zs.c revision 1.40 1 /* $NetBSD: zs.c,v 1.40 2003/07/15 01:19:53 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.40 2003/07/15 01:19:53 lukem Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/proc.h>
63 #include <sys/device.h>
64 #include <sys/conf.h>
65 #include <sys/file.h>
66 #include <sys/ioctl.h>
67 #include <sys/malloc.h>
68 #include <sys/tty.h>
69 #include <sys/time.h>
70 #include <sys/kernel.h>
71 #include <sys/syslog.h>
72
73 #include <machine/cpu.h>
74 #include <machine/iomap.h>
75 #include <machine/scu.h>
76 #include <machine/mfp.h>
77 #include <atari/dev/ym2149reg.h>
78
79 #include <dev/ic/z8530reg.h>
80 #include <atari/dev/zsvar.h>
81 #include "zs.h"
82 #if NZS > 1
83 #error "This driver supports only 1 85C30!"
84 #endif
85
86 #if NZS > 0
87
88 #define PCLK (8053976) /* PCLK pin input clock rate */
89 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
90
91 #define splzs spl5
92
93 /*
94 * Software state per found chip.
95 */
96 struct zs_softc {
97 struct device zi_dev; /* base device */
98 volatile struct zsdevice *zi_zs; /* chip registers */
99 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
100 };
101
102 static u_char cb_scheduled = 0; /* Already asked for callback? */
103 /*
104 * Define the registers for a closed port
105 */
106 static u_char zs_init_regs[16] = {
107 /* 0 */ 0,
108 /* 1 */ 0,
109 /* 2 */ 0x60,
110 /* 3 */ 0,
111 /* 4 */ 0,
112 /* 5 */ 0,
113 /* 6 */ 0,
114 /* 7 */ 0,
115 /* 8 */ 0,
116 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
117 /* 10 */ ZSWR10_NRZ,
118 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
119 /* 12 */ 0,
120 /* 13 */ 0,
121 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
122 /* 15 */ 0
123 };
124
125 /*
126 * Define the machine dependant clock frequencies
127 * If BRgen feeds sender/receiver we always use a
128 * divisor 16, therefor the division by 16 can as
129 * well be done here.
130 */
131 static u_long zs_freqs_tt[] = {
132 /*
133 * Atari TT, RTxCB is generated by TT-MFP timer C,
134 * which is set to 307.2KHz during initialisation
135 * and never changed afterwards.
136 */
137 PCLK/16, /* BRgen, PCLK, divisor 16 */
138 229500, /* BRgen, RTxCA, divisor 16 */
139 3672000, /* RTxCA, from PCLK4 */
140 0, /* TRxCA, external */
141
142 PCLK/16, /* BRgen, PCLK, divisor 16 */
143 19200, /* BRgen, RTxCB, divisor 16 */
144 307200, /* RTxCB, from TT-MFP TCO */
145 2457600 /* TRxCB, from BCLK */
146 };
147
148 static u_long zs_freqs_falcon[] = {
149 /*
150 * Atari Falcon, XXX no specs available, this might be wrong
151 */
152 PCLK/16, /* BRgen, PCLK, divisor 16 */
153 229500, /* BRgen, RTxCA, divisor 16 */
154 3672000, /* RTxCA, ??? */
155 0, /* TRxCA, external */
156
157 PCLK/16, /* BRgen, PCLK, divisor 16 */
158 229500, /* BRgen, RTxCB, divisor 16 */
159 3672000, /* RTxCB, ??? */
160 2457600 /* TRxCB, ??? */
161 };
162
163 static u_long zs_freqs_hades[] = {
164 /*
165 * XXX: Channel-A unchecked!!!!!
166 */
167 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
168 229500, /* BRgen, RTxCA, divisor 16 */
169 3672000, /* RTxCA, from PCLK4 */
170 0, /* TRxCA, external */
171
172 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
173 235550, /* BRgen, RTxCB, divisor 16 */
174 3768800, /* RTxCB, 3.7688MHz */
175 3768800 /* TRxCB, 3.7688MHz */
176 };
177
178 static u_long zs_freqs_generic[] = {
179 /*
180 * other machines, assume only PCLK is available
181 */
182 PCLK/16, /* BRgen, PCLK, divisor 16 */
183 0, /* BRgen, RTxCA, divisor 16 */
184 0, /* RTxCA, unknown */
185 0, /* TRxCA, unknown */
186
187 PCLK/16, /* BRgen, PCLK, divisor 16 */
188 0, /* BRgen, RTxCB, divisor 16 */
189 0, /* RTxCB, unknown */
190 0 /* TRxCB, unknown */
191 };
192 static u_long *zs_frequencies;
193
194 /* Definition of the driver for autoconfig. */
195 static int zsmatch __P((struct device *, struct cfdata *, void *));
196 static void zsattach __P((struct device *, struct device *, void *));
197
198 CFATTACH_DECL(zs, sizeof(struct zs_softc),
199 zsmatch, zsattach, NULL, NULL);
200
201 extern struct cfdriver zs_cd;
202
203 /* {b,c}devsw[] function prototypes */
204 dev_type_open(zsopen);
205 dev_type_close(zsclose);
206 dev_type_read(zsread);
207 dev_type_write(zswrite);
208 dev_type_ioctl(zsioctl);
209 dev_type_stop(zsstop);
210 dev_type_tty(zstty);
211 dev_type_poll(zspoll);
212
213 const struct cdevsw zs_cdevsw = {
214 zsopen, zsclose, zsread, zswrite, zsioctl,
215 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
216 };
217
218 /* Interrupt handlers. */
219 int zshard __P((long));
220 static int zssoft __P((long));
221 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
222 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
223 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
224
225 static struct zs_chanstate *zslist;
226
227 /* Routines called from other code. */
228 static void zsstart __P((struct tty *));
229
230 /* Routines purely local to this driver. */
231 static void zsoverrun __P((int, long *, char *));
232 static int zsparam __P((struct tty *, struct termios *));
233 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
234 static int zs_modem __P((struct zs_chanstate *, int, int));
235 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
236 static void zs_shutdown __P((struct zs_chanstate *));
237
238 static int zsshortcuts; /* number of "shortcut" software interrupts */
239
240 static int
241 zsmatch(pdp, cfp, auxp)
242 struct device *pdp;
243 struct cfdata *cfp;
244 void *auxp;
245 {
246 static int zs_matched = 0;
247
248 if(strcmp("zs", auxp) || zs_matched)
249 return(0);
250 zs_matched = 1;
251 return(1);
252 }
253
254 /*
255 * Attach a found zs.
256 */
257 static void
258 zsattach(parent, dev, aux)
259 struct device *parent;
260 struct device *dev;
261 void *aux;
262 {
263 register struct zs_softc *zi;
264 register struct zs_chanstate *cs;
265 register volatile struct zsdevice *addr;
266 char tmp;
267
268 addr = (struct zsdevice *)AD_SCC;
269 zi = (struct zs_softc *)dev;
270 zi->zi_zs = addr;
271 cs = zi->zi_cs;
272
273 /*
274 * Get the command register into a known state.
275 */
276 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
277 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
278 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
279 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
280
281 /*
282 * Do a hardware reset.
283 */
284 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
285 delay(50000); /*enough ? */
286 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
287
288 /*
289 * Initialize both channels
290 */
291 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
292 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
293
294 if(machineid & ATARI_TT) {
295 /*
296 * ininitialise TT-MFP timer C: 307200Hz
297 * timer C and D share one control register:
298 * bits 0-2 control timer D
299 * bits 4-6 control timer C
300 */
301 int cr = MFP2->mf_tcdcr & 7;
302 MFP2->mf_tcdcr = cr; /* stop timer C */
303 MFP2->mf_tcdr = 1; /* counter 1 */
304 cr |= T_Q004 << 4; /* divisor 4 */
305 MFP2->mf_tcdcr = cr; /* start timer C */
306 /*
307 * enable scc related interrupts
308 */
309 SCU->vme_mask |= SCU_SCC;
310
311 zs_frequencies = zs_freqs_tt;
312 } else if (machineid & ATARI_FALCON) {
313 zs_frequencies = zs_freqs_falcon;
314 } else if (machineid & ATARI_HADES) {
315 zs_frequencies = zs_freqs_hades;
316 } else {
317 zs_frequencies = zs_freqs_generic;
318 }
319
320 /* link into interrupt list with order (A,B) (B=A+1) */
321 cs[0].cs_next = &cs[1];
322 cs[1].cs_next = zslist;
323 zslist = cs;
324
325 cs->cs_unit = 0;
326 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
327 cs++;
328 cs->cs_unit = 1;
329 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
330
331 printf(": serial2 on channel a and modem2 on channel b\n");
332 }
333
334 /*
335 * Open a zs serial port.
336 */
337 int
338 zsopen(dev, flags, mode, p)
339 dev_t dev;
340 int flags;
341 int mode;
342 struct proc *p;
343 {
344 register struct tty *tp;
345 register struct zs_chanstate *cs;
346 struct zs_softc *zi;
347 int unit = ZS_UNIT(dev);
348 int zs = unit >> 1;
349 int error, s;
350
351 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
352 return (ENXIO);
353 cs = &zi->zi_cs[unit & 1];
354
355 /*
356 * When port A (ser02) is selected on the TT, make sure
357 * the port is enabled.
358 */
359 if((machineid & ATARI_TT) && !(unit & 1))
360 ym2149_ser2(1);
361
362 if (cs->cs_rbuf == NULL) {
363 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
364 M_WAITOK);
365 }
366
367 tp = cs->cs_ttyp;
368 if(tp == NULL) {
369 cs->cs_ttyp = tp = ttymalloc();
370 tty_attach(tp);
371 tp->t_dev = dev;
372 tp->t_oproc = zsstart;
373 tp->t_param = zsparam;
374 }
375
376 if ((tp->t_state & TS_ISOPEN) &&
377 (tp->t_state & TS_XCLUDE) &&
378 p->p_ucred->cr_uid != 0)
379 return (EBUSY);
380
381 s = spltty();
382
383 /*
384 * Do the following iff this is a first open.
385 */
386 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
387 if(tp->t_ispeed == 0) {
388 tp->t_iflag = TTYDEF_IFLAG;
389 tp->t_oflag = TTYDEF_OFLAG;
390 tp->t_cflag = TTYDEF_CFLAG;
391 tp->t_lflag = TTYDEF_LFLAG;
392 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
393 }
394 ttychars(tp);
395 ttsetwater(tp);
396
397 (void)zsparam(tp, &tp->t_termios);
398
399 /*
400 * Turn on DTR. We must always do this, even if carrier is not
401 * present, because otherwise we'd have to use TIOCSDTR
402 * immediately after setting CLOCAL, which applications do not
403 * expect. We always assert DTR while the device is open
404 * unless explicitly requested to deassert it.
405 */
406 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
407 /* May never get a status intr. if DCD already on. -gwr */
408 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
409 tp->t_state |= TS_CARR_ON;
410 if(cs->cs_softcar)
411 tp->t_state |= TS_CARR_ON;
412 }
413
414 splx(s);
415
416 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
417 if (error)
418 goto bad;
419
420 error = tp->t_linesw->l_open(dev, tp);
421 if(error)
422 goto bad;
423 return (0);
424
425 bad:
426 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
427 /*
428 * We failed to open the device, and nobody else had it opened.
429 * Clean up the state as appropriate.
430 */
431 zs_shutdown(cs);
432 }
433 return(error);
434 }
435
436 /*
437 * Close a zs serial port.
438 */
439 int
440 zsclose(dev, flags, mode, p)
441 dev_t dev;
442 int flags;
443 int mode;
444 struct proc *p;
445 {
446 register struct zs_chanstate *cs;
447 register struct tty *tp;
448 struct zs_softc *zi;
449 int unit = ZS_UNIT(dev);
450
451 zi = zs_cd.cd_devs[unit >> 1];
452 cs = &zi->zi_cs[unit & 1];
453 tp = cs->cs_ttyp;
454
455 tp->t_linesw->l_close(tp, flags);
456 ttyclose(tp);
457
458 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
459 /*
460 * Although we got a last close, the device may still be in
461 * use; e.g. if this was the dialout node, and there are still
462 * processes waiting for carrier on the non-dialout node.
463 */
464 zs_shutdown(cs);
465 }
466 return (0);
467 }
468
469 /*
470 * Read/write zs serial port.
471 */
472 int
473 zsread(dev, uio, flags)
474 dev_t dev;
475 struct uio *uio;
476 int flags;
477 {
478 register struct zs_chanstate *cs;
479 register struct zs_softc *zi;
480 register struct tty *tp;
481 int unit;
482
483 unit = ZS_UNIT(dev);
484 zi = zs_cd.cd_devs[unit >> 1];
485 cs = &zi->zi_cs[unit & 1];
486 tp = cs->cs_ttyp;
487
488 return(tp->t_linesw->l_read(tp, uio, flags));
489 }
490
491 int
492 zswrite(dev, uio, flags)
493 dev_t dev;
494 struct uio *uio;
495 int flags;
496 {
497 register struct zs_chanstate *cs;
498 register struct zs_softc *zi;
499 register struct tty *tp;
500 int unit;
501
502 unit = ZS_UNIT(dev);
503 zi = zs_cd.cd_devs[unit >> 1];
504 cs = &zi->zi_cs[unit & 1];
505 tp = cs->cs_ttyp;
506
507 return(tp->t_linesw->l_write(tp, uio, flags));
508 }
509
510 int
511 zspoll(dev, events, p)
512 dev_t dev;
513 int events;
514 struct proc *p;
515 {
516 register struct zs_chanstate *cs;
517 register struct zs_softc *zi;
518 register struct tty *tp;
519 int unit;
520
521 unit = ZS_UNIT(dev);
522 zi = zs_cd.cd_devs[unit >> 1];
523 cs = &zi->zi_cs[unit & 1];
524 tp = cs->cs_ttyp;
525
526 return ((*tp->t_linesw->l_poll)(tp, events, p));
527 }
528
529 struct tty *
530 zstty(dev)
531 dev_t dev;
532 {
533 register struct zs_chanstate *cs;
534 register struct zs_softc *zi;
535 int unit;
536
537 unit = ZS_UNIT(dev);
538 zi = zs_cd.cd_devs[unit >> 1];
539 cs = &zi->zi_cs[unit & 1];
540 return(cs->cs_ttyp);
541 }
542
543 /*
544 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
545 * channels are kept in (A,B) pairs.
546 *
547 * Do just a little, then get out; set a software interrupt if more
548 * work is needed.
549 *
550 * We deliberately ignore the vectoring Zilog gives us, and match up
551 * only the number of `reset interrupt under service' operations, not
552 * the order.
553 */
554
555 int
556 zshard(sr)
557 long sr;
558 {
559 register struct zs_chanstate *a;
560 #define b (a + 1)
561 register volatile struct zschan *zc;
562 register int rr3, intflags = 0, v, i;
563
564 do {
565 intflags &= ~4;
566 for(a = zslist; a != NULL; a = b->cs_next) {
567 rr3 = ZS_READ(a->cs_zc, 3);
568 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
569 intflags |= 4|2;
570 zc = a->cs_zc;
571 i = a->cs_rbput;
572 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
573 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
574 intflags |= 1;
575 }
576 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
577 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
578 intflags |= 1;
579 }
580 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
581 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
582 intflags |= 1;
583 }
584 a->cs_rbput = i;
585 }
586 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
587 intflags |= 4|2;
588 zc = b->cs_zc;
589 i = b->cs_rbput;
590 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
591 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
592 intflags |= 1;
593 }
594 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
595 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
596 intflags |= 1;
597 }
598 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
599 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
600 intflags |= 1;
601 }
602 b->cs_rbput = i;
603 }
604 }
605 } while(intflags & 4);
606 #undef b
607
608 if(intflags & 1) {
609 if(BASEPRI(sr)) {
610 spl1();
611 zsshortcuts++;
612 return(zssoft(sr));
613 }
614 else if(!cb_scheduled) {
615 cb_scheduled++;
616 add_sicallback((si_farg)zssoft, 0, 0);
617 }
618 }
619 return(intflags & 2);
620 }
621
622 static int
623 zsrint(cs, zc)
624 register struct zs_chanstate *cs;
625 register volatile struct zschan *zc;
626 {
627 register int c;
628
629 /*
630 * First read the status, because read of the received char
631 * destroy the status of this char.
632 */
633 c = ZS_READ(zc, 1);
634 c |= (zc->zc_data << 8);
635
636 /* clear receive error & interrupt condition */
637 zc->zc_csr = ZSWR0_RESET_ERRORS;
638 zc->zc_csr = ZSWR0_CLR_INTR;
639
640 return(ZRING_MAKE(ZRING_RINT, c));
641 }
642
643 static int
644 zsxint(cs, zc)
645 register struct zs_chanstate *cs;
646 register volatile struct zschan *zc;
647 {
648 register int i = cs->cs_tbc;
649
650 if(i == 0) {
651 zc->zc_csr = ZSWR0_RESET_TXINT;
652 zc->zc_csr = ZSWR0_CLR_INTR;
653 return(ZRING_MAKE(ZRING_XINT, 0));
654 }
655 cs->cs_tbc = i - 1;
656 zc->zc_data = *cs->cs_tba++;
657 zc->zc_csr = ZSWR0_CLR_INTR;
658 return (0);
659 }
660
661 static int
662 zssint(cs, zc)
663 register struct zs_chanstate *cs;
664 register volatile struct zschan *zc;
665 {
666 register int rr0;
667
668 rr0 = zc->zc_csr;
669 zc->zc_csr = ZSWR0_RESET_STATUS;
670 zc->zc_csr = ZSWR0_CLR_INTR;
671 /*
672 * The chip's hardware flow control is, as noted in zsreg.h,
673 * busted---if the DCD line goes low the chip shuts off the
674 * receiver (!). If we want hardware CTS flow control but do
675 * not have it, and carrier is now on, turn HFC on; if we have
676 * HFC now but carrier has gone low, turn it off.
677 */
678 if(rr0 & ZSRR0_DCD) {
679 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
680 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
681 cs->cs_creg[3] |= ZSWR3_HFC;
682 ZS_WRITE(zc, 3, cs->cs_creg[3]);
683 }
684 }
685 else {
686 if (cs->cs_creg[3] & ZSWR3_HFC) {
687 cs->cs_creg[3] &= ~ZSWR3_HFC;
688 ZS_WRITE(zc, 3, cs->cs_creg[3]);
689 }
690 }
691 return(ZRING_MAKE(ZRING_SINT, rr0));
692 }
693
694 /*
695 * Print out a ring or fifo overrun error message.
696 */
697 static void
698 zsoverrun(unit, ptime, what)
699 int unit;
700 long *ptime;
701 char *what;
702 {
703
704 if(*ptime != time.tv_sec) {
705 *ptime = time.tv_sec;
706 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
707 (unit & 1) + 'a', what);
708 }
709 }
710
711 /*
712 * ZS software interrupt. Scan all channels for deferred interrupts.
713 */
714 int
715 zssoft(sr)
716 long sr;
717 {
718 register struct zs_chanstate *cs;
719 register volatile struct zschan *zc;
720 register struct linesw *line;
721 register struct tty *tp;
722 register int get, n, c, cc, unit, s;
723 int retval = 0;
724
725 cb_scheduled = 0;
726 s = spltty();
727 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
728 get = cs->cs_rbget;
729 again:
730 n = cs->cs_rbput; /* atomic */
731 if(get == n) /* nothing more on this line */
732 continue;
733 retval = 1;
734 unit = cs->cs_unit; /* set up to handle interrupts */
735 zc = cs->cs_zc;
736 tp = cs->cs_ttyp;
737 line = tp->t_linesw;
738 /*
739 * Compute the number of interrupts in the receive ring.
740 * If the count is overlarge, we lost some events, and
741 * must advance to the first valid one. It may get
742 * overwritten if more data are arriving, but this is
743 * too expensive to check and gains nothing (we already
744 * lost out; all we can do at this point is trade one
745 * kind of loss for another).
746 */
747 n -= get;
748 if(n > ZLRB_RING_SIZE) {
749 zsoverrun(unit, &cs->cs_rotime, "ring");
750 get += n - ZLRB_RING_SIZE;
751 n = ZLRB_RING_SIZE;
752 }
753 while(--n >= 0) {
754 /* race to keep ahead of incoming interrupts */
755 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
756 switch (ZRING_TYPE(c)) {
757
758 case ZRING_RINT:
759 c = ZRING_VALUE(c);
760 if(c & ZSRR1_DO)
761 zsoverrun(unit, &cs->cs_fotime, "fifo");
762 cc = c >> 8;
763 if(c & ZSRR1_FE)
764 cc |= TTY_FE;
765 if(c & ZSRR1_PE)
766 cc |= TTY_PE;
767 line->l_rint(cc, tp);
768 break;
769
770 case ZRING_XINT:
771 /*
772 * Transmit done: change registers and resume,
773 * or clear BUSY.
774 */
775 if(cs->cs_heldchange) {
776 int sps;
777
778 sps = splzs();
779 c = zc->zc_csr;
780 if((c & ZSRR0_DCD) == 0)
781 cs->cs_preg[3] &= ~ZSWR3_HFC;
782 bcopy((caddr_t)cs->cs_preg,
783 (caddr_t)cs->cs_creg, 16);
784 zs_loadchannelregs(zc, cs->cs_creg);
785 splx(sps);
786 cs->cs_heldchange = 0;
787 if(cs->cs_heldtbc
788 && (tp->t_state & TS_TTSTOP) == 0) {
789 cs->cs_tbc = cs->cs_heldtbc - 1;
790 zc->zc_data = *cs->cs_tba++;
791 goto again;
792 }
793 }
794 tp->t_state &= ~TS_BUSY;
795 if(tp->t_state & TS_FLUSH)
796 tp->t_state &= ~TS_FLUSH;
797 else ndflush(&tp->t_outq,cs->cs_tba
798 - (caddr_t)tp->t_outq.c_cf);
799 line->l_start(tp);
800 break;
801
802 case ZRING_SINT:
803 /*
804 * Status line change. HFC bit is run in
805 * hardware interrupt, to avoid locking
806 * at splzs here.
807 */
808 c = ZRING_VALUE(c);
809 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
810 cc = (c & ZSRR0_DCD) != 0;
811 if(line->l_modem(tp, cc) == 0)
812 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
813 cc ? DMBIS : DMBIC);
814 }
815 cs->cs_rr0 = c;
816 break;
817
818 default:
819 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
820 unit >> 1, (unit & 1) + 'a', c);
821 break;
822 }
823 }
824 cs->cs_rbget = get;
825 goto again;
826 }
827 splx(s);
828 return (retval);
829 }
830
831 int
832 zsioctl(dev, cmd, data, flag, p)
833 dev_t dev;
834 u_long cmd;
835 caddr_t data;
836 int flag;
837 struct proc *p;
838 {
839 int unit = ZS_UNIT(dev);
840 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
841 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
842 register int error, s;
843 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
844
845 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
846 if(error != EPASSTHROUGH)
847 return(error);
848
849 error = ttioctl(tp, cmd, data, flag, p);
850 if(error !=EPASSTHROUGH)
851 return (error);
852
853 switch (cmd) {
854 case TIOCSBRK:
855 s = splzs();
856 cs->cs_preg[5] |= ZSWR5_BREAK;
857 cs->cs_creg[5] |= ZSWR5_BREAK;
858 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
859 splx(s);
860 break;
861 case TIOCCBRK:
862 s = splzs();
863 cs->cs_preg[5] &= ~ZSWR5_BREAK;
864 cs->cs_creg[5] &= ~ZSWR5_BREAK;
865 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
866 splx(s);
867 break;
868 case TIOCGFLAGS: {
869 int bits = 0;
870
871 if(cs->cs_softcar)
872 bits |= TIOCFLAG_SOFTCAR;
873 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
874 bits |= TIOCFLAG_CLOCAL;
875 if(cs->cs_creg[3] & ZSWR3_HFC)
876 bits |= TIOCFLAG_CRTSCTS;
877 *(int *)data = bits;
878 break;
879 }
880 case TIOCSFLAGS: {
881 int userbits = 0;
882
883 error = suser(p->p_ucred, &p->p_acflag);
884 if(error != 0)
885 return (EPERM);
886
887 userbits = *(int *)data;
888
889 /*
890 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
891 # defaulting to software flow control.
892 */
893 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
894 return(EINVAL);
895 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
896 return(ENODEV);
897
898 s = splzs();
899 if((userbits & TIOCFLAG_SOFTCAR)) {
900 cs->cs_softcar = 1; /* turn on softcar */
901 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
902 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
903 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
904 }
905 else if(userbits & TIOCFLAG_CLOCAL) {
906 cs->cs_softcar = 0; /* turn off softcar */
907 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
908 cs->cs_creg[15] |= ZSWR15_DCD_IE;
909 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
910 tp->t_termios.c_cflag |= CLOCAL;
911 }
912 if(userbits & TIOCFLAG_CRTSCTS) {
913 cs->cs_preg[15] |= ZSWR15_CTS_IE;
914 cs->cs_creg[15] |= ZSWR15_CTS_IE;
915 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
916 cs->cs_preg[3] |= ZSWR3_HFC;
917 cs->cs_creg[3] |= ZSWR3_HFC;
918 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
919 tp->t_termios.c_cflag |= CRTSCTS;
920 }
921 else {
922 /* no mdmbuf, so we must want software flow control */
923 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
924 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
925 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
926 cs->cs_preg[3] &= ~ZSWR3_HFC;
927 cs->cs_creg[3] &= ~ZSWR3_HFC;
928 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
929 tp->t_termios.c_cflag &= ~CRTSCTS;
930 }
931 splx(s);
932 break;
933 }
934 case TIOCSDTR:
935 zs_modem(cs, ZSWR5_DTR, DMBIS);
936 break;
937 case TIOCCDTR:
938 zs_modem(cs, ZSWR5_DTR, DMBIC);
939 break;
940 case TIOCMGET:
941 zs_modem(cs, 0, DMGET);
942 break;
943 case TIOCMSET:
944 case TIOCMBIS:
945 case TIOCMBIC:
946 default:
947 return (EPASSTHROUGH);
948 }
949 return (0);
950 }
951
952 /*
953 * Start or restart transmission.
954 */
955 static void
956 zsstart(tp)
957 register struct tty *tp;
958 {
959 register struct zs_chanstate *cs;
960 register int s, nch;
961 int unit = ZS_UNIT(tp->t_dev);
962 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
963
964 cs = &zi->zi_cs[unit & 1];
965 s = spltty();
966
967 /*
968 * If currently active or delaying, no need to do anything.
969 */
970 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
971 goto out;
972
973 /*
974 * If there are sleepers, and output has drained below low
975 * water mark, awaken.
976 */
977 if(tp->t_outq.c_cc <= tp->t_lowat) {
978 if(tp->t_state & TS_ASLEEP) {
979 tp->t_state &= ~TS_ASLEEP;
980 wakeup((caddr_t)&tp->t_outq);
981 }
982 selwakeup(&tp->t_wsel);
983 }
984
985 nch = ndqb(&tp->t_outq, 0); /* XXX */
986 if(nch) {
987 register char *p = tp->t_outq.c_cf;
988
989 /* mark busy, enable tx done interrupts, & send first byte */
990 tp->t_state |= TS_BUSY;
991 (void) splzs();
992 cs->cs_preg[1] |= ZSWR1_TIE;
993 cs->cs_creg[1] |= ZSWR1_TIE;
994 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
995 cs->cs_zc->zc_data = *p;
996 cs->cs_tba = p + 1;
997 cs->cs_tbc = nch - 1;
998 } else {
999 /*
1000 * Nothing to send, turn off transmit done interrupts.
1001 * This is useful if something is doing polled output.
1002 */
1003 (void) splzs();
1004 cs->cs_preg[1] &= ~ZSWR1_TIE;
1005 cs->cs_creg[1] &= ~ZSWR1_TIE;
1006 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1007 }
1008 out:
1009 splx(s);
1010 }
1011
1012 /*
1013 * Stop output, e.g., for ^S or output flush.
1014 */
1015 void
1016 zsstop(tp, flag)
1017 register struct tty *tp;
1018 int flag;
1019 {
1020 register struct zs_chanstate *cs;
1021 register int s, unit = ZS_UNIT(tp->t_dev);
1022 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1023
1024 cs = &zi->zi_cs[unit & 1];
1025 s = splzs();
1026 if(tp->t_state & TS_BUSY) {
1027 /*
1028 * Device is transmitting; must stop it.
1029 */
1030 cs->cs_tbc = 0;
1031 if ((tp->t_state & TS_TTSTOP) == 0)
1032 tp->t_state |= TS_FLUSH;
1033 }
1034 splx(s);
1035 }
1036
1037 static void
1038 zs_shutdown(cs)
1039 struct zs_chanstate *cs;
1040 {
1041 struct tty *tp = cs->cs_ttyp;
1042 int s;
1043
1044 s = splzs();
1045
1046 /*
1047 * Hang up if necessary. Wait a bit, so the other side has time to
1048 * notice even if we immediately open the port again.
1049 */
1050 if(tp->t_cflag & HUPCL) {
1051 zs_modem(cs, 0, DMSET);
1052 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1053 }
1054
1055 /* Clear any break condition set with TIOCSBRK. */
1056 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1057 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1058 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1059 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1060 }
1061
1062 /*
1063 * Drop all lines and cancel interrupts
1064 */
1065 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1066 splx(s);
1067 }
1068
1069 /*
1070 * Set ZS tty parameters from termios.
1071 *
1072 * This routine makes use of the fact that only registers
1073 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1074 */
1075 static int
1076 zsparam(tp, t)
1077 register struct tty *tp;
1078 register struct termios *t;
1079 {
1080 int unit = ZS_UNIT(tp->t_dev);
1081 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1082 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1083 int cdiv, clkm, brgm, tcon;
1084 register int tmp, tmp5, cflag, s;
1085
1086 tmp = t->c_ospeed;
1087 tmp5 = t->c_ispeed;
1088 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1089 return(EINVAL);
1090 if(tmp == 0) {
1091 /* stty 0 => drop DTR and RTS */
1092 zs_modem(cs, 0, DMSET);
1093 return(0);
1094 }
1095 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1096 if (tmp < 0)
1097 return(EINVAL);
1098 tp->t_ispeed = tp->t_ospeed = tmp;
1099
1100 cflag = tp->t_cflag = t->c_cflag;
1101 if (cflag & CSTOPB)
1102 cdiv |= ZSWR4_TWOSB;
1103 else
1104 cdiv |= ZSWR4_ONESB;
1105 if (!(cflag & PARODD))
1106 cdiv |= ZSWR4_EVENP;
1107 if (cflag & PARENB)
1108 cdiv |= ZSWR4_PARENB;
1109
1110 switch(cflag & CSIZE) {
1111 case CS5:
1112 tmp = ZSWR3_RX_5;
1113 tmp5 = ZSWR5_TX_5;
1114 break;
1115 case CS6:
1116 tmp = ZSWR3_RX_6;
1117 tmp5 = ZSWR5_TX_6;
1118 break;
1119 case CS7:
1120 tmp = ZSWR3_RX_7;
1121 tmp5 = ZSWR5_TX_7;
1122 break;
1123 case CS8:
1124 default:
1125 tmp = ZSWR3_RX_8;
1126 tmp5 = ZSWR5_TX_8;
1127 break;
1128 }
1129 tmp |= ZSWR3_RX_ENABLE;
1130 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1131
1132 /*
1133 * Block interrupts so that state will not
1134 * be altered until we are done setting it up.
1135 */
1136 s = splzs();
1137 cs->cs_preg[4] = cdiv;
1138 cs->cs_preg[11] = clkm;
1139 cs->cs_preg[12] = tcon;
1140 cs->cs_preg[13] = tcon >> 8;
1141 cs->cs_preg[14] = brgm;
1142 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1143 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1144 cs->cs_preg[10] = ZSWR10_NRZ;
1145 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1146
1147 /*
1148 * Output hardware flow control on the chip is horrendous: if
1149 * carrier detect drops, the receiver is disabled. Hence we
1150 * can only do this when the carrier is on.
1151 */
1152 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1153 tmp |= ZSWR3_HFC;
1154 cs->cs_preg[3] = tmp;
1155 cs->cs_preg[5] = tmp5;
1156
1157 /*
1158 * If nothing is being transmitted, set up new current values,
1159 * else mark them as pending.
1160 */
1161 if(cs->cs_heldchange == 0) {
1162 if (cs->cs_ttyp->t_state & TS_BUSY) {
1163 cs->cs_heldtbc = cs->cs_tbc;
1164 cs->cs_tbc = 0;
1165 cs->cs_heldchange = 1;
1166 } else {
1167 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1168 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1169 }
1170 }
1171 splx(s);
1172 return (0);
1173 }
1174
1175 /*
1176 * search for the best matching baudrate
1177 */
1178 static int
1179 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1180 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1181 {
1182 int bestdiff, bestbps, source;
1183
1184 bestdiff = bestbps = 0;
1185 unit = (unit & 1) << 2;
1186 for (source = 0; source < 4; ++source) {
1187 long freq = zs_frequencies[unit + source];
1188 int diff, bps, div, clkm, brgm, tcon;
1189
1190 bps = div = clkm = brgm = tcon = 0;
1191 switch (source) {
1192 case 0: /* BRgen, PCLK */
1193 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1194 break;
1195 case 1: /* BRgen, RTxC */
1196 brgm = ZSWR14_BAUD_ENA;
1197 break;
1198 case 2: /* RTxC */
1199 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1200 break;
1201 case 3: /* TRxC */
1202 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1203 break;
1204 }
1205 switch (source) {
1206 case 0:
1207 case 1:
1208 div = ZSWR4_CLK_X16;
1209 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1210 tcon = BPS_TO_TCONST(freq, wanted);
1211 if (tcon < 0)
1212 tcon = 0;
1213 bps = TCONST_TO_BPS(freq, tcon);
1214 break;
1215 case 2:
1216 case 3:
1217 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1218 int b2 = freq / 32, d2 = abs(b2 - wanted);
1219 int b3 = freq / 64, d3 = abs(b3 - wanted);
1220
1221 if (d1 < d2 && d1 < d3) {
1222 div = ZSWR4_CLK_X16;
1223 bps = b1;
1224 } else if (d2 < d3 && d2 < d1) {
1225 div = ZSWR4_CLK_X32;
1226 bps = b2;
1227 } else {
1228 div = ZSWR4_CLK_X64;
1229 bps = b3;
1230 }
1231 brgm = tcon = 0;
1232 break;
1233 }
1234 }
1235 diff = abs(bps - wanted);
1236 if (!source || diff < bestdiff) {
1237 *divisor = div;
1238 *clockmode = clkm;
1239 *brgenmode = brgm;
1240 *timeconst = tcon;
1241 bestbps = bps;
1242 bestdiff = diff;
1243 if (diff == 0)
1244 break;
1245 }
1246 }
1247 /* Allow deviations upto 5% */
1248 if (20 * bestdiff > wanted)
1249 return -1;
1250 return bestbps;
1251 }
1252
1253 /*
1254 * Raise or lower modem control (DTR/RTS) signals. If a character is
1255 * in transmission, the change is deferred.
1256 */
1257 static int
1258 zs_modem(cs, bits, how)
1259 struct zs_chanstate *cs;
1260 int bits, how;
1261 {
1262 int s, mbits;
1263
1264 bits &= ZSWR5_DTR | ZSWR5_RTS;
1265
1266 s = splzs();
1267 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1268
1269 switch(how) {
1270 case DMSET:
1271 mbits = bits;
1272 break;
1273 case DMBIS:
1274 mbits |= bits;
1275 break;
1276 case DMBIC:
1277 mbits &= ~bits;
1278 break;
1279 case DMGET:
1280 splx(s);
1281 return(mbits);
1282 }
1283
1284 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1285 if(cs->cs_heldchange == 0) {
1286 if(cs->cs_ttyp->t_state & TS_BUSY) {
1287 cs->cs_heldtbc = cs->cs_tbc;
1288 cs->cs_tbc = 0;
1289 cs->cs_heldchange = 1;
1290 }
1291 else {
1292 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1293 }
1294 }
1295 splx(s);
1296 return(0);
1297 }
1298
1299 /*
1300 * Write the given register set to the given zs channel in the proper order.
1301 * The channel must not be transmitting at the time. The receiver will
1302 * be disabled for the time it takes to write all the registers.
1303 */
1304 static void
1305 zs_loadchannelregs(zc, reg)
1306 volatile struct zschan *zc;
1307 u_char *reg;
1308 {
1309 int i;
1310
1311 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1312 i = zc->zc_data; /* drain fifo */
1313 i = zc->zc_data;
1314 i = zc->zc_data;
1315 ZS_WRITE(zc, 4, reg[4]);
1316 ZS_WRITE(zc, 10, reg[10]);
1317 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1318 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1319 ZS_WRITE(zc, 1, reg[1]);
1320 ZS_WRITE(zc, 9, reg[9]);
1321 ZS_WRITE(zc, 11, reg[11]);
1322 ZS_WRITE(zc, 12, reg[12]);
1323 ZS_WRITE(zc, 13, reg[13]);
1324 ZS_WRITE(zc, 14, reg[14]);
1325 ZS_WRITE(zc, 15, reg[15]);
1326 ZS_WRITE(zc, 3, reg[3]);
1327 ZS_WRITE(zc, 5, reg[5]);
1328 }
1329 #endif /* NZS > 1 */
1330