zs.c revision 1.39.6.3 1 /* $NetBSD: zs.c,v 1.39.6.3 2004/09/21 13:14:00 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 */
43
44 /*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of The NetBSD Foundation nor the names of its
60 * contributors may be used to endorse or promote products derived
61 * from this software without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
64 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 /*
77 * Zilog Z8530 (ZSCC) driver.
78 *
79 * Runs two tty ports (modem2 and serial2) on zs0.
80 *
81 * This driver knows far too much about chip to usage mappings.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.39.6.3 2004/09/21 13:14:00 skrll Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/device.h>
91 #include <sys/conf.h>
92 #include <sys/file.h>
93 #include <sys/ioctl.h>
94 #include <sys/malloc.h>
95 #include <sys/tty.h>
96 #include <sys/time.h>
97 #include <sys/kernel.h>
98 #include <sys/syslog.h>
99
100 #include <machine/cpu.h>
101 #include <machine/iomap.h>
102 #include <machine/scu.h>
103 #include <machine/mfp.h>
104 #include <atari/dev/ym2149reg.h>
105
106 #include <dev/ic/z8530reg.h>
107 #include <atari/dev/zsvar.h>
108 #include "zs.h"
109 #if NZS > 1
110 #error "This driver supports only 1 85C30!"
111 #endif
112
113 #if NZS > 0
114
115 #define PCLK (8053976) /* PCLK pin input clock rate */
116 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
117
118 #define splzs spl5
119
120 /*
121 * Software state per found chip.
122 */
123 struct zs_softc {
124 struct device zi_dev; /* base device */
125 volatile struct zsdevice *zi_zs; /* chip registers */
126 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
127 };
128
129 static u_char cb_scheduled = 0; /* Already asked for callback? */
130 /*
131 * Define the registers for a closed port
132 */
133 static u_char zs_init_regs[16] = {
134 /* 0 */ 0,
135 /* 1 */ 0,
136 /* 2 */ 0x60,
137 /* 3 */ 0,
138 /* 4 */ 0,
139 /* 5 */ 0,
140 /* 6 */ 0,
141 /* 7 */ 0,
142 /* 8 */ 0,
143 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
144 /* 10 */ ZSWR10_NRZ,
145 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
146 /* 12 */ 0,
147 /* 13 */ 0,
148 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
149 /* 15 */ 0
150 };
151
152 /*
153 * Define the machine dependant clock frequencies
154 * If BRgen feeds sender/receiver we always use a
155 * divisor 16, therefor the division by 16 can as
156 * well be done here.
157 */
158 static u_long zs_freqs_tt[] = {
159 /*
160 * Atari TT, RTxCB is generated by TT-MFP timer C,
161 * which is set to 307.2KHz during initialisation
162 * and never changed afterwards.
163 */
164 PCLK/16, /* BRgen, PCLK, divisor 16 */
165 229500, /* BRgen, RTxCA, divisor 16 */
166 3672000, /* RTxCA, from PCLK4 */
167 0, /* TRxCA, external */
168
169 PCLK/16, /* BRgen, PCLK, divisor 16 */
170 19200, /* BRgen, RTxCB, divisor 16 */
171 307200, /* RTxCB, from TT-MFP TCO */
172 2457600 /* TRxCB, from BCLK */
173 };
174
175 static u_long zs_freqs_falcon[] = {
176 /*
177 * Atari Falcon, XXX no specs available, this might be wrong
178 */
179 PCLK/16, /* BRgen, PCLK, divisor 16 */
180 229500, /* BRgen, RTxCA, divisor 16 */
181 3672000, /* RTxCA, ??? */
182 0, /* TRxCA, external */
183
184 PCLK/16, /* BRgen, PCLK, divisor 16 */
185 229500, /* BRgen, RTxCB, divisor 16 */
186 3672000, /* RTxCB, ??? */
187 2457600 /* TRxCB, ??? */
188 };
189
190 static u_long zs_freqs_hades[] = {
191 /*
192 * XXX: Channel-A unchecked!!!!!
193 */
194 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
195 229500, /* BRgen, RTxCA, divisor 16 */
196 3672000, /* RTxCA, from PCLK4 */
197 0, /* TRxCA, external */
198
199 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
200 235550, /* BRgen, RTxCB, divisor 16 */
201 3768800, /* RTxCB, 3.7688MHz */
202 3768800 /* TRxCB, 3.7688MHz */
203 };
204
205 static u_long zs_freqs_generic[] = {
206 /*
207 * other machines, assume only PCLK is available
208 */
209 PCLK/16, /* BRgen, PCLK, divisor 16 */
210 0, /* BRgen, RTxCA, divisor 16 */
211 0, /* RTxCA, unknown */
212 0, /* TRxCA, unknown */
213
214 PCLK/16, /* BRgen, PCLK, divisor 16 */
215 0, /* BRgen, RTxCB, divisor 16 */
216 0, /* RTxCB, unknown */
217 0 /* TRxCB, unknown */
218 };
219 static u_long *zs_frequencies;
220
221 /* Definition of the driver for autoconfig. */
222 static int zsmatch __P((struct device *, struct cfdata *, void *));
223 static void zsattach __P((struct device *, struct device *, void *));
224
225 CFATTACH_DECL(zs, sizeof(struct zs_softc),
226 zsmatch, zsattach, NULL, NULL);
227
228 extern struct cfdriver zs_cd;
229
230 /* {b,c}devsw[] function prototypes */
231 dev_type_open(zsopen);
232 dev_type_close(zsclose);
233 dev_type_read(zsread);
234 dev_type_write(zswrite);
235 dev_type_ioctl(zsioctl);
236 dev_type_stop(zsstop);
237 dev_type_tty(zstty);
238 dev_type_poll(zspoll);
239
240 const struct cdevsw zs_cdevsw = {
241 zsopen, zsclose, zsread, zswrite, zsioctl,
242 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
243 };
244
245 /* Interrupt handlers. */
246 int zshard __P((long));
247 static int zssoft __P((long));
248 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
249 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
250 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
251
252 static struct zs_chanstate *zslist;
253
254 /* Routines called from other code. */
255 static void zsstart __P((struct tty *));
256
257 /* Routines purely local to this driver. */
258 static void zsoverrun __P((int, long *, char *));
259 static int zsparam __P((struct tty *, struct termios *));
260 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
261 static int zs_modem __P((struct zs_chanstate *, int, int));
262 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
263 static void zs_shutdown __P((struct zs_chanstate *));
264
265 static int zsshortcuts; /* number of "shortcut" software interrupts */
266
267 static int
268 zsmatch(pdp, cfp, auxp)
269 struct device *pdp;
270 struct cfdata *cfp;
271 void *auxp;
272 {
273 static int zs_matched = 0;
274
275 if(strcmp("zs", auxp) || zs_matched)
276 return(0);
277 zs_matched = 1;
278 return(1);
279 }
280
281 /*
282 * Attach a found zs.
283 */
284 static void
285 zsattach(parent, dev, aux)
286 struct device *parent;
287 struct device *dev;
288 void *aux;
289 {
290 register struct zs_softc *zi;
291 register struct zs_chanstate *cs;
292 register volatile struct zsdevice *addr;
293 char tmp;
294
295 addr = (struct zsdevice *)AD_SCC;
296 zi = (struct zs_softc *)dev;
297 zi->zi_zs = addr;
298 cs = zi->zi_cs;
299
300 /*
301 * Get the command register into a known state.
302 */
303 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
304 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
305 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
306 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
307
308 /*
309 * Do a hardware reset.
310 */
311 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
312 delay(50000); /*enough ? */
313 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
314
315 /*
316 * Initialize both channels
317 */
318 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
319 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
320
321 if(machineid & ATARI_TT) {
322 /*
323 * ininitialise TT-MFP timer C: 307200Hz
324 * timer C and D share one control register:
325 * bits 0-2 control timer D
326 * bits 4-6 control timer C
327 */
328 int cr = MFP2->mf_tcdcr & 7;
329 MFP2->mf_tcdcr = cr; /* stop timer C */
330 MFP2->mf_tcdr = 1; /* counter 1 */
331 cr |= T_Q004 << 4; /* divisor 4 */
332 MFP2->mf_tcdcr = cr; /* start timer C */
333 /*
334 * enable scc related interrupts
335 */
336 SCU->vme_mask |= SCU_SCC;
337
338 zs_frequencies = zs_freqs_tt;
339 } else if (machineid & ATARI_FALCON) {
340 zs_frequencies = zs_freqs_falcon;
341 } else if (machineid & ATARI_HADES) {
342 zs_frequencies = zs_freqs_hades;
343 } else {
344 zs_frequencies = zs_freqs_generic;
345 }
346
347 /* link into interrupt list with order (A,B) (B=A+1) */
348 cs[0].cs_next = &cs[1];
349 cs[1].cs_next = zslist;
350 zslist = cs;
351
352 cs->cs_unit = 0;
353 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
354 cs++;
355 cs->cs_unit = 1;
356 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
357
358 printf(": serial2 on channel a and modem2 on channel b\n");
359 }
360
361 /*
362 * Open a zs serial port.
363 */
364 int
365 zsopen(dev, flags, mode, p)
366 dev_t dev;
367 int flags;
368 int mode;
369 struct proc *p;
370 {
371 register struct tty *tp;
372 register struct zs_chanstate *cs;
373 struct zs_softc *zi;
374 int unit = ZS_UNIT(dev);
375 int zs = unit >> 1;
376 int error, s;
377
378 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
379 return (ENXIO);
380 cs = &zi->zi_cs[unit & 1];
381
382 /*
383 * When port A (ser02) is selected on the TT, make sure
384 * the port is enabled.
385 */
386 if((machineid & ATARI_TT) && !(unit & 1))
387 ym2149_ser2(1);
388
389 if (cs->cs_rbuf == NULL) {
390 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
391 M_WAITOK);
392 }
393
394 tp = cs->cs_ttyp;
395 if(tp == NULL) {
396 cs->cs_ttyp = tp = ttymalloc();
397 tty_attach(tp);
398 tp->t_dev = dev;
399 tp->t_oproc = zsstart;
400 tp->t_param = zsparam;
401 }
402
403 if ((tp->t_state & TS_ISOPEN) &&
404 (tp->t_state & TS_XCLUDE) &&
405 p->p_ucred->cr_uid != 0)
406 return (EBUSY);
407
408 s = spltty();
409
410 /*
411 * Do the following iff this is a first open.
412 */
413 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
414 if(tp->t_ispeed == 0) {
415 tp->t_iflag = TTYDEF_IFLAG;
416 tp->t_oflag = TTYDEF_OFLAG;
417 tp->t_cflag = TTYDEF_CFLAG;
418 tp->t_lflag = TTYDEF_LFLAG;
419 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
420 }
421 ttychars(tp);
422 ttsetwater(tp);
423
424 (void)zsparam(tp, &tp->t_termios);
425
426 /*
427 * Turn on DTR. We must always do this, even if carrier is not
428 * present, because otherwise we'd have to use TIOCSDTR
429 * immediately after setting CLOCAL, which applications do not
430 * expect. We always assert DTR while the device is open
431 * unless explicitly requested to deassert it.
432 */
433 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
434 /* May never get a status intr. if DCD already on. -gwr */
435 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
436 tp->t_state |= TS_CARR_ON;
437 if(cs->cs_softcar)
438 tp->t_state |= TS_CARR_ON;
439 }
440
441 splx(s);
442
443 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
444 if (error)
445 goto bad;
446
447 error = tp->t_linesw->l_open(dev, tp);
448 if(error)
449 goto bad;
450 return (0);
451
452 bad:
453 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
454 /*
455 * We failed to open the device, and nobody else had it opened.
456 * Clean up the state as appropriate.
457 */
458 zs_shutdown(cs);
459 }
460 return(error);
461 }
462
463 /*
464 * Close a zs serial port.
465 */
466 int
467 zsclose(dev, flags, mode, p)
468 dev_t dev;
469 int flags;
470 int mode;
471 struct proc *p;
472 {
473 register struct zs_chanstate *cs;
474 register struct tty *tp;
475 struct zs_softc *zi;
476 int unit = ZS_UNIT(dev);
477
478 zi = zs_cd.cd_devs[unit >> 1];
479 cs = &zi->zi_cs[unit & 1];
480 tp = cs->cs_ttyp;
481
482 tp->t_linesw->l_close(tp, flags);
483 ttyclose(tp);
484
485 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
486 /*
487 * Although we got a last close, the device may still be in
488 * use; e.g. if this was the dialout node, and there are still
489 * processes waiting for carrier on the non-dialout node.
490 */
491 zs_shutdown(cs);
492 }
493 return (0);
494 }
495
496 /*
497 * Read/write zs serial port.
498 */
499 int
500 zsread(dev, uio, flags)
501 dev_t dev;
502 struct uio *uio;
503 int flags;
504 {
505 register struct zs_chanstate *cs;
506 register struct zs_softc *zi;
507 register struct tty *tp;
508 int unit;
509
510 unit = ZS_UNIT(dev);
511 zi = zs_cd.cd_devs[unit >> 1];
512 cs = &zi->zi_cs[unit & 1];
513 tp = cs->cs_ttyp;
514
515 return(tp->t_linesw->l_read(tp, uio, flags));
516 }
517
518 int
519 zswrite(dev, uio, flags)
520 dev_t dev;
521 struct uio *uio;
522 int flags;
523 {
524 register struct zs_chanstate *cs;
525 register struct zs_softc *zi;
526 register struct tty *tp;
527 int unit;
528
529 unit = ZS_UNIT(dev);
530 zi = zs_cd.cd_devs[unit >> 1];
531 cs = &zi->zi_cs[unit & 1];
532 tp = cs->cs_ttyp;
533
534 return(tp->t_linesw->l_write(tp, uio, flags));
535 }
536
537 int
538 zspoll(dev, events, p)
539 dev_t dev;
540 int events;
541 struct proc *p;
542 {
543 register struct zs_chanstate *cs;
544 register struct zs_softc *zi;
545 register struct tty *tp;
546 int unit;
547
548 unit = ZS_UNIT(dev);
549 zi = zs_cd.cd_devs[unit >> 1];
550 cs = &zi->zi_cs[unit & 1];
551 tp = cs->cs_ttyp;
552
553 return ((*tp->t_linesw->l_poll)(tp, events, p));
554 }
555
556 struct tty *
557 zstty(dev)
558 dev_t dev;
559 {
560 register struct zs_chanstate *cs;
561 register struct zs_softc *zi;
562 int unit;
563
564 unit = ZS_UNIT(dev);
565 zi = zs_cd.cd_devs[unit >> 1];
566 cs = &zi->zi_cs[unit & 1];
567 return(cs->cs_ttyp);
568 }
569
570 /*
571 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
572 * channels are kept in (A,B) pairs.
573 *
574 * Do just a little, then get out; set a software interrupt if more
575 * work is needed.
576 *
577 * We deliberately ignore the vectoring Zilog gives us, and match up
578 * only the number of `reset interrupt under service' operations, not
579 * the order.
580 */
581
582 int
583 zshard(sr)
584 long sr;
585 {
586 register struct zs_chanstate *a;
587 #define b (a + 1)
588 register volatile struct zschan *zc;
589 register int rr3, intflags = 0, v, i;
590
591 do {
592 intflags &= ~4;
593 for(a = zslist; a != NULL; a = b->cs_next) {
594 rr3 = ZS_READ(a->cs_zc, 3);
595 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
596 intflags |= 4|2;
597 zc = a->cs_zc;
598 i = a->cs_rbput;
599 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
600 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
601 intflags |= 1;
602 }
603 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
604 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
605 intflags |= 1;
606 }
607 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
608 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
609 intflags |= 1;
610 }
611 a->cs_rbput = i;
612 }
613 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
614 intflags |= 4|2;
615 zc = b->cs_zc;
616 i = b->cs_rbput;
617 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
618 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
619 intflags |= 1;
620 }
621 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
622 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
623 intflags |= 1;
624 }
625 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
626 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
627 intflags |= 1;
628 }
629 b->cs_rbput = i;
630 }
631 }
632 } while(intflags & 4);
633 #undef b
634
635 if(intflags & 1) {
636 if(BASEPRI(sr)) {
637 spl1();
638 zsshortcuts++;
639 return(zssoft(sr));
640 }
641 else if(!cb_scheduled) {
642 cb_scheduled++;
643 add_sicallback((si_farg)zssoft, 0, 0);
644 }
645 }
646 return(intflags & 2);
647 }
648
649 static int
650 zsrint(cs, zc)
651 register struct zs_chanstate *cs;
652 register volatile struct zschan *zc;
653 {
654 register int c;
655
656 /*
657 * First read the status, because read of the received char
658 * destroy the status of this char.
659 */
660 c = ZS_READ(zc, 1);
661 c |= (zc->zc_data << 8);
662
663 /* clear receive error & interrupt condition */
664 zc->zc_csr = ZSWR0_RESET_ERRORS;
665 zc->zc_csr = ZSWR0_CLR_INTR;
666
667 return(ZRING_MAKE(ZRING_RINT, c));
668 }
669
670 static int
671 zsxint(cs, zc)
672 register struct zs_chanstate *cs;
673 register volatile struct zschan *zc;
674 {
675 register int i = cs->cs_tbc;
676
677 if(i == 0) {
678 zc->zc_csr = ZSWR0_RESET_TXINT;
679 zc->zc_csr = ZSWR0_CLR_INTR;
680 return(ZRING_MAKE(ZRING_XINT, 0));
681 }
682 cs->cs_tbc = i - 1;
683 zc->zc_data = *cs->cs_tba++;
684 zc->zc_csr = ZSWR0_CLR_INTR;
685 return (0);
686 }
687
688 static int
689 zssint(cs, zc)
690 register struct zs_chanstate *cs;
691 register volatile struct zschan *zc;
692 {
693 register int rr0;
694
695 rr0 = zc->zc_csr;
696 zc->zc_csr = ZSWR0_RESET_STATUS;
697 zc->zc_csr = ZSWR0_CLR_INTR;
698 /*
699 * The chip's hardware flow control is, as noted in zsreg.h,
700 * busted---if the DCD line goes low the chip shuts off the
701 * receiver (!). If we want hardware CTS flow control but do
702 * not have it, and carrier is now on, turn HFC on; if we have
703 * HFC now but carrier has gone low, turn it off.
704 */
705 if(rr0 & ZSRR0_DCD) {
706 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
707 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
708 cs->cs_creg[3] |= ZSWR3_HFC;
709 ZS_WRITE(zc, 3, cs->cs_creg[3]);
710 }
711 }
712 else {
713 if (cs->cs_creg[3] & ZSWR3_HFC) {
714 cs->cs_creg[3] &= ~ZSWR3_HFC;
715 ZS_WRITE(zc, 3, cs->cs_creg[3]);
716 }
717 }
718 return(ZRING_MAKE(ZRING_SINT, rr0));
719 }
720
721 /*
722 * Print out a ring or fifo overrun error message.
723 */
724 static void
725 zsoverrun(unit, ptime, what)
726 int unit;
727 long *ptime;
728 char *what;
729 {
730
731 if(*ptime != time.tv_sec) {
732 *ptime = time.tv_sec;
733 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
734 (unit & 1) + 'a', what);
735 }
736 }
737
738 /*
739 * ZS software interrupt. Scan all channels for deferred interrupts.
740 */
741 int
742 zssoft(sr)
743 long sr;
744 {
745 register struct zs_chanstate *cs;
746 register volatile struct zschan *zc;
747 register struct linesw *line;
748 register struct tty *tp;
749 register int get, n, c, cc, unit, s;
750 int retval = 0;
751
752 cb_scheduled = 0;
753 s = spltty();
754 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
755 get = cs->cs_rbget;
756 again:
757 n = cs->cs_rbput; /* atomic */
758 if(get == n) /* nothing more on this line */
759 continue;
760 retval = 1;
761 unit = cs->cs_unit; /* set up to handle interrupts */
762 zc = cs->cs_zc;
763 tp = cs->cs_ttyp;
764 line = tp->t_linesw;
765 /*
766 * Compute the number of interrupts in the receive ring.
767 * If the count is overlarge, we lost some events, and
768 * must advance to the first valid one. It may get
769 * overwritten if more data are arriving, but this is
770 * too expensive to check and gains nothing (we already
771 * lost out; all we can do at this point is trade one
772 * kind of loss for another).
773 */
774 n -= get;
775 if(n > ZLRB_RING_SIZE) {
776 zsoverrun(unit, &cs->cs_rotime, "ring");
777 get += n - ZLRB_RING_SIZE;
778 n = ZLRB_RING_SIZE;
779 }
780 while(--n >= 0) {
781 /* race to keep ahead of incoming interrupts */
782 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
783 switch (ZRING_TYPE(c)) {
784
785 case ZRING_RINT:
786 c = ZRING_VALUE(c);
787 if(c & ZSRR1_DO)
788 zsoverrun(unit, &cs->cs_fotime, "fifo");
789 cc = c >> 8;
790 if(c & ZSRR1_FE)
791 cc |= TTY_FE;
792 if(c & ZSRR1_PE)
793 cc |= TTY_PE;
794 line->l_rint(cc, tp);
795 break;
796
797 case ZRING_XINT:
798 /*
799 * Transmit done: change registers and resume,
800 * or clear BUSY.
801 */
802 if(cs->cs_heldchange) {
803 int sps;
804
805 sps = splzs();
806 c = zc->zc_csr;
807 if((c & ZSRR0_DCD) == 0)
808 cs->cs_preg[3] &= ~ZSWR3_HFC;
809 bcopy((caddr_t)cs->cs_preg,
810 (caddr_t)cs->cs_creg, 16);
811 zs_loadchannelregs(zc, cs->cs_creg);
812 splx(sps);
813 cs->cs_heldchange = 0;
814 if(cs->cs_heldtbc
815 && (tp->t_state & TS_TTSTOP) == 0) {
816 cs->cs_tbc = cs->cs_heldtbc - 1;
817 zc->zc_data = *cs->cs_tba++;
818 goto again;
819 }
820 }
821 tp->t_state &= ~TS_BUSY;
822 if(tp->t_state & TS_FLUSH)
823 tp->t_state &= ~TS_FLUSH;
824 else ndflush(&tp->t_outq,cs->cs_tba
825 - (caddr_t)tp->t_outq.c_cf);
826 line->l_start(tp);
827 break;
828
829 case ZRING_SINT:
830 /*
831 * Status line change. HFC bit is run in
832 * hardware interrupt, to avoid locking
833 * at splzs here.
834 */
835 c = ZRING_VALUE(c);
836 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
837 cc = (c & ZSRR0_DCD) != 0;
838 if(line->l_modem(tp, cc) == 0)
839 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
840 cc ? DMBIS : DMBIC);
841 }
842 cs->cs_rr0 = c;
843 break;
844
845 default:
846 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
847 unit >> 1, (unit & 1) + 'a', c);
848 break;
849 }
850 }
851 cs->cs_rbget = get;
852 goto again;
853 }
854 splx(s);
855 return (retval);
856 }
857
858 int
859 zsioctl(dev, cmd, data, flag, p)
860 dev_t dev;
861 u_long cmd;
862 caddr_t data;
863 int flag;
864 struct proc *p;
865 {
866 int unit = ZS_UNIT(dev);
867 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
868 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
869 register int error, s;
870 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
871
872 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
873 if(error != EPASSTHROUGH)
874 return(error);
875
876 error = ttioctl(tp, cmd, data, flag, p);
877 if(error !=EPASSTHROUGH)
878 return (error);
879
880 switch (cmd) {
881 case TIOCSBRK:
882 s = splzs();
883 cs->cs_preg[5] |= ZSWR5_BREAK;
884 cs->cs_creg[5] |= ZSWR5_BREAK;
885 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
886 splx(s);
887 break;
888 case TIOCCBRK:
889 s = splzs();
890 cs->cs_preg[5] &= ~ZSWR5_BREAK;
891 cs->cs_creg[5] &= ~ZSWR5_BREAK;
892 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
893 splx(s);
894 break;
895 case TIOCGFLAGS: {
896 int bits = 0;
897
898 if(cs->cs_softcar)
899 bits |= TIOCFLAG_SOFTCAR;
900 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
901 bits |= TIOCFLAG_CLOCAL;
902 if(cs->cs_creg[3] & ZSWR3_HFC)
903 bits |= TIOCFLAG_CRTSCTS;
904 *(int *)data = bits;
905 break;
906 }
907 case TIOCSFLAGS: {
908 int userbits = 0;
909
910 error = suser(p->p_ucred, &p->p_acflag);
911 if(error != 0)
912 return (EPERM);
913
914 userbits = *(int *)data;
915
916 /*
917 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
918 # defaulting to software flow control.
919 */
920 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
921 return(EINVAL);
922 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
923 return(ENODEV);
924
925 s = splzs();
926 if((userbits & TIOCFLAG_SOFTCAR)) {
927 cs->cs_softcar = 1; /* turn on softcar */
928 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
929 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
930 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
931 }
932 else if(userbits & TIOCFLAG_CLOCAL) {
933 cs->cs_softcar = 0; /* turn off softcar */
934 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
935 cs->cs_creg[15] |= ZSWR15_DCD_IE;
936 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
937 tp->t_termios.c_cflag |= CLOCAL;
938 }
939 if(userbits & TIOCFLAG_CRTSCTS) {
940 cs->cs_preg[15] |= ZSWR15_CTS_IE;
941 cs->cs_creg[15] |= ZSWR15_CTS_IE;
942 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
943 cs->cs_preg[3] |= ZSWR3_HFC;
944 cs->cs_creg[3] |= ZSWR3_HFC;
945 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
946 tp->t_termios.c_cflag |= CRTSCTS;
947 }
948 else {
949 /* no mdmbuf, so we must want software flow control */
950 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
951 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
952 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
953 cs->cs_preg[3] &= ~ZSWR3_HFC;
954 cs->cs_creg[3] &= ~ZSWR3_HFC;
955 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
956 tp->t_termios.c_cflag &= ~CRTSCTS;
957 }
958 splx(s);
959 break;
960 }
961 case TIOCSDTR:
962 zs_modem(cs, ZSWR5_DTR, DMBIS);
963 break;
964 case TIOCCDTR:
965 zs_modem(cs, ZSWR5_DTR, DMBIC);
966 break;
967 case TIOCMGET:
968 zs_modem(cs, 0, DMGET);
969 break;
970 case TIOCMSET:
971 case TIOCMBIS:
972 case TIOCMBIC:
973 default:
974 return (EPASSTHROUGH);
975 }
976 return (0);
977 }
978
979 /*
980 * Start or restart transmission.
981 */
982 static void
983 zsstart(tp)
984 register struct tty *tp;
985 {
986 register struct zs_chanstate *cs;
987 register int s, nch;
988 int unit = ZS_UNIT(tp->t_dev);
989 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
990
991 cs = &zi->zi_cs[unit & 1];
992 s = spltty();
993
994 /*
995 * If currently active or delaying, no need to do anything.
996 */
997 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
998 goto out;
999
1000 /*
1001 * If there are sleepers, and output has drained below low
1002 * water mark, awaken.
1003 */
1004 if(tp->t_outq.c_cc <= tp->t_lowat) {
1005 if(tp->t_state & TS_ASLEEP) {
1006 tp->t_state &= ~TS_ASLEEP;
1007 wakeup((caddr_t)&tp->t_outq);
1008 }
1009 selwakeup(&tp->t_wsel);
1010 }
1011
1012 nch = ndqb(&tp->t_outq, 0); /* XXX */
1013 if(nch) {
1014 register char *p = tp->t_outq.c_cf;
1015
1016 /* mark busy, enable tx done interrupts, & send first byte */
1017 tp->t_state |= TS_BUSY;
1018 (void) splzs();
1019 cs->cs_preg[1] |= ZSWR1_TIE;
1020 cs->cs_creg[1] |= ZSWR1_TIE;
1021 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1022 cs->cs_zc->zc_data = *p;
1023 cs->cs_tba = p + 1;
1024 cs->cs_tbc = nch - 1;
1025 } else {
1026 /*
1027 * Nothing to send, turn off transmit done interrupts.
1028 * This is useful if something is doing polled output.
1029 */
1030 (void) splzs();
1031 cs->cs_preg[1] &= ~ZSWR1_TIE;
1032 cs->cs_creg[1] &= ~ZSWR1_TIE;
1033 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1034 }
1035 out:
1036 splx(s);
1037 }
1038
1039 /*
1040 * Stop output, e.g., for ^S or output flush.
1041 */
1042 void
1043 zsstop(tp, flag)
1044 register struct tty *tp;
1045 int flag;
1046 {
1047 register struct zs_chanstate *cs;
1048 register int s, unit = ZS_UNIT(tp->t_dev);
1049 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1050
1051 cs = &zi->zi_cs[unit & 1];
1052 s = splzs();
1053 if(tp->t_state & TS_BUSY) {
1054 /*
1055 * Device is transmitting; must stop it.
1056 */
1057 cs->cs_tbc = 0;
1058 if ((tp->t_state & TS_TTSTOP) == 0)
1059 tp->t_state |= TS_FLUSH;
1060 }
1061 splx(s);
1062 }
1063
1064 static void
1065 zs_shutdown(cs)
1066 struct zs_chanstate *cs;
1067 {
1068 struct tty *tp = cs->cs_ttyp;
1069 int s;
1070
1071 s = splzs();
1072
1073 /*
1074 * Hang up if necessary. Wait a bit, so the other side has time to
1075 * notice even if we immediately open the port again.
1076 */
1077 if(tp->t_cflag & HUPCL) {
1078 zs_modem(cs, 0, DMSET);
1079 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1080 }
1081
1082 /* Clear any break condition set with TIOCSBRK. */
1083 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1084 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1085 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1086 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1087 }
1088
1089 /*
1090 * Drop all lines and cancel interrupts
1091 */
1092 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1093 splx(s);
1094 }
1095
1096 /*
1097 * Set ZS tty parameters from termios.
1098 *
1099 * This routine makes use of the fact that only registers
1100 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1101 */
1102 static int
1103 zsparam(tp, t)
1104 register struct tty *tp;
1105 register struct termios *t;
1106 {
1107 int unit = ZS_UNIT(tp->t_dev);
1108 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1109 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1110 int cdiv, clkm, brgm, tcon;
1111 register int tmp, tmp5, cflag, s;
1112
1113 tmp = t->c_ospeed;
1114 tmp5 = t->c_ispeed;
1115 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1116 return(EINVAL);
1117 if(tmp == 0) {
1118 /* stty 0 => drop DTR and RTS */
1119 zs_modem(cs, 0, DMSET);
1120 return(0);
1121 }
1122 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1123 if (tmp < 0)
1124 return(EINVAL);
1125 tp->t_ispeed = tp->t_ospeed = tmp;
1126
1127 cflag = tp->t_cflag = t->c_cflag;
1128 if (cflag & CSTOPB)
1129 cdiv |= ZSWR4_TWOSB;
1130 else
1131 cdiv |= ZSWR4_ONESB;
1132 if (!(cflag & PARODD))
1133 cdiv |= ZSWR4_EVENP;
1134 if (cflag & PARENB)
1135 cdiv |= ZSWR4_PARENB;
1136
1137 switch(cflag & CSIZE) {
1138 case CS5:
1139 tmp = ZSWR3_RX_5;
1140 tmp5 = ZSWR5_TX_5;
1141 break;
1142 case CS6:
1143 tmp = ZSWR3_RX_6;
1144 tmp5 = ZSWR5_TX_6;
1145 break;
1146 case CS7:
1147 tmp = ZSWR3_RX_7;
1148 tmp5 = ZSWR5_TX_7;
1149 break;
1150 case CS8:
1151 default:
1152 tmp = ZSWR3_RX_8;
1153 tmp5 = ZSWR5_TX_8;
1154 break;
1155 }
1156 tmp |= ZSWR3_RX_ENABLE;
1157 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1158
1159 /*
1160 * Block interrupts so that state will not
1161 * be altered until we are done setting it up.
1162 */
1163 s = splzs();
1164 cs->cs_preg[4] = cdiv;
1165 cs->cs_preg[11] = clkm;
1166 cs->cs_preg[12] = tcon;
1167 cs->cs_preg[13] = tcon >> 8;
1168 cs->cs_preg[14] = brgm;
1169 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1170 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1171 cs->cs_preg[10] = ZSWR10_NRZ;
1172 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1173
1174 /*
1175 * Output hardware flow control on the chip is horrendous: if
1176 * carrier detect drops, the receiver is disabled. Hence we
1177 * can only do this when the carrier is on.
1178 */
1179 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1180 tmp |= ZSWR3_HFC;
1181 cs->cs_preg[3] = tmp;
1182 cs->cs_preg[5] = tmp5;
1183
1184 /*
1185 * If nothing is being transmitted, set up new current values,
1186 * else mark them as pending.
1187 */
1188 if(cs->cs_heldchange == 0) {
1189 if (cs->cs_ttyp->t_state & TS_BUSY) {
1190 cs->cs_heldtbc = cs->cs_tbc;
1191 cs->cs_tbc = 0;
1192 cs->cs_heldchange = 1;
1193 } else {
1194 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1195 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1196 }
1197 }
1198 splx(s);
1199 return (0);
1200 }
1201
1202 /*
1203 * search for the best matching baudrate
1204 */
1205 static int
1206 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1207 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1208 {
1209 int bestdiff, bestbps, source;
1210
1211 bestdiff = bestbps = 0;
1212 unit = (unit & 1) << 2;
1213 for (source = 0; source < 4; ++source) {
1214 long freq = zs_frequencies[unit + source];
1215 int diff, bps, div, clkm, brgm, tcon;
1216
1217 bps = div = clkm = brgm = tcon = 0;
1218 switch (source) {
1219 case 0: /* BRgen, PCLK */
1220 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1221 break;
1222 case 1: /* BRgen, RTxC */
1223 brgm = ZSWR14_BAUD_ENA;
1224 break;
1225 case 2: /* RTxC */
1226 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1227 break;
1228 case 3: /* TRxC */
1229 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1230 break;
1231 }
1232 switch (source) {
1233 case 0:
1234 case 1:
1235 div = ZSWR4_CLK_X16;
1236 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1237 tcon = BPS_TO_TCONST(freq, wanted);
1238 if (tcon < 0)
1239 tcon = 0;
1240 bps = TCONST_TO_BPS(freq, tcon);
1241 break;
1242 case 2:
1243 case 3:
1244 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1245 int b2 = freq / 32, d2 = abs(b2 - wanted);
1246 int b3 = freq / 64, d3 = abs(b3 - wanted);
1247
1248 if (d1 < d2 && d1 < d3) {
1249 div = ZSWR4_CLK_X16;
1250 bps = b1;
1251 } else if (d2 < d3 && d2 < d1) {
1252 div = ZSWR4_CLK_X32;
1253 bps = b2;
1254 } else {
1255 div = ZSWR4_CLK_X64;
1256 bps = b3;
1257 }
1258 brgm = tcon = 0;
1259 break;
1260 }
1261 }
1262 diff = abs(bps - wanted);
1263 if (!source || diff < bestdiff) {
1264 *divisor = div;
1265 *clockmode = clkm;
1266 *brgenmode = brgm;
1267 *timeconst = tcon;
1268 bestbps = bps;
1269 bestdiff = diff;
1270 if (diff == 0)
1271 break;
1272 }
1273 }
1274 /* Allow deviations upto 5% */
1275 if (20 * bestdiff > wanted)
1276 return -1;
1277 return bestbps;
1278 }
1279
1280 /*
1281 * Raise or lower modem control (DTR/RTS) signals. If a character is
1282 * in transmission, the change is deferred.
1283 */
1284 static int
1285 zs_modem(cs, bits, how)
1286 struct zs_chanstate *cs;
1287 int bits, how;
1288 {
1289 int s, mbits;
1290
1291 bits &= ZSWR5_DTR | ZSWR5_RTS;
1292
1293 s = splzs();
1294 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1295
1296 switch(how) {
1297 case DMSET:
1298 mbits = bits;
1299 break;
1300 case DMBIS:
1301 mbits |= bits;
1302 break;
1303 case DMBIC:
1304 mbits &= ~bits;
1305 break;
1306 case DMGET:
1307 splx(s);
1308 return(mbits);
1309 }
1310
1311 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1312 if(cs->cs_heldchange == 0) {
1313 if(cs->cs_ttyp->t_state & TS_BUSY) {
1314 cs->cs_heldtbc = cs->cs_tbc;
1315 cs->cs_tbc = 0;
1316 cs->cs_heldchange = 1;
1317 }
1318 else {
1319 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1320 }
1321 }
1322 splx(s);
1323 return(0);
1324 }
1325
1326 /*
1327 * Write the given register set to the given zs channel in the proper order.
1328 * The channel must not be transmitting at the time. The receiver will
1329 * be disabled for the time it takes to write all the registers.
1330 */
1331 static void
1332 zs_loadchannelregs(zc, reg)
1333 volatile struct zschan *zc;
1334 u_char *reg;
1335 {
1336 int i;
1337
1338 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1339 i = zc->zc_data; /* drain fifo */
1340 i = zc->zc_data;
1341 i = zc->zc_data;
1342 ZS_WRITE(zc, 4, reg[4]);
1343 ZS_WRITE(zc, 10, reg[10]);
1344 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1345 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1346 ZS_WRITE(zc, 1, reg[1]);
1347 ZS_WRITE(zc, 9, reg[9]);
1348 ZS_WRITE(zc, 11, reg[11]);
1349 ZS_WRITE(zc, 12, reg[12]);
1350 ZS_WRITE(zc, 13, reg[13]);
1351 ZS_WRITE(zc, 14, reg[14]);
1352 ZS_WRITE(zc, 15, reg[15]);
1353 ZS_WRITE(zc, 3, reg[3]);
1354 ZS_WRITE(zc, 5, reg[5]);
1355 }
1356 #endif /* NZS > 1 */
1357