Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.4
      1 /*	$NetBSD: zs.c,v 1.4 1995/04/22 22:06:45 leo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/proc.h>
     58 #include <sys/device.h>
     59 #include <sys/conf.h>
     60 #include <sys/file.h>
     61 #include <sys/ioctl.h>
     62 #include <sys/tty.h>
     63 #include <sys/time.h>
     64 #include <sys/kernel.h>
     65 #include <sys/syslog.h>
     66 
     67 #include <machine/cpu.h>
     68 #include <machine/iomap.h>
     69 #include <machine/scu.h>
     70 #include <machine/mfp.h>
     71 
     72 #include <dev/ic/z8530.h>
     73 #include <atari/dev/zsvar.h>
     74 #include "zs.h"
     75 #if NZS > 1
     76 #error "This driver supports only 1 85C30!"
     77 #endif
     78 
     79 #if NZS > 0
     80 
     81 #define PCLK	(8000000)	/* PCLK pin input clock rate */
     82 
     83 #define splzs	spl5
     84 
     85 /*
     86  * Software state per found chip.
     87  */
     88 struct zs_softc {
     89     struct	device		zi_dev;    /* base device		  */
     90     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     91     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     92 };
     93 
     94 /*
     95  * Define the registers for a closed port
     96  */
     97 u_char zs_init_regs[16] = {
     98 /*  0 */	0,
     99 /*  1 */	0,
    100 /*  2 */	0x60,
    101 /*  3 */	0,
    102 /*  4 */	0,
    103 /*  5 */	0,
    104 /*  6 */	0,
    105 /*  7 */	0,
    106 /*  8 */	0,
    107 /*  9 */	ZSWR9_VECTOR_INCL_STAT,
    108 /* 10 */	ZSWR10_NRZ,
    109 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    110 /* 12 */	0,
    111 /* 13 */	0,
    112 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    113 /* 15 */	0
    114 };
    115 
    116 /* Definition of the driver for autoconfig. */
    117 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    118 static void	zsattach __P((struct device *, struct device *, void *));
    119 struct cfdriver zscd = {
    120 	NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
    121 	sizeof(struct zs_softc), NULL, 0 };
    122 
    123 /* Interrupt handlers. */
    124 int		zshard __P((long));
    125 static int	zssoft __P((long));
    126 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    127 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    128 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    129 
    130 struct zs_chanstate *zslist;
    131 
    132 /* Routines called from other code. */
    133 static void	zsstart __P((struct tty *));
    134 void		zsstop __P((struct tty *, int));
    135 static int	zsparam __P((struct tty *, struct termios *));
    136 
    137 /* Routines purely local to this driver. */
    138 static void	zs_reset __P((volatile struct zschan *, int, int));
    139 static int	zs_modem __P((struct zs_chanstate *, int, int));
    140 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    141 
    142 int zsshortcuts;	/* number of "shortcut" software interrupts */
    143 
    144 static int
    145 zsmatch(pdp, cfp, auxp)
    146 struct device	*pdp;
    147 struct cfdata	*cfp;
    148 void		*auxp;
    149 {
    150 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
    151 		return(0);
    152 	return(1);
    153 }
    154 
    155 /*
    156  * Attach a found zs.
    157  */
    158 static void
    159 zsattach(parent, dev, aux)
    160 struct device	*parent;
    161 struct device	*dev;
    162 void		*aux;
    163 {
    164 	register struct zs_softc		*zi;
    165 	register struct zs_chanstate		*cs;
    166 	register volatile struct zsdevice	*addr;
    167 	register struct tty			*tp;
    168 		 char				tmp;
    169 
    170 	addr      = (struct zsdevice *)AD_SCC;
    171 	zi        = (struct zs_softc *)dev;
    172 	zi->zi_zs = addr;
    173 	cs        = zi->zi_cs;
    174 
    175 	/*
    176 	 * Get the command register into a known state.
    177 	 */
    178 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    179 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    180 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    181 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    182 
    183 	/*
    184 	 * Do a hardware reset.
    185 	 */
    186 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    187 	delay(50000);	/*enough ? */
    188 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    189 
    190 	/*
    191 	 * Initialize both channels
    192 	 */
    193 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    194 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    195 
    196 	/*
    197 	 * enable scc related interrupts
    198 	 */
    199 	SCU->sys_mask |= SCU_SCC;
    200 
    201 	/* link into interrupt list with order (A,B) (B=A+1) */
    202 	cs[0].cs_next = &cs[1];
    203 	cs[1].cs_next = zslist;
    204 	zslist        = cs;
    205 
    206 	cs->cs_unit  = 0;
    207 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    208 	cs++;
    209 	cs->cs_unit  = 1;
    210 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    211 
    212 	printf(": serial2 on channel a and modem2 on channel b\n");
    213 }
    214 
    215 /*
    216  * Open a zs serial port.
    217  */
    218 int
    219 zsopen(dev, flags, mode, p)
    220 dev_t		dev;
    221 int		flags;
    222 int		mode;
    223 struct proc	*p;
    224 {
    225 	register struct tty		*tp;
    226 	register struct zs_chanstate	*cs;
    227 		 struct zs_softc	*zi;
    228 		 int			unit = ZS_UNIT(dev);
    229 		 int			zs = unit >> 1;
    230 		 int			error, s;
    231 
    232 	if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
    233 		return (ENXIO);
    234 	cs = &zi->zi_cs[unit & 1];
    235 	tp = cs->cs_ttyp;
    236 	if(tp == NULL) {
    237 		cs->cs_ttyp  = tp = ttymalloc();
    238 		tp->t_dev    = dev;
    239 		tp->t_oproc  = zsstart;
    240 		tp->t_param  = zsparam;
    241 	}
    242 
    243 	s  = spltty();
    244 	if((tp->t_state & TS_ISOPEN) == 0) {
    245 		ttychars(tp);
    246 		if(tp->t_ispeed == 0) {
    247 			tp->t_iflag = TTYDEF_IFLAG;
    248 			tp->t_oflag = TTYDEF_OFLAG;
    249 			tp->t_cflag = TTYDEF_CFLAG;
    250 			tp->t_lflag = TTYDEF_LFLAG;
    251 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    252 		}
    253 		(void)zsparam(tp, &tp->t_termios);
    254 		ttsetwater(tp);
    255 	}
    256 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    257 			splx(s);
    258 			return (EBUSY);
    259 	}
    260 	error = 0;
    261 	for(;;) {
    262 		/* loop, turning on the device, until carrier present */
    263 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    264 		if(cs->cs_softcar)
    265 			tp->t_state |= TS_CARR_ON;
    266 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    267 		    tp->t_state & TS_CARR_ON)
    268 			break;
    269 		tp->t_state |= TS_WOPEN;
    270 		if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    271 		    ttopen, 0)) {
    272 			if(!(tp->t_state & TS_ISOPEN)) {
    273 				zs_modem(cs, 0, DMSET);
    274 				tp->t_state &= ~TS_WOPEN;
    275 				ttwakeup(tp);
    276 			}
    277 			splx(s);
    278 			return error;
    279 		}
    280 	}
    281 	splx(s);
    282 	if(error == 0)
    283 		error = linesw[tp->t_line].l_open(dev, tp);
    284 	if(error)
    285 		zs_modem(cs, 0, DMSET);
    286 	return(error);
    287 }
    288 
    289 /*
    290  * Close a zs serial port.
    291  */
    292 int
    293 zsclose(dev, flags, mode, p)
    294 dev_t		dev;
    295 int		flags;
    296 int		mode;
    297 struct proc	*p;
    298 {
    299 	register struct zs_chanstate	*cs;
    300 	register struct tty		*tp;
    301 		 struct zs_softc	*zi;
    302 		 int			unit = ZS_UNIT(dev);
    303 		 int			s;
    304 
    305 	zi = zscd.cd_devs[unit >> 1];
    306 	cs = &zi->zi_cs[unit & 1];
    307 	tp = cs->cs_ttyp;
    308 	linesw[tp->t_line].l_close(tp, flags);
    309 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    310 	    (tp->t_state & TS_ISOPEN) == 0) {
    311 		zs_modem(cs, 0, DMSET);
    312 		/* hold low for 1 second */
    313 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    314 	}
    315 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
    316 		s = splzs();
    317 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    318 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    319 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    320 		splx(s);
    321 	}
    322 	ttyclose(tp);
    323 
    324 	/*
    325 	 * Drop all lines and cancel interrupts
    326 	 */
    327 	zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
    328 	return (0);
    329 }
    330 
    331 /*
    332  * Read/write zs serial port.
    333  */
    334 int
    335 zsread(dev, uio, flags)
    336 dev_t		dev;
    337 struct uio	*uio;
    338 int		flags;
    339 {
    340 	register struct zs_chanstate	*cs;
    341 	register struct zs_softc	*zi;
    342 	register struct tty		*tp;
    343 		 int			unit;
    344 
    345 	unit = ZS_UNIT(dev);
    346 	zi   = zscd.cd_devs[unit >> 1];
    347 	cs   = &zi->zi_cs[unit & 1];
    348 	tp   = cs->cs_ttyp;
    349 
    350 	return(linesw[tp->t_line].l_read(tp, uio, flags));
    351 }
    352 
    353 int
    354 zswrite(dev, uio, flags)
    355 dev_t		dev;
    356 struct uio	*uio;
    357 int		flags;
    358 {
    359 	register struct zs_chanstate	*cs;
    360 	register struct zs_softc	*zi;
    361 	register struct tty		*tp;
    362 		 int			unit;
    363 
    364 	unit = ZS_UNIT(dev);
    365 	zi   = zscd.cd_devs[unit >> 1];
    366 	cs   = &zi->zi_cs[unit & 1];
    367 	tp   = cs->cs_ttyp;
    368 
    369 	return(linesw[tp->t_line].l_write(tp, uio, flags));
    370 }
    371 
    372 struct tty *
    373 zstty(dev)
    374 dev_t	dev;
    375 {
    376 	register struct zs_chanstate	*cs;
    377 	register struct zs_softc	*zi;
    378 		 int			unit;
    379 
    380 	unit = ZS_UNIT(dev);
    381 	zi   = zscd.cd_devs[unit >> 1];
    382 	cs   = &zi->zi_cs[unit & 1];
    383 	return(cs->cs_ttyp);
    384 }
    385 
    386 /*
    387  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    388  * channels are kept in (A,B) pairs.
    389  *
    390  * Do just a little, then get out; set a software interrupt if more
    391  * work is needed.
    392  *
    393  * We deliberately ignore the vectoring Zilog gives us, and match up
    394  * only the number of `reset interrupt under service' operations, not
    395  * the order.
    396  */
    397 int
    398 zshard(sr)
    399 long sr;
    400 {
    401 	register struct zs_chanstate	*a;
    402 #define	b (a + 1)
    403 	register volatile struct zschan *zc;
    404 	register int			rr3, intflags = 0, v, i;
    405 
    406 	for(a = zslist; a != NULL; a = b->cs_next) {
    407 		rr3 = ZS_READ(a->cs_zc, 3);
    408 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    409 			intflags |= 2;
    410 			zc = a->cs_zc;
    411 			i  = a->cs_rbput;
    412 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    413 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    414 				intflags |= 1;
    415 			}
    416 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    417 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    418 				intflags |= 1;
    419 			}
    420 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    421 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    422 				intflags |= 1;
    423 			}
    424 			a->cs_rbput = i;
    425 		}
    426 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    427 			intflags |= 2;
    428 			zc = b->cs_zc;
    429 			i  = b->cs_rbput;
    430 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    431 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    432 				intflags |= 1;
    433 			}
    434 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    435 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    436 				intflags |= 1;
    437 			}
    438 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    439 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    440 				intflags |= 1;
    441 			}
    442 			b->cs_rbput = i;
    443 		}
    444 	}
    445 #undef b
    446 
    447 	if(intflags & 1) {
    448 		if(BASEPRI(sr)) {
    449 			spl1();
    450 			zsshortcuts++;
    451 			return(zssoft(sr));
    452 		}
    453 		else add_sicallback(zssoft, 0, 0);
    454 	}
    455 	return(intflags & 2);
    456 }
    457 
    458 static int
    459 zsrint(cs, zc)
    460 register struct zs_chanstate	*cs;
    461 register volatile struct zschan	*zc;
    462 {
    463 	register int c = zc->zc_data;
    464 
    465 	/* compose receive character and status */
    466 	c <<= 8;
    467 	c |= ZS_READ(zc, 1);
    468 
    469 	/* clear receive error & interrupt condition */
    470 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    471 	zc->zc_csr = ZSWR0_CLR_INTR;
    472 
    473 	return(ZRING_MAKE(ZRING_RINT, c));
    474 }
    475 
    476 static int
    477 zsxint(cs, zc)
    478 register struct zs_chanstate	*cs;
    479 register volatile struct zschan	*zc;
    480 {
    481 	register int i = cs->cs_tbc;
    482 
    483 	if(i == 0) {
    484 		zc->zc_csr = ZSWR0_RESET_TXINT;
    485 		zc->zc_csr = ZSWR0_CLR_INTR;
    486 		return(ZRING_MAKE(ZRING_XINT, 0));
    487 	}
    488 	cs->cs_tbc = i - 1;
    489 	zc->zc_data = *cs->cs_tba++;
    490 	zc->zc_csr = ZSWR0_CLR_INTR;
    491 	return (0);
    492 }
    493 
    494 static int
    495 zssint(cs, zc)
    496 register struct zs_chanstate	*cs;
    497 register volatile struct zschan	*zc;
    498 {
    499 	register int rr0;
    500 
    501 	rr0 = zc->zc_csr;
    502 	zc->zc_csr = ZSWR0_RESET_STATUS;
    503 	zc->zc_csr = ZSWR0_CLR_INTR;
    504 	/*
    505 	 * The chip's hardware flow control is, as noted in zsreg.h,
    506 	 * busted---if the DCD line goes low the chip shuts off the
    507 	 * receiver (!).  If we want hardware CTS flow control but do
    508 	 * not have it, and carrier is now on, turn HFC on; if we have
    509 	 * HFC now but carrier has gone low, turn it off.
    510 	 */
    511 	if(rr0 & ZSRR0_DCD) {
    512 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    513 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    514 			cs->cs_creg[3] |= ZSWR3_HFC;
    515 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    516 		}
    517 	}
    518 	else {
    519 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    520 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    521 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    522 		}
    523 	}
    524 	return(ZRING_MAKE(ZRING_SINT, rr0));
    525 }
    526 
    527 /*
    528  * Print out a ring or fifo overrun error message.
    529  */
    530 static void
    531 zsoverrun(unit, ptime, what)
    532 int	unit;
    533 long	*ptime;
    534 char	*what;
    535 {
    536 
    537 	if(*ptime != time.tv_sec) {
    538 		*ptime = time.tv_sec;
    539 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    540 		    (unit & 1) + 'a', what);
    541 	}
    542 }
    543 
    544 /*
    545  * ZS software interrupt.  Scan all channels for deferred interrupts.
    546  */
    547 int
    548 zssoft(sr)
    549 long sr;
    550 {
    551     register struct zs_chanstate	*cs;
    552     register volatile struct zschan	*zc;
    553     register struct linesw		*line;
    554     register struct tty			*tp;
    555     register int			get, n, c, cc, unit, s;
    556  	     int			retval = 0;
    557 
    558     s = spltty();
    559     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    560 	get = cs->cs_rbget;
    561 again:
    562 	n = cs->cs_rbput;	/* atomic			*/
    563 	if(get == n)		/* nothing more on this line	*/
    564 		continue;
    565 	retval = 1;
    566 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    567 	zc     = cs->cs_zc;
    568 	tp     = cs->cs_ttyp;
    569 	line   = &linesw[tp->t_line];
    570 	/*
    571 	 * Compute the number of interrupts in the receive ring.
    572 	 * If the count is overlarge, we lost some events, and
    573 	 * must advance to the first valid one.  It may get
    574 	 * overwritten if more data are arriving, but this is
    575 	 * too expensive to check and gains nothing (we already
    576 	 * lost out; all we can do at this point is trade one
    577 	 * kind of loss for another).
    578 	 */
    579 	n -= get;
    580 	if(n > ZLRB_RING_SIZE) {
    581 		zsoverrun(unit, &cs->cs_rotime, "ring");
    582 		get += n - ZLRB_RING_SIZE;
    583 		n    = ZLRB_RING_SIZE;
    584 	}
    585 	while(--n >= 0) {
    586 		/* race to keep ahead of incoming interrupts */
    587 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    588 		switch (ZRING_TYPE(c)) {
    589 
    590 		case ZRING_RINT:
    591 			c = ZRING_VALUE(c);
    592 			if(c & ZSRR1_DO)
    593 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    594 			cc = c >> 8;
    595 			if(c & ZSRR1_FE)
    596 				cc |= TTY_FE;
    597 			if(c & ZSRR1_PE)
    598 				cc |= TTY_PE;
    599 			line->l_rint(cc, tp);
    600 			break;
    601 
    602 		case ZRING_XINT:
    603 			/*
    604 			 * Transmit done: change registers and resume,
    605 			 * or clear BUSY.
    606 			 */
    607 			if(cs->cs_heldchange) {
    608 				int sps;
    609 
    610 				sps = splzs();
    611 				c = zc->zc_csr;
    612 				if((c & ZSRR0_DCD) == 0)
    613 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    614 				bcopy((caddr_t)cs->cs_preg,
    615 				    (caddr_t)cs->cs_creg, 16);
    616 				zs_loadchannelregs(zc, cs->cs_creg);
    617 				splx(sps);
    618 				cs->cs_heldchange = 0;
    619 				if(cs->cs_heldtbc
    620 					&& (tp->t_state & TS_TTSTOP) == 0) {
    621 					cs->cs_tbc = cs->cs_heldtbc - 1;
    622 					zc->zc_data = *cs->cs_tba++;
    623 					goto again;
    624 				}
    625 			}
    626 			tp->t_state &= ~TS_BUSY;
    627 			if(tp->t_state & TS_FLUSH)
    628 				tp->t_state &= ~TS_FLUSH;
    629 			else ndflush(&tp->t_outq,cs->cs_tba
    630 						- (caddr_t)tp->t_outq.c_cf);
    631 			line->l_start(tp);
    632 			break;
    633 
    634 		case ZRING_SINT:
    635 			/*
    636 			 * Status line change.  HFC bit is run in
    637 			 * hardware interrupt, to avoid locking
    638 			 * at splzs here.
    639 			 */
    640 			c = ZRING_VALUE(c);
    641 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    642 				cc = (c & ZSRR0_DCD) != 0;
    643 				if(line->l_modem(tp, cc) == 0)
    644 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    645 							cc ? DMBIS : DMBIC);
    646 			}
    647 			cs->cs_rr0 = c;
    648 			break;
    649 
    650 		default:
    651 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    652 			    unit >> 1, (unit & 1) + 'a', c);
    653 			break;
    654 		}
    655 	}
    656 	cs->cs_rbget = get;
    657 	goto again;
    658     }
    659     splx(s);
    660     return (retval);
    661 }
    662 
    663 int
    664 zsioctl(dev, cmd, data, flag, p)
    665 dev_t		dev;
    666 u_long		cmd;
    667 caddr_t		data;
    668 int		flag;
    669 struct proc	*p;
    670 {
    671 		 int			unit = ZS_UNIT(dev);
    672 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    673 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    674 	register int			error, s;
    675 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    676 
    677 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
    678 	if(error >= 0)
    679 		return(error);
    680 	error = ttioctl(tp, cmd, data, flag, p);
    681 	if(error >= 0)
    682 		return (error);
    683 
    684 	switch (cmd) {
    685 	case TIOCSBRK:
    686 		s = splzs();
    687 		cs->cs_preg[5] |= ZSWR5_BREAK;
    688 		cs->cs_creg[5] |= ZSWR5_BREAK;
    689 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    690 		splx(s);
    691 		break;
    692 	case TIOCCBRK:
    693 		s = splzs();
    694 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    695 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    696 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    697 		splx(s);
    698 		break;
    699 	case TIOCGFLAGS: {
    700 		int bits = 0;
    701 
    702 		if(cs->cs_softcar)
    703 			bits |= TIOCFLAG_SOFTCAR;
    704 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    705 			bits |= TIOCFLAG_CLOCAL;
    706 		if(cs->cs_creg[3] & ZSWR3_HFC)
    707 			bits |= TIOCFLAG_CRTSCTS;
    708 		*(int *)data = bits;
    709 		break;
    710 	}
    711 	case TIOCSFLAGS: {
    712 		int userbits, driverbits = 0;
    713 
    714 		error = suser(p->p_ucred, &p->p_acflag);
    715 		if(error != 0)
    716 			return (EPERM);
    717 
    718 		userbits = *(int *)data;
    719 
    720 		/*
    721 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    722 		 # defaulting to software flow control.
    723 		 */
    724 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    725 			return(EINVAL);
    726 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    727 			return(ENXIO);
    728 
    729 		s = splzs();
    730 		if((userbits & TIOCFLAG_SOFTCAR)) {
    731 			cs->cs_softcar = 1;	/* turn on softcar */
    732 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    733 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    734 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    735 		}
    736 		else if(userbits & TIOCFLAG_CLOCAL) {
    737 			cs->cs_softcar = 0; 	/* turn off softcar */
    738 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    739 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    740 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    741 			tp->t_termios.c_cflag |= CLOCAL;
    742 		}
    743 		if(userbits & TIOCFLAG_CRTSCTS) {
    744 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    745 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    746 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    747 			cs->cs_preg[3] |= ZSWR3_HFC;
    748 			cs->cs_creg[3] |= ZSWR3_HFC;
    749 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    750 			tp->t_termios.c_cflag |= CRTSCTS;
    751 		}
    752 		else {
    753 			/* no mdmbuf, so we must want software flow control */
    754 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    755 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    756 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    757 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    758 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    759 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    760 			tp->t_termios.c_cflag &= ~CRTSCTS;
    761 		}
    762 		splx(s);
    763 		break;
    764 	}
    765 	case TIOCSDTR:
    766 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    767 		break;
    768 	case TIOCCDTR:
    769 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    770 		break;
    771 	case TIOCMGET:
    772 		zs_modem(cs, 0, DMGET);
    773 		break;
    774 	case TIOCMSET:
    775 	case TIOCMBIS:
    776 	case TIOCMBIC:
    777 	default:
    778 		return (ENOTTY);
    779 	}
    780 	return (0);
    781 }
    782 
    783 /*
    784  * Start or restart transmission.
    785  */
    786 static void
    787 zsstart(tp)
    788 register struct tty *tp;
    789 {
    790 	register struct zs_chanstate	*cs;
    791 	register int			s, nch;
    792 		 int			unit = ZS_UNIT(tp->t_dev);
    793 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    794 
    795 	cs = &zi->zi_cs[unit & 1];
    796 	s  = spltty();
    797 
    798 	/*
    799 	 * If currently active or delaying, no need to do anything.
    800 	 */
    801 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    802 		goto out;
    803 
    804 	/*
    805 	 * If there are sleepers, and output has drained below low
    806 	 * water mark, awaken.
    807 	 */
    808 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    809 		if(tp->t_state & TS_ASLEEP) {
    810 			tp->t_state &= ~TS_ASLEEP;
    811 			wakeup((caddr_t)&tp->t_outq);
    812 		}
    813 		selwakeup(&tp->t_wsel);
    814 	}
    815 
    816 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    817 	if(nch) {
    818 		register char *p = tp->t_outq.c_cf;
    819 
    820 		/* mark busy, enable tx done interrupts, & send first byte */
    821 		tp->t_state |= TS_BUSY;
    822 		(void) splzs();
    823 		cs->cs_preg[1] |= ZSWR1_TIE;
    824 		cs->cs_creg[1] |= ZSWR1_TIE;
    825 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    826 		cs->cs_zc->zc_data = *p;
    827 		cs->cs_tba = p + 1;
    828 		cs->cs_tbc = nch - 1;
    829 	} else {
    830 		/*
    831 		 * Nothing to send, turn off transmit done interrupts.
    832 		 * This is useful if something is doing polled output.
    833 		 */
    834 		(void) splzs();
    835 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    836 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    837 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    838 	}
    839 out:
    840 	splx(s);
    841 }
    842 
    843 /*
    844  * Stop output, e.g., for ^S or output flush.
    845  */
    846 void
    847 zsstop(tp, flag)
    848 register struct tty	*tp;
    849 	 int		flag;
    850 {
    851 	register struct zs_chanstate	*cs;
    852 	register int			s, unit = ZS_UNIT(tp->t_dev);
    853 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    854 
    855 	cs = &zi->zi_cs[unit & 1];
    856 	s  = splzs();
    857 	if(tp->t_state & TS_BUSY) {
    858 		/*
    859 		 * Device is transmitting; must stop it.
    860 		 */
    861 		cs->cs_tbc = 0;
    862 		if ((tp->t_state & TS_TTSTOP) == 0)
    863 			tp->t_state |= TS_FLUSH;
    864 	}
    865 	splx(s);
    866 }
    867 
    868 /*
    869  * Set ZS tty parameters from termios.
    870  *
    871  * This routine makes use of the fact that only registers
    872  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
    873  */
    874 static int
    875 zsparam(tp, t)
    876 register struct tty	*tp;
    877 register struct termios	*t;
    878 {
    879 		 int			unit = ZS_UNIT(tp->t_dev);
    880 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    881 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    882 	register int			tmp, tmp5, cflag, s;
    883 
    884 	tmp = t->c_ospeed;
    885 	if(tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
    886 		return(EINVAL);
    887 	if(tmp == 0) {
    888 		/* stty 0 => drop DTR and RTS */
    889 		zs_modem(cs, 0, DMSET);
    890 		return(0);
    891 	}
    892 	tmp = BPS_TO_TCONST(PCLK / 16, tmp);
    893 	if(tmp < 2)
    894 		return(EINVAL);
    895 
    896 	cflag = t->c_cflag;
    897 	tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
    898 	tp->t_cflag = cflag;
    899 
    900 	/*
    901 	 * Block interrupts so that state will not
    902 	 * be altered until we are done setting it up.
    903 	 */
    904 	s = splzs();
    905 	cs->cs_preg[12] = tmp;
    906 	cs->cs_preg[13] = tmp >> 8;
    907 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
    908 	switch(cflag & CSIZE) {
    909 	case CS5:
    910 		tmp  = ZSWR3_RX_5;
    911 		tmp5 = ZSWR5_TX_5;
    912 		break;
    913 	case CS6:
    914 		tmp  = ZSWR3_RX_6;
    915 		tmp5 = ZSWR5_TX_6;
    916 		break;
    917 	case CS7:
    918 		tmp  = ZSWR3_RX_7;
    919 		tmp5 = ZSWR5_TX_7;
    920 		break;
    921 	case CS8:
    922 	default:
    923 		tmp  = ZSWR3_RX_8;
    924 		tmp5 = ZSWR5_TX_8;
    925 		break;
    926 	}
    927 
    928 	/*
    929 	 * Output hardware flow control on the chip is horrendous: if
    930 	 * carrier detect drops, the receiver is disabled.  Hence we
    931 	 * can only do this when the carrier is on.
    932 	 */
    933 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
    934 		tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
    935 	else tmp |= ZSWR3_RX_ENABLE;
    936 	cs->cs_preg[3] = tmp;
    937 	cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
    938 
    939 	tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
    940 	if((cflag & PARODD) == 0)
    941 		tmp |= ZSWR4_EVENP;
    942 	if (cflag & PARENB)
    943 		tmp |= ZSWR4_PARENB;
    944 	cs->cs_preg[4]  = tmp;
    945 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
    946 	cs->cs_preg[10] = ZSWR10_NRZ;
    947 	cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
    948 	cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
    949 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
    950 
    951 	/*
    952 	 * If nothing is being transmitted, set up new current values,
    953 	 * else mark them as pending.
    954 	 */
    955 	if(cs->cs_heldchange == 0) {
    956 		if (cs->cs_ttyp->t_state & TS_BUSY) {
    957 			cs->cs_heldtbc = cs->cs_tbc;
    958 			cs->cs_tbc = 0;
    959 			cs->cs_heldchange = 1;
    960 		}
    961 		else {
    962 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
    963 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
    964 		}
    965 	}
    966 	splx(s);
    967 	return (0);
    968 }
    969 
    970 /*
    971  * Raise or lower modem control (DTR/RTS) signals.  If a character is
    972  * in transmission, the change is deferred.
    973  */
    974 static int
    975 zs_modem(cs, bits, how)
    976 struct zs_chanstate	*cs;
    977 int			bits, how;
    978 {
    979 	int s, mbits;
    980 
    981 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
    982 
    983 	s = splzs();
    984 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
    985 
    986 	switch(how) {
    987 		case DMSET:
    988 				mbits  = bits;
    989 				break;
    990 		case DMBIS:
    991 				mbits |= bits;
    992 				break;
    993 		case DMBIC:
    994 				mbits &= ~bits;
    995 				break;
    996 		case DMGET:
    997 				splx(s);
    998 				return(mbits);
    999 	}
   1000 
   1001 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1002 	if(cs->cs_heldchange == 0) {
   1003 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1004 			cs->cs_heldtbc = cs->cs_tbc;
   1005 			cs->cs_tbc = 0;
   1006 			cs->cs_heldchange = 1;
   1007 		}
   1008 		else {
   1009 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1010 		}
   1011 	}
   1012 	splx(s);
   1013 	return(0);
   1014 }
   1015 
   1016 /*
   1017  * Write the given register set to the given zs channel in the proper order.
   1018  * The channel must not be transmitting at the time.  The receiver will
   1019  * be disabled for the time it takes to write all the registers.
   1020  */
   1021 static void
   1022 zs_loadchannelregs(zc, reg)
   1023 volatile struct zschan	*zc;
   1024 u_char			*reg;
   1025 {
   1026 	int i;
   1027 
   1028 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1029 	i = zc->zc_data;		/* drain fifo */
   1030 	i = zc->zc_data;
   1031 	i = zc->zc_data;
   1032 	ZS_WRITE(zc,  4, reg[4]);
   1033 	ZS_WRITE(zc, 10, reg[10]);
   1034 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1035 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1036 	ZS_WRITE(zc,  1, reg[1]);
   1037 	ZS_WRITE(zc,  9, reg[9]);
   1038 	ZS_WRITE(zc, 11, reg[11]);
   1039 	ZS_WRITE(zc, 12, reg[12]);
   1040 	ZS_WRITE(zc, 13, reg[13]);
   1041 	ZS_WRITE(zc, 14, reg[14]);
   1042 	ZS_WRITE(zc, 15, reg[15]);
   1043 	ZS_WRITE(zc,  3, reg[3]);
   1044 	ZS_WRITE(zc,  5, reg[5]);
   1045 }
   1046 #endif /* NZS > 1 */
   1047