zs.c revision 1.39 1 /* $NetBSD: zs.c,v 1.39 2002/10/23 09:10:54 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81
82 #if NZS > 0
83
84 #define PCLK (8053976) /* PCLK pin input clock rate */
85 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
86
87 #define splzs spl5
88
89 /*
90 * Software state per found chip.
91 */
92 struct zs_softc {
93 struct device zi_dev; /* base device */
94 volatile struct zsdevice *zi_zs; /* chip registers */
95 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
96 };
97
98 static u_char cb_scheduled = 0; /* Already asked for callback? */
99 /*
100 * Define the registers for a closed port
101 */
102 static u_char zs_init_regs[16] = {
103 /* 0 */ 0,
104 /* 1 */ 0,
105 /* 2 */ 0x60,
106 /* 3 */ 0,
107 /* 4 */ 0,
108 /* 5 */ 0,
109 /* 6 */ 0,
110 /* 7 */ 0,
111 /* 8 */ 0,
112 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */ ZSWR10_NRZ,
114 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */ 0,
116 /* 13 */ 0,
117 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */ 0
119 };
120
121 /*
122 * Define the machine dependant clock frequencies
123 * If BRgen feeds sender/receiver we always use a
124 * divisor 16, therefor the division by 16 can as
125 * well be done here.
126 */
127 static u_long zs_freqs_tt[] = {
128 /*
129 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 * which is set to 307.2KHz during initialisation
131 * and never changed afterwards.
132 */
133 PCLK/16, /* BRgen, PCLK, divisor 16 */
134 229500, /* BRgen, RTxCA, divisor 16 */
135 3672000, /* RTxCA, from PCLK4 */
136 0, /* TRxCA, external */
137
138 PCLK/16, /* BRgen, PCLK, divisor 16 */
139 19200, /* BRgen, RTxCB, divisor 16 */
140 307200, /* RTxCB, from TT-MFP TCO */
141 2457600 /* TRxCB, from BCLK */
142 };
143
144 static u_long zs_freqs_falcon[] = {
145 /*
146 * Atari Falcon, XXX no specs available, this might be wrong
147 */
148 PCLK/16, /* BRgen, PCLK, divisor 16 */
149 229500, /* BRgen, RTxCA, divisor 16 */
150 3672000, /* RTxCA, ??? */
151 0, /* TRxCA, external */
152
153 PCLK/16, /* BRgen, PCLK, divisor 16 */
154 229500, /* BRgen, RTxCB, divisor 16 */
155 3672000, /* RTxCB, ??? */
156 2457600 /* TRxCB, ??? */
157 };
158
159 static u_long zs_freqs_hades[] = {
160 /*
161 * XXX: Channel-A unchecked!!!!!
162 */
163 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
164 229500, /* BRgen, RTxCA, divisor 16 */
165 3672000, /* RTxCA, from PCLK4 */
166 0, /* TRxCA, external */
167
168 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
169 235550, /* BRgen, RTxCB, divisor 16 */
170 3768800, /* RTxCB, 3.7688MHz */
171 3768800 /* TRxCB, 3.7688MHz */
172 };
173
174 static u_long zs_freqs_generic[] = {
175 /*
176 * other machines, assume only PCLK is available
177 */
178 PCLK/16, /* BRgen, PCLK, divisor 16 */
179 0, /* BRgen, RTxCA, divisor 16 */
180 0, /* RTxCA, unknown */
181 0, /* TRxCA, unknown */
182
183 PCLK/16, /* BRgen, PCLK, divisor 16 */
184 0, /* BRgen, RTxCB, divisor 16 */
185 0, /* RTxCB, unknown */
186 0 /* TRxCB, unknown */
187 };
188 static u_long *zs_frequencies;
189
190 /* Definition of the driver for autoconfig. */
191 static int zsmatch __P((struct device *, struct cfdata *, void *));
192 static void zsattach __P((struct device *, struct device *, void *));
193
194 CFATTACH_DECL(zs, sizeof(struct zs_softc),
195 zsmatch, zsattach, NULL, NULL);
196
197 extern struct cfdriver zs_cd;
198
199 /* {b,c}devsw[] function prototypes */
200 dev_type_open(zsopen);
201 dev_type_close(zsclose);
202 dev_type_read(zsread);
203 dev_type_write(zswrite);
204 dev_type_ioctl(zsioctl);
205 dev_type_stop(zsstop);
206 dev_type_tty(zstty);
207 dev_type_poll(zspoll);
208
209 const struct cdevsw zs_cdevsw = {
210 zsopen, zsclose, zsread, zswrite, zsioctl,
211 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
212 };
213
214 /* Interrupt handlers. */
215 int zshard __P((long));
216 static int zssoft __P((long));
217 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
218 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
219 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
220
221 static struct zs_chanstate *zslist;
222
223 /* Routines called from other code. */
224 static void zsstart __P((struct tty *));
225
226 /* Routines purely local to this driver. */
227 static void zsoverrun __P((int, long *, char *));
228 static int zsparam __P((struct tty *, struct termios *));
229 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
230 static int zs_modem __P((struct zs_chanstate *, int, int));
231 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
232 static void zs_shutdown __P((struct zs_chanstate *));
233
234 static int zsshortcuts; /* number of "shortcut" software interrupts */
235
236 static int
237 zsmatch(pdp, cfp, auxp)
238 struct device *pdp;
239 struct cfdata *cfp;
240 void *auxp;
241 {
242 static int zs_matched = 0;
243
244 if(strcmp("zs", auxp) || zs_matched)
245 return(0);
246 zs_matched = 1;
247 return(1);
248 }
249
250 /*
251 * Attach a found zs.
252 */
253 static void
254 zsattach(parent, dev, aux)
255 struct device *parent;
256 struct device *dev;
257 void *aux;
258 {
259 register struct zs_softc *zi;
260 register struct zs_chanstate *cs;
261 register volatile struct zsdevice *addr;
262 char tmp;
263
264 addr = (struct zsdevice *)AD_SCC;
265 zi = (struct zs_softc *)dev;
266 zi->zi_zs = addr;
267 cs = zi->zi_cs;
268
269 /*
270 * Get the command register into a known state.
271 */
272 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
273 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
274 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
275 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
276
277 /*
278 * Do a hardware reset.
279 */
280 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
281 delay(50000); /*enough ? */
282 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
283
284 /*
285 * Initialize both channels
286 */
287 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
288 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
289
290 if(machineid & ATARI_TT) {
291 /*
292 * ininitialise TT-MFP timer C: 307200Hz
293 * timer C and D share one control register:
294 * bits 0-2 control timer D
295 * bits 4-6 control timer C
296 */
297 int cr = MFP2->mf_tcdcr & 7;
298 MFP2->mf_tcdcr = cr; /* stop timer C */
299 MFP2->mf_tcdr = 1; /* counter 1 */
300 cr |= T_Q004 << 4; /* divisor 4 */
301 MFP2->mf_tcdcr = cr; /* start timer C */
302 /*
303 * enable scc related interrupts
304 */
305 SCU->vme_mask |= SCU_SCC;
306
307 zs_frequencies = zs_freqs_tt;
308 } else if (machineid & ATARI_FALCON) {
309 zs_frequencies = zs_freqs_falcon;
310 } else if (machineid & ATARI_HADES) {
311 zs_frequencies = zs_freqs_hades;
312 } else {
313 zs_frequencies = zs_freqs_generic;
314 }
315
316 /* link into interrupt list with order (A,B) (B=A+1) */
317 cs[0].cs_next = &cs[1];
318 cs[1].cs_next = zslist;
319 zslist = cs;
320
321 cs->cs_unit = 0;
322 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
323 cs++;
324 cs->cs_unit = 1;
325 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
326
327 printf(": serial2 on channel a and modem2 on channel b\n");
328 }
329
330 /*
331 * Open a zs serial port.
332 */
333 int
334 zsopen(dev, flags, mode, p)
335 dev_t dev;
336 int flags;
337 int mode;
338 struct proc *p;
339 {
340 register struct tty *tp;
341 register struct zs_chanstate *cs;
342 struct zs_softc *zi;
343 int unit = ZS_UNIT(dev);
344 int zs = unit >> 1;
345 int error, s;
346
347 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
348 return (ENXIO);
349 cs = &zi->zi_cs[unit & 1];
350
351 /*
352 * When port A (ser02) is selected on the TT, make sure
353 * the port is enabled.
354 */
355 if((machineid & ATARI_TT) && !(unit & 1))
356 ym2149_ser2(1);
357
358 if (cs->cs_rbuf == NULL) {
359 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
360 M_WAITOK);
361 }
362
363 tp = cs->cs_ttyp;
364 if(tp == NULL) {
365 cs->cs_ttyp = tp = ttymalloc();
366 tty_attach(tp);
367 tp->t_dev = dev;
368 tp->t_oproc = zsstart;
369 tp->t_param = zsparam;
370 }
371
372 if ((tp->t_state & TS_ISOPEN) &&
373 (tp->t_state & TS_XCLUDE) &&
374 p->p_ucred->cr_uid != 0)
375 return (EBUSY);
376
377 s = spltty();
378
379 /*
380 * Do the following iff this is a first open.
381 */
382 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
383 if(tp->t_ispeed == 0) {
384 tp->t_iflag = TTYDEF_IFLAG;
385 tp->t_oflag = TTYDEF_OFLAG;
386 tp->t_cflag = TTYDEF_CFLAG;
387 tp->t_lflag = TTYDEF_LFLAG;
388 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
389 }
390 ttychars(tp);
391 ttsetwater(tp);
392
393 (void)zsparam(tp, &tp->t_termios);
394
395 /*
396 * Turn on DTR. We must always do this, even if carrier is not
397 * present, because otherwise we'd have to use TIOCSDTR
398 * immediately after setting CLOCAL, which applications do not
399 * expect. We always assert DTR while the device is open
400 * unless explicitly requested to deassert it.
401 */
402 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
403 /* May never get a status intr. if DCD already on. -gwr */
404 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
405 tp->t_state |= TS_CARR_ON;
406 if(cs->cs_softcar)
407 tp->t_state |= TS_CARR_ON;
408 }
409
410 splx(s);
411
412 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
413 if (error)
414 goto bad;
415
416 error = tp->t_linesw->l_open(dev, tp);
417 if(error)
418 goto bad;
419 return (0);
420
421 bad:
422 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
423 /*
424 * We failed to open the device, and nobody else had it opened.
425 * Clean up the state as appropriate.
426 */
427 zs_shutdown(cs);
428 }
429 return(error);
430 }
431
432 /*
433 * Close a zs serial port.
434 */
435 int
436 zsclose(dev, flags, mode, p)
437 dev_t dev;
438 int flags;
439 int mode;
440 struct proc *p;
441 {
442 register struct zs_chanstate *cs;
443 register struct tty *tp;
444 struct zs_softc *zi;
445 int unit = ZS_UNIT(dev);
446
447 zi = zs_cd.cd_devs[unit >> 1];
448 cs = &zi->zi_cs[unit & 1];
449 tp = cs->cs_ttyp;
450
451 tp->t_linesw->l_close(tp, flags);
452 ttyclose(tp);
453
454 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
455 /*
456 * Although we got a last close, the device may still be in
457 * use; e.g. if this was the dialout node, and there are still
458 * processes waiting for carrier on the non-dialout node.
459 */
460 zs_shutdown(cs);
461 }
462 return (0);
463 }
464
465 /*
466 * Read/write zs serial port.
467 */
468 int
469 zsread(dev, uio, flags)
470 dev_t dev;
471 struct uio *uio;
472 int flags;
473 {
474 register struct zs_chanstate *cs;
475 register struct zs_softc *zi;
476 register struct tty *tp;
477 int unit;
478
479 unit = ZS_UNIT(dev);
480 zi = zs_cd.cd_devs[unit >> 1];
481 cs = &zi->zi_cs[unit & 1];
482 tp = cs->cs_ttyp;
483
484 return(tp->t_linesw->l_read(tp, uio, flags));
485 }
486
487 int
488 zswrite(dev, uio, flags)
489 dev_t dev;
490 struct uio *uio;
491 int flags;
492 {
493 register struct zs_chanstate *cs;
494 register struct zs_softc *zi;
495 register struct tty *tp;
496 int unit;
497
498 unit = ZS_UNIT(dev);
499 zi = zs_cd.cd_devs[unit >> 1];
500 cs = &zi->zi_cs[unit & 1];
501 tp = cs->cs_ttyp;
502
503 return(tp->t_linesw->l_write(tp, uio, flags));
504 }
505
506 int
507 zspoll(dev, events, p)
508 dev_t dev;
509 int events;
510 struct proc *p;
511 {
512 register struct zs_chanstate *cs;
513 register struct zs_softc *zi;
514 register struct tty *tp;
515 int unit;
516
517 unit = ZS_UNIT(dev);
518 zi = zs_cd.cd_devs[unit >> 1];
519 cs = &zi->zi_cs[unit & 1];
520 tp = cs->cs_ttyp;
521
522 return ((*tp->t_linesw->l_poll)(tp, events, p));
523 }
524
525 struct tty *
526 zstty(dev)
527 dev_t dev;
528 {
529 register struct zs_chanstate *cs;
530 register struct zs_softc *zi;
531 int unit;
532
533 unit = ZS_UNIT(dev);
534 zi = zs_cd.cd_devs[unit >> 1];
535 cs = &zi->zi_cs[unit & 1];
536 return(cs->cs_ttyp);
537 }
538
539 /*
540 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
541 * channels are kept in (A,B) pairs.
542 *
543 * Do just a little, then get out; set a software interrupt if more
544 * work is needed.
545 *
546 * We deliberately ignore the vectoring Zilog gives us, and match up
547 * only the number of `reset interrupt under service' operations, not
548 * the order.
549 */
550
551 int
552 zshard(sr)
553 long sr;
554 {
555 register struct zs_chanstate *a;
556 #define b (a + 1)
557 register volatile struct zschan *zc;
558 register int rr3, intflags = 0, v, i;
559
560 do {
561 intflags &= ~4;
562 for(a = zslist; a != NULL; a = b->cs_next) {
563 rr3 = ZS_READ(a->cs_zc, 3);
564 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
565 intflags |= 4|2;
566 zc = a->cs_zc;
567 i = a->cs_rbput;
568 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
569 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
570 intflags |= 1;
571 }
572 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
573 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
574 intflags |= 1;
575 }
576 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
577 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
578 intflags |= 1;
579 }
580 a->cs_rbput = i;
581 }
582 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
583 intflags |= 4|2;
584 zc = b->cs_zc;
585 i = b->cs_rbput;
586 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
587 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
588 intflags |= 1;
589 }
590 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
591 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
592 intflags |= 1;
593 }
594 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
595 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
596 intflags |= 1;
597 }
598 b->cs_rbput = i;
599 }
600 }
601 } while(intflags & 4);
602 #undef b
603
604 if(intflags & 1) {
605 if(BASEPRI(sr)) {
606 spl1();
607 zsshortcuts++;
608 return(zssoft(sr));
609 }
610 else if(!cb_scheduled) {
611 cb_scheduled++;
612 add_sicallback((si_farg)zssoft, 0, 0);
613 }
614 }
615 return(intflags & 2);
616 }
617
618 static int
619 zsrint(cs, zc)
620 register struct zs_chanstate *cs;
621 register volatile struct zschan *zc;
622 {
623 register int c;
624
625 /*
626 * First read the status, because read of the received char
627 * destroy the status of this char.
628 */
629 c = ZS_READ(zc, 1);
630 c |= (zc->zc_data << 8);
631
632 /* clear receive error & interrupt condition */
633 zc->zc_csr = ZSWR0_RESET_ERRORS;
634 zc->zc_csr = ZSWR0_CLR_INTR;
635
636 return(ZRING_MAKE(ZRING_RINT, c));
637 }
638
639 static int
640 zsxint(cs, zc)
641 register struct zs_chanstate *cs;
642 register volatile struct zschan *zc;
643 {
644 register int i = cs->cs_tbc;
645
646 if(i == 0) {
647 zc->zc_csr = ZSWR0_RESET_TXINT;
648 zc->zc_csr = ZSWR0_CLR_INTR;
649 return(ZRING_MAKE(ZRING_XINT, 0));
650 }
651 cs->cs_tbc = i - 1;
652 zc->zc_data = *cs->cs_tba++;
653 zc->zc_csr = ZSWR0_CLR_INTR;
654 return (0);
655 }
656
657 static int
658 zssint(cs, zc)
659 register struct zs_chanstate *cs;
660 register volatile struct zschan *zc;
661 {
662 register int rr0;
663
664 rr0 = zc->zc_csr;
665 zc->zc_csr = ZSWR0_RESET_STATUS;
666 zc->zc_csr = ZSWR0_CLR_INTR;
667 /*
668 * The chip's hardware flow control is, as noted in zsreg.h,
669 * busted---if the DCD line goes low the chip shuts off the
670 * receiver (!). If we want hardware CTS flow control but do
671 * not have it, and carrier is now on, turn HFC on; if we have
672 * HFC now but carrier has gone low, turn it off.
673 */
674 if(rr0 & ZSRR0_DCD) {
675 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
676 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
677 cs->cs_creg[3] |= ZSWR3_HFC;
678 ZS_WRITE(zc, 3, cs->cs_creg[3]);
679 }
680 }
681 else {
682 if (cs->cs_creg[3] & ZSWR3_HFC) {
683 cs->cs_creg[3] &= ~ZSWR3_HFC;
684 ZS_WRITE(zc, 3, cs->cs_creg[3]);
685 }
686 }
687 return(ZRING_MAKE(ZRING_SINT, rr0));
688 }
689
690 /*
691 * Print out a ring or fifo overrun error message.
692 */
693 static void
694 zsoverrun(unit, ptime, what)
695 int unit;
696 long *ptime;
697 char *what;
698 {
699
700 if(*ptime != time.tv_sec) {
701 *ptime = time.tv_sec;
702 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
703 (unit & 1) + 'a', what);
704 }
705 }
706
707 /*
708 * ZS software interrupt. Scan all channels for deferred interrupts.
709 */
710 int
711 zssoft(sr)
712 long sr;
713 {
714 register struct zs_chanstate *cs;
715 register volatile struct zschan *zc;
716 register struct linesw *line;
717 register struct tty *tp;
718 register int get, n, c, cc, unit, s;
719 int retval = 0;
720
721 cb_scheduled = 0;
722 s = spltty();
723 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
724 get = cs->cs_rbget;
725 again:
726 n = cs->cs_rbput; /* atomic */
727 if(get == n) /* nothing more on this line */
728 continue;
729 retval = 1;
730 unit = cs->cs_unit; /* set up to handle interrupts */
731 zc = cs->cs_zc;
732 tp = cs->cs_ttyp;
733 line = tp->t_linesw;
734 /*
735 * Compute the number of interrupts in the receive ring.
736 * If the count is overlarge, we lost some events, and
737 * must advance to the first valid one. It may get
738 * overwritten if more data are arriving, but this is
739 * too expensive to check and gains nothing (we already
740 * lost out; all we can do at this point is trade one
741 * kind of loss for another).
742 */
743 n -= get;
744 if(n > ZLRB_RING_SIZE) {
745 zsoverrun(unit, &cs->cs_rotime, "ring");
746 get += n - ZLRB_RING_SIZE;
747 n = ZLRB_RING_SIZE;
748 }
749 while(--n >= 0) {
750 /* race to keep ahead of incoming interrupts */
751 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
752 switch (ZRING_TYPE(c)) {
753
754 case ZRING_RINT:
755 c = ZRING_VALUE(c);
756 if(c & ZSRR1_DO)
757 zsoverrun(unit, &cs->cs_fotime, "fifo");
758 cc = c >> 8;
759 if(c & ZSRR1_FE)
760 cc |= TTY_FE;
761 if(c & ZSRR1_PE)
762 cc |= TTY_PE;
763 line->l_rint(cc, tp);
764 break;
765
766 case ZRING_XINT:
767 /*
768 * Transmit done: change registers and resume,
769 * or clear BUSY.
770 */
771 if(cs->cs_heldchange) {
772 int sps;
773
774 sps = splzs();
775 c = zc->zc_csr;
776 if((c & ZSRR0_DCD) == 0)
777 cs->cs_preg[3] &= ~ZSWR3_HFC;
778 bcopy((caddr_t)cs->cs_preg,
779 (caddr_t)cs->cs_creg, 16);
780 zs_loadchannelregs(zc, cs->cs_creg);
781 splx(sps);
782 cs->cs_heldchange = 0;
783 if(cs->cs_heldtbc
784 && (tp->t_state & TS_TTSTOP) == 0) {
785 cs->cs_tbc = cs->cs_heldtbc - 1;
786 zc->zc_data = *cs->cs_tba++;
787 goto again;
788 }
789 }
790 tp->t_state &= ~TS_BUSY;
791 if(tp->t_state & TS_FLUSH)
792 tp->t_state &= ~TS_FLUSH;
793 else ndflush(&tp->t_outq,cs->cs_tba
794 - (caddr_t)tp->t_outq.c_cf);
795 line->l_start(tp);
796 break;
797
798 case ZRING_SINT:
799 /*
800 * Status line change. HFC bit is run in
801 * hardware interrupt, to avoid locking
802 * at splzs here.
803 */
804 c = ZRING_VALUE(c);
805 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
806 cc = (c & ZSRR0_DCD) != 0;
807 if(line->l_modem(tp, cc) == 0)
808 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
809 cc ? DMBIS : DMBIC);
810 }
811 cs->cs_rr0 = c;
812 break;
813
814 default:
815 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
816 unit >> 1, (unit & 1) + 'a', c);
817 break;
818 }
819 }
820 cs->cs_rbget = get;
821 goto again;
822 }
823 splx(s);
824 return (retval);
825 }
826
827 int
828 zsioctl(dev, cmd, data, flag, p)
829 dev_t dev;
830 u_long cmd;
831 caddr_t data;
832 int flag;
833 struct proc *p;
834 {
835 int unit = ZS_UNIT(dev);
836 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
837 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
838 register int error, s;
839 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
840
841 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
842 if(error != EPASSTHROUGH)
843 return(error);
844
845 error = ttioctl(tp, cmd, data, flag, p);
846 if(error !=EPASSTHROUGH)
847 return (error);
848
849 switch (cmd) {
850 case TIOCSBRK:
851 s = splzs();
852 cs->cs_preg[5] |= ZSWR5_BREAK;
853 cs->cs_creg[5] |= ZSWR5_BREAK;
854 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
855 splx(s);
856 break;
857 case TIOCCBRK:
858 s = splzs();
859 cs->cs_preg[5] &= ~ZSWR5_BREAK;
860 cs->cs_creg[5] &= ~ZSWR5_BREAK;
861 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
862 splx(s);
863 break;
864 case TIOCGFLAGS: {
865 int bits = 0;
866
867 if(cs->cs_softcar)
868 bits |= TIOCFLAG_SOFTCAR;
869 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
870 bits |= TIOCFLAG_CLOCAL;
871 if(cs->cs_creg[3] & ZSWR3_HFC)
872 bits |= TIOCFLAG_CRTSCTS;
873 *(int *)data = bits;
874 break;
875 }
876 case TIOCSFLAGS: {
877 int userbits = 0;
878
879 error = suser(p->p_ucred, &p->p_acflag);
880 if(error != 0)
881 return (EPERM);
882
883 userbits = *(int *)data;
884
885 /*
886 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
887 # defaulting to software flow control.
888 */
889 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
890 return(EINVAL);
891 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
892 return(ENODEV);
893
894 s = splzs();
895 if((userbits & TIOCFLAG_SOFTCAR)) {
896 cs->cs_softcar = 1; /* turn on softcar */
897 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
898 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
899 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
900 }
901 else if(userbits & TIOCFLAG_CLOCAL) {
902 cs->cs_softcar = 0; /* turn off softcar */
903 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
904 cs->cs_creg[15] |= ZSWR15_DCD_IE;
905 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
906 tp->t_termios.c_cflag |= CLOCAL;
907 }
908 if(userbits & TIOCFLAG_CRTSCTS) {
909 cs->cs_preg[15] |= ZSWR15_CTS_IE;
910 cs->cs_creg[15] |= ZSWR15_CTS_IE;
911 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
912 cs->cs_preg[3] |= ZSWR3_HFC;
913 cs->cs_creg[3] |= ZSWR3_HFC;
914 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
915 tp->t_termios.c_cflag |= CRTSCTS;
916 }
917 else {
918 /* no mdmbuf, so we must want software flow control */
919 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
920 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
921 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
922 cs->cs_preg[3] &= ~ZSWR3_HFC;
923 cs->cs_creg[3] &= ~ZSWR3_HFC;
924 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
925 tp->t_termios.c_cflag &= ~CRTSCTS;
926 }
927 splx(s);
928 break;
929 }
930 case TIOCSDTR:
931 zs_modem(cs, ZSWR5_DTR, DMBIS);
932 break;
933 case TIOCCDTR:
934 zs_modem(cs, ZSWR5_DTR, DMBIC);
935 break;
936 case TIOCMGET:
937 zs_modem(cs, 0, DMGET);
938 break;
939 case TIOCMSET:
940 case TIOCMBIS:
941 case TIOCMBIC:
942 default:
943 return (EPASSTHROUGH);
944 }
945 return (0);
946 }
947
948 /*
949 * Start or restart transmission.
950 */
951 static void
952 zsstart(tp)
953 register struct tty *tp;
954 {
955 register struct zs_chanstate *cs;
956 register int s, nch;
957 int unit = ZS_UNIT(tp->t_dev);
958 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
959
960 cs = &zi->zi_cs[unit & 1];
961 s = spltty();
962
963 /*
964 * If currently active or delaying, no need to do anything.
965 */
966 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
967 goto out;
968
969 /*
970 * If there are sleepers, and output has drained below low
971 * water mark, awaken.
972 */
973 if(tp->t_outq.c_cc <= tp->t_lowat) {
974 if(tp->t_state & TS_ASLEEP) {
975 tp->t_state &= ~TS_ASLEEP;
976 wakeup((caddr_t)&tp->t_outq);
977 }
978 selwakeup(&tp->t_wsel);
979 }
980
981 nch = ndqb(&tp->t_outq, 0); /* XXX */
982 if(nch) {
983 register char *p = tp->t_outq.c_cf;
984
985 /* mark busy, enable tx done interrupts, & send first byte */
986 tp->t_state |= TS_BUSY;
987 (void) splzs();
988 cs->cs_preg[1] |= ZSWR1_TIE;
989 cs->cs_creg[1] |= ZSWR1_TIE;
990 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
991 cs->cs_zc->zc_data = *p;
992 cs->cs_tba = p + 1;
993 cs->cs_tbc = nch - 1;
994 } else {
995 /*
996 * Nothing to send, turn off transmit done interrupts.
997 * This is useful if something is doing polled output.
998 */
999 (void) splzs();
1000 cs->cs_preg[1] &= ~ZSWR1_TIE;
1001 cs->cs_creg[1] &= ~ZSWR1_TIE;
1002 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1003 }
1004 out:
1005 splx(s);
1006 }
1007
1008 /*
1009 * Stop output, e.g., for ^S or output flush.
1010 */
1011 void
1012 zsstop(tp, flag)
1013 register struct tty *tp;
1014 int flag;
1015 {
1016 register struct zs_chanstate *cs;
1017 register int s, unit = ZS_UNIT(tp->t_dev);
1018 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1019
1020 cs = &zi->zi_cs[unit & 1];
1021 s = splzs();
1022 if(tp->t_state & TS_BUSY) {
1023 /*
1024 * Device is transmitting; must stop it.
1025 */
1026 cs->cs_tbc = 0;
1027 if ((tp->t_state & TS_TTSTOP) == 0)
1028 tp->t_state |= TS_FLUSH;
1029 }
1030 splx(s);
1031 }
1032
1033 static void
1034 zs_shutdown(cs)
1035 struct zs_chanstate *cs;
1036 {
1037 struct tty *tp = cs->cs_ttyp;
1038 int s;
1039
1040 s = splzs();
1041
1042 /*
1043 * Hang up if necessary. Wait a bit, so the other side has time to
1044 * notice even if we immediately open the port again.
1045 */
1046 if(tp->t_cflag & HUPCL) {
1047 zs_modem(cs, 0, DMSET);
1048 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1049 }
1050
1051 /* Clear any break condition set with TIOCSBRK. */
1052 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1053 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1054 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1055 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1056 }
1057
1058 /*
1059 * Drop all lines and cancel interrupts
1060 */
1061 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1062 splx(s);
1063 }
1064
1065 /*
1066 * Set ZS tty parameters from termios.
1067 *
1068 * This routine makes use of the fact that only registers
1069 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1070 */
1071 static int
1072 zsparam(tp, t)
1073 register struct tty *tp;
1074 register struct termios *t;
1075 {
1076 int unit = ZS_UNIT(tp->t_dev);
1077 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1078 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1079 int cdiv, clkm, brgm, tcon;
1080 register int tmp, tmp5, cflag, s;
1081
1082 tmp = t->c_ospeed;
1083 tmp5 = t->c_ispeed;
1084 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1085 return(EINVAL);
1086 if(tmp == 0) {
1087 /* stty 0 => drop DTR and RTS */
1088 zs_modem(cs, 0, DMSET);
1089 return(0);
1090 }
1091 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1092 if (tmp < 0)
1093 return(EINVAL);
1094 tp->t_ispeed = tp->t_ospeed = tmp;
1095
1096 cflag = tp->t_cflag = t->c_cflag;
1097 if (cflag & CSTOPB)
1098 cdiv |= ZSWR4_TWOSB;
1099 else
1100 cdiv |= ZSWR4_ONESB;
1101 if (!(cflag & PARODD))
1102 cdiv |= ZSWR4_EVENP;
1103 if (cflag & PARENB)
1104 cdiv |= ZSWR4_PARENB;
1105
1106 switch(cflag & CSIZE) {
1107 case CS5:
1108 tmp = ZSWR3_RX_5;
1109 tmp5 = ZSWR5_TX_5;
1110 break;
1111 case CS6:
1112 tmp = ZSWR3_RX_6;
1113 tmp5 = ZSWR5_TX_6;
1114 break;
1115 case CS7:
1116 tmp = ZSWR3_RX_7;
1117 tmp5 = ZSWR5_TX_7;
1118 break;
1119 case CS8:
1120 default:
1121 tmp = ZSWR3_RX_8;
1122 tmp5 = ZSWR5_TX_8;
1123 break;
1124 }
1125 tmp |= ZSWR3_RX_ENABLE;
1126 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1127
1128 /*
1129 * Block interrupts so that state will not
1130 * be altered until we are done setting it up.
1131 */
1132 s = splzs();
1133 cs->cs_preg[4] = cdiv;
1134 cs->cs_preg[11] = clkm;
1135 cs->cs_preg[12] = tcon;
1136 cs->cs_preg[13] = tcon >> 8;
1137 cs->cs_preg[14] = brgm;
1138 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1139 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1140 cs->cs_preg[10] = ZSWR10_NRZ;
1141 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1142
1143 /*
1144 * Output hardware flow control on the chip is horrendous: if
1145 * carrier detect drops, the receiver is disabled. Hence we
1146 * can only do this when the carrier is on.
1147 */
1148 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1149 tmp |= ZSWR3_HFC;
1150 cs->cs_preg[3] = tmp;
1151 cs->cs_preg[5] = tmp5;
1152
1153 /*
1154 * If nothing is being transmitted, set up new current values,
1155 * else mark them as pending.
1156 */
1157 if(cs->cs_heldchange == 0) {
1158 if (cs->cs_ttyp->t_state & TS_BUSY) {
1159 cs->cs_heldtbc = cs->cs_tbc;
1160 cs->cs_tbc = 0;
1161 cs->cs_heldchange = 1;
1162 } else {
1163 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1164 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1165 }
1166 }
1167 splx(s);
1168 return (0);
1169 }
1170
1171 /*
1172 * search for the best matching baudrate
1173 */
1174 static int
1175 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1176 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1177 {
1178 int bestdiff, bestbps, source;
1179
1180 bestdiff = bestbps = 0;
1181 unit = (unit & 1) << 2;
1182 for (source = 0; source < 4; ++source) {
1183 long freq = zs_frequencies[unit + source];
1184 int diff, bps, div, clkm, brgm, tcon;
1185
1186 bps = div = clkm = brgm = tcon = 0;
1187 switch (source) {
1188 case 0: /* BRgen, PCLK */
1189 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1190 break;
1191 case 1: /* BRgen, RTxC */
1192 brgm = ZSWR14_BAUD_ENA;
1193 break;
1194 case 2: /* RTxC */
1195 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1196 break;
1197 case 3: /* TRxC */
1198 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1199 break;
1200 }
1201 switch (source) {
1202 case 0:
1203 case 1:
1204 div = ZSWR4_CLK_X16;
1205 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1206 tcon = BPS_TO_TCONST(freq, wanted);
1207 if (tcon < 0)
1208 tcon = 0;
1209 bps = TCONST_TO_BPS(freq, tcon);
1210 break;
1211 case 2:
1212 case 3:
1213 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1214 int b2 = freq / 32, d2 = abs(b2 - wanted);
1215 int b3 = freq / 64, d3 = abs(b3 - wanted);
1216
1217 if (d1 < d2 && d1 < d3) {
1218 div = ZSWR4_CLK_X16;
1219 bps = b1;
1220 } else if (d2 < d3 && d2 < d1) {
1221 div = ZSWR4_CLK_X32;
1222 bps = b2;
1223 } else {
1224 div = ZSWR4_CLK_X64;
1225 bps = b3;
1226 }
1227 brgm = tcon = 0;
1228 break;
1229 }
1230 }
1231 diff = abs(bps - wanted);
1232 if (!source || diff < bestdiff) {
1233 *divisor = div;
1234 *clockmode = clkm;
1235 *brgenmode = brgm;
1236 *timeconst = tcon;
1237 bestbps = bps;
1238 bestdiff = diff;
1239 if (diff == 0)
1240 break;
1241 }
1242 }
1243 /* Allow deviations upto 5% */
1244 if (20 * bestdiff > wanted)
1245 return -1;
1246 return bestbps;
1247 }
1248
1249 /*
1250 * Raise or lower modem control (DTR/RTS) signals. If a character is
1251 * in transmission, the change is deferred.
1252 */
1253 static int
1254 zs_modem(cs, bits, how)
1255 struct zs_chanstate *cs;
1256 int bits, how;
1257 {
1258 int s, mbits;
1259
1260 bits &= ZSWR5_DTR | ZSWR5_RTS;
1261
1262 s = splzs();
1263 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1264
1265 switch(how) {
1266 case DMSET:
1267 mbits = bits;
1268 break;
1269 case DMBIS:
1270 mbits |= bits;
1271 break;
1272 case DMBIC:
1273 mbits &= ~bits;
1274 break;
1275 case DMGET:
1276 splx(s);
1277 return(mbits);
1278 }
1279
1280 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1281 if(cs->cs_heldchange == 0) {
1282 if(cs->cs_ttyp->t_state & TS_BUSY) {
1283 cs->cs_heldtbc = cs->cs_tbc;
1284 cs->cs_tbc = 0;
1285 cs->cs_heldchange = 1;
1286 }
1287 else {
1288 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1289 }
1290 }
1291 splx(s);
1292 return(0);
1293 }
1294
1295 /*
1296 * Write the given register set to the given zs channel in the proper order.
1297 * The channel must not be transmitting at the time. The receiver will
1298 * be disabled for the time it takes to write all the registers.
1299 */
1300 static void
1301 zs_loadchannelregs(zc, reg)
1302 volatile struct zschan *zc;
1303 u_char *reg;
1304 {
1305 int i;
1306
1307 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1308 i = zc->zc_data; /* drain fifo */
1309 i = zc->zc_data;
1310 i = zc->zc_data;
1311 ZS_WRITE(zc, 4, reg[4]);
1312 ZS_WRITE(zc, 10, reg[10]);
1313 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1314 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1315 ZS_WRITE(zc, 1, reg[1]);
1316 ZS_WRITE(zc, 9, reg[9]);
1317 ZS_WRITE(zc, 11, reg[11]);
1318 ZS_WRITE(zc, 12, reg[12]);
1319 ZS_WRITE(zc, 13, reg[13]);
1320 ZS_WRITE(zc, 14, reg[14]);
1321 ZS_WRITE(zc, 15, reg[15]);
1322 ZS_WRITE(zc, 3, reg[3]);
1323 ZS_WRITE(zc, 5, reg[5]);
1324 }
1325 #endif /* NZS > 1 */
1326