source) {
1189 case 0: /* BRgen, PCLK */
1190 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1191 break;
1192 case 1: /* BRgen, RTxC */
1193 brgm = ZSWR14_BAUD_ENA;
1194 break;
1195 case 2: /* RTxC */
1196 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1197 break;
1198 case 3: /* TRxC */
1199 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1200 break;
1201 }
1202 switch (source) {
1203 case 0:
1204 case 1:
1205 div = ZSWR4_CLK_X16;
1206 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1207 tcon = BPS_TO_TCONST(freq, wanted);
1208 if (tcon < 0)
1209 tcon = 0;
1210 bps = TCONST_TO_BPS(freq, tcon);
1211 break;
1212 case 2:
1213 case 3:
1214 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1215 int b2 = freq / 32, d2 = abs(b2 - wanted);
1216 int b3 = freq / 64, d3 = abs(b3 - wanted);
1217
1218 if (d1 < d2 && d1 < d3) {
1219 div = ZSWR4_CLK_X16;
1220 bps = b1;
1221 } else if (d2 < d3 && d2 < d1) {
1222 div = ZSWR4_CLK_X32;
1223 bps = b2;
1224 } else {
1225 div = ZSWR4_CLK_X64;
1226 bps = b3;
1227 }
1228 brgm = tcon = 0;
1229 break;
1230 }
1231 }
1232 diff = abs(bps - wanted);
1233 if (!source || diff < bestdiff) {
1234 *divisor = div;
1235 *clockmode = clkm;
1236 *brgenmode = brgm;
1237 *timeconst = tcon;
1238 bestbps = bps;
1239 bestdiff = diff;
1240 if (diff == 0)
1241 break;
1242 }
1243 }
1244 /* Allow deviations upto 5% */
1245 if (20 * bestdiff > wanted)
1246 return -1;
1247 return bestbps;
1248 }
1249
1250 /*
1251 * Raise or lower modem control (DTR/RTS) signals. If a character is
1252 * in transmission, the change is deferred.
1253 */
1254 static int
1255 zs_modem(cs, bits, how)
1256 struct zs_chanstate *cs;
1257 int bits, how;
1258 {
1259 int s, mbits;
1260
1261 bits &= ZSWR5_DTR | ZSWR5_RTS;
1262
1263 s = splzs();
1264 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1265
1266 switch(how) {
1267 case DMSET:
1268 mbits = bits;
1269 break;
1270 case DMBIS:
1271 mbits |= bits;
1272 break;
1273 case DMBIC:
1274 mbits &= ~bits;
1275 break;
1276 case DMGET:
1277 splx(s);
1278 return(mbits);
1279 }
1280
1281 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1282 if(cs->cs_heldchange == 0) {
1283 if(cs->cs_ttyp->t_state & TS_BUSY) {
1284 cs->cs_heldtbc = cs->cs_tbc;
1285 cs->cs_tbc = 0;
1286 cs->cs_heldchange = 1;
1287 }
1288 else {
1289 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1290 }
1291 }
1292 splx(s);
1293 return(0);
1294 }
1295
1296 /*
1297 * Write the given register set to the given zs channel in the proper order.
1298 * The channel must not be transmitting at the time. The receiver will
1299 * be disabled for the time it takes to write all the registers.
1300 */
1301 static void
1302 zs_loadchannelregs(zc, reg)
1303 volatile struct zschan *zc;
1304 u_char *reg;
1305 {
1306 int i;
1307
1308 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1309 i = zc->zc_data; /* drain fifo */
1310 i = zc->zc_data;
1311 i = zc->zc_data;
1312 ZS_WRITE(zc, 4, reg[4]);
1313 ZS_WRITE(zc, 10, reg[10]);
1314 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1315 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1316 ZS_WRITE(zc, 1, reg[1]);
1317 ZS_WRITE(zc, 9, reg[9]);
1318 ZS_WRITE(zc, 11, reg[11]);
1319 ZS_WRITE(zc, 12, reg[12]);
1320 ZS_WRITE(zc, 13, reg[13]);
1321 ZS_WRITE(zc, 14, reg[14]);
1322 ZS_WRITE(zc, 15, reg[15]);
1323 ZS_WRITE(zc, 3, reg[3]);
1324 ZS_WRITE(zc, 5, reg[5]);
1325 }
1326 #endif /* NZS > 1 */
1327