Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.41
      1 /*	$NetBSD: zs.c,v 1.41 2003/08/07 16:27:02 agc Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  *
     12  * All advertising materials mentioning features or use of this software
     13  * must display the following acknowledgement:
     14  *	This product includes software developed by the University of
     15  *	California, Lawrence Berkeley Laboratory.
     16  *
     17  * Redistribution and use in source and binary forms, with or without
     18  * modification, are permitted provided that the following conditions
     19  * are met:
     20  * 1. Redistributions of source code must retain the above copyright
     21  *    notice, this list of conditions and the following disclaimer.
     22  * 2. Redistributions in binary form must reproduce the above copyright
     23  *    notice, this list of conditions and the following disclaimer in the
     24  *    documentation and/or other materials provided with the distribution.
     25  * 3. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     42  */
     43 
     44 /*
     45  * Copyright (c) 1995 L. Weppelman (Atari modifications)
     46  *
     47  * This software was developed by the Computer Systems Engineering group
     48  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     49  * contributed to Berkeley.
     50  *
     51  *
     52  * All advertising materials mentioning features or use of this software
     53  * must display the following acknowledgement:
     54  *	This product includes software developed by the University of
     55  *	California, Lawrence Berkeley Laboratory.
     56  *
     57  * Redistribution and use in source and binary forms, with or without
     58  * modification, are permitted provided that the following conditions
     59  * are met:
     60  * 1. Redistributions of source code must retain the above copyright
     61  *    notice, this list of conditions and the following disclaimer.
     62  * 2. Redistributions in binary form must reproduce the above copyright
     63  *    notice, this list of conditions and the following disclaimer in the
     64  *    documentation and/or other materials provided with the distribution.
     65  * 3. All advertising materials mentioning features or use of this software
     66  *    must display the following acknowledgement:
     67  *	This product includes software developed by the University of
     68  *	California, Berkeley and its contributors.
     69  * 4. Neither the name of the University nor the names of its contributors
     70  *    may be used to endorse or promote products derived from this software
     71  *    without specific prior written permission.
     72  *
     73  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     83  * SUCH DAMAGE.
     84  *
     85  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     86  */
     87 
     88 /*
     89  * Zilog Z8530 (ZSCC) driver.
     90  *
     91  * Runs two tty ports (modem2 and serial2) on zs0.
     92  *
     93  * This driver knows far too much about chip to usage mappings.
     94  */
     95 
     96 #include <sys/cdefs.h>
     97 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.41 2003/08/07 16:27:02 agc Exp $");
     98 
     99 #include <sys/param.h>
    100 #include <sys/systm.h>
    101 #include <sys/proc.h>
    102 #include <sys/device.h>
    103 #include <sys/conf.h>
    104 #include <sys/file.h>
    105 #include <sys/ioctl.h>
    106 #include <sys/malloc.h>
    107 #include <sys/tty.h>
    108 #include <sys/time.h>
    109 #include <sys/kernel.h>
    110 #include <sys/syslog.h>
    111 
    112 #include <machine/cpu.h>
    113 #include <machine/iomap.h>
    114 #include <machine/scu.h>
    115 #include <machine/mfp.h>
    116 #include <atari/dev/ym2149reg.h>
    117 
    118 #include <dev/ic/z8530reg.h>
    119 #include <atari/dev/zsvar.h>
    120 #include "zs.h"
    121 #if NZS > 1
    122 #error "This driver supports only 1 85C30!"
    123 #endif
    124 
    125 #if NZS > 0
    126 
    127 #define PCLK	(8053976)	/* PCLK pin input clock rate */
    128 #define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
    129 
    130 #define splzs	spl5
    131 
    132 /*
    133  * Software state per found chip.
    134  */
    135 struct zs_softc {
    136     struct	device		zi_dev;    /* base device		  */
    137     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
    138     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
    139 };
    140 
    141 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
    142 /*
    143  * Define the registers for a closed port
    144  */
    145 static u_char zs_init_regs[16] = {
    146 /*  0 */	0,
    147 /*  1 */	0,
    148 /*  2 */	0x60,
    149 /*  3 */	0,
    150 /*  4 */	0,
    151 /*  5 */	0,
    152 /*  6 */	0,
    153 /*  7 */	0,
    154 /*  8 */	0,
    155 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
    156 /* 10 */	ZSWR10_NRZ,
    157 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    158 /* 12 */	0,
    159 /* 13 */	0,
    160 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    161 /* 15 */	0
    162 };
    163 
    164 /*
    165  * Define the machine dependant clock frequencies
    166  * If BRgen feeds sender/receiver we always use a
    167  * divisor 16, therefor the division by 16 can as
    168  * well be done here.
    169  */
    170 static u_long zs_freqs_tt[] = {
    171 	/*
    172 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    173 	 * which is set to 307.2KHz during initialisation
    174 	 * and never changed afterwards.
    175 	 */
    176 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    177 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    178 	3672000,	/* RTxCA, from PCLK4		*/
    179 	      0,	/* TRxCA, external		*/
    180 
    181 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    182 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    183 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    184 	2457600		/* TRxCB, from BCLK		*/
    185 };
    186 
    187 static u_long zs_freqs_falcon[] = {
    188 	/*
    189 	 * Atari Falcon, XXX no specs available, this might be wrong
    190 	 */
    191 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    192 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    193 	3672000,	/* RTxCA, ???			*/
    194 	      0,	/* TRxCA, external		*/
    195 
    196 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    197 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    198 	3672000,	/* RTxCB, ???			*/
    199 	2457600		/* TRxCB, ???			*/
    200 };
    201 
    202 static u_long zs_freqs_hades[] = {
    203 	/*
    204 	 * XXX: Channel-A unchecked!!!!!
    205 	 */
    206      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    207 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    208 	3672000,	/* RTxCA, from PCLK4		*/
    209 	      0,	/* TRxCA, external		*/
    210 
    211      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    212 	 235550,	/* BRgen, RTxCB, divisor 16	*/
    213 	3768800,	/* RTxCB, 3.7688MHz		*/
    214 	3768800		/* TRxCB, 3.7688MHz		*/
    215 };
    216 
    217 static u_long zs_freqs_generic[] = {
    218 	/*
    219 	 * other machines, assume only PCLK is available
    220 	 */
    221 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    222 	      0,	/* BRgen, RTxCA, divisor 16	*/
    223 	      0,	/* RTxCA, unknown		*/
    224 	      0,	/* TRxCA, unknown		*/
    225 
    226 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    227 	      0,	/* BRgen, RTxCB, divisor 16	*/
    228 	      0,	/* RTxCB, unknown		*/
    229 	      0		/* TRxCB, unknown		*/
    230 };
    231 static u_long *zs_frequencies;
    232 
    233 /* Definition of the driver for autoconfig. */
    234 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    235 static void	zsattach __P((struct device *, struct device *, void *));
    236 
    237 CFATTACH_DECL(zs, sizeof(struct zs_softc),
    238     zsmatch, zsattach, NULL, NULL);
    239 
    240 extern struct cfdriver zs_cd;
    241 
    242 /* {b,c}devsw[] function prototypes */
    243 dev_type_open(zsopen);
    244 dev_type_close(zsclose);
    245 dev_type_read(zsread);
    246 dev_type_write(zswrite);
    247 dev_type_ioctl(zsioctl);
    248 dev_type_stop(zsstop);
    249 dev_type_tty(zstty);
    250 dev_type_poll(zspoll);
    251 
    252 const struct cdevsw zs_cdevsw = {
    253 	zsopen, zsclose, zsread, zswrite, zsioctl,
    254 	zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
    255 };
    256 
    257 /* Interrupt handlers. */
    258 int		zshard __P((long));
    259 static int	zssoft __P((long));
    260 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    261 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    262 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    263 
    264 static struct zs_chanstate *zslist;
    265 
    266 /* Routines called from other code. */
    267 static void	zsstart __P((struct tty *));
    268 
    269 /* Routines purely local to this driver. */
    270 static void	zsoverrun __P((int, long *, char *));
    271 static int	zsparam __P((struct tty *, struct termios *));
    272 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    273 static int	zs_modem __P((struct zs_chanstate *, int, int));
    274 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    275 static void	zs_shutdown __P((struct zs_chanstate *));
    276 
    277 static int zsshortcuts;	/* number of "shortcut" software interrupts */
    278 
    279 static int
    280 zsmatch(pdp, cfp, auxp)
    281 struct device	*pdp;
    282 struct cfdata	*cfp;
    283 void		*auxp;
    284 {
    285 	static int	zs_matched = 0;
    286 
    287 	if(strcmp("zs", auxp) || zs_matched)
    288 		return(0);
    289 	zs_matched = 1;
    290 	return(1);
    291 }
    292 
    293 /*
    294  * Attach a found zs.
    295  */
    296 static void
    297 zsattach(parent, dev, aux)
    298 struct device	*parent;
    299 struct device	*dev;
    300 void		*aux;
    301 {
    302 	register struct zs_softc		*zi;
    303 	register struct zs_chanstate		*cs;
    304 	register volatile struct zsdevice	*addr;
    305 		 char				tmp;
    306 
    307 	addr      = (struct zsdevice *)AD_SCC;
    308 	zi        = (struct zs_softc *)dev;
    309 	zi->zi_zs = addr;
    310 	cs        = zi->zi_cs;
    311 
    312 	/*
    313 	 * Get the command register into a known state.
    314 	 */
    315 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    316 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    317 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    318 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    319 
    320 	/*
    321 	 * Do a hardware reset.
    322 	 */
    323 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    324 	delay(50000);	/*enough ? */
    325 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    326 
    327 	/*
    328 	 * Initialize both channels
    329 	 */
    330 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    331 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    332 
    333 	if(machineid & ATARI_TT) {
    334 		/*
    335 		 * ininitialise TT-MFP timer C: 307200Hz
    336 		 * timer C and D share one control register:
    337 		 *	bits 0-2 control timer D
    338 		 *	bits 4-6 control timer C
    339 		 */
    340 		int cr = MFP2->mf_tcdcr & 7;
    341 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    342 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    343 		cr |= T_Q004 << 4;		/* divisor 4     */
    344 		MFP2->mf_tcdcr = cr;		/* start timer C */
    345 		/*
    346 		 * enable scc related interrupts
    347 		 */
    348 		SCU->vme_mask |= SCU_SCC;
    349 
    350 		zs_frequencies = zs_freqs_tt;
    351 	} else if (machineid & ATARI_FALCON) {
    352 		zs_frequencies = zs_freqs_falcon;
    353 	} else if (machineid & ATARI_HADES) {
    354 		zs_frequencies = zs_freqs_hades;
    355 	} else {
    356 		zs_frequencies = zs_freqs_generic;
    357 	}
    358 
    359 	/* link into interrupt list with order (A,B) (B=A+1) */
    360 	cs[0].cs_next = &cs[1];
    361 	cs[1].cs_next = zslist;
    362 	zslist        = cs;
    363 
    364 	cs->cs_unit  = 0;
    365 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    366 	cs++;
    367 	cs->cs_unit  = 1;
    368 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    369 
    370 	printf(": serial2 on channel a and modem2 on channel b\n");
    371 }
    372 
    373 /*
    374  * Open a zs serial port.
    375  */
    376 int
    377 zsopen(dev, flags, mode, p)
    378 dev_t		dev;
    379 int		flags;
    380 int		mode;
    381 struct proc	*p;
    382 {
    383 	register struct tty		*tp;
    384 	register struct zs_chanstate	*cs;
    385 		 struct zs_softc	*zi;
    386 		 int			unit = ZS_UNIT(dev);
    387 		 int			zs = unit >> 1;
    388 		 int			error, s;
    389 
    390 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
    391 		return (ENXIO);
    392 	cs = &zi->zi_cs[unit & 1];
    393 
    394 	/*
    395 	 * When port A (ser02) is selected on the TT, make sure
    396 	 * the port is enabled.
    397 	 */
    398 	if((machineid & ATARI_TT) && !(unit & 1))
    399 		ym2149_ser2(1);
    400 
    401 	if (cs->cs_rbuf == NULL) {
    402 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
    403 								   M_WAITOK);
    404 	}
    405 
    406 	tp = cs->cs_ttyp;
    407 	if(tp == NULL) {
    408 		cs->cs_ttyp = tp = ttymalloc();
    409 		tty_attach(tp);
    410 		tp->t_dev   = dev;
    411 		tp->t_oproc = zsstart;
    412 		tp->t_param = zsparam;
    413 	}
    414 
    415 	if ((tp->t_state & TS_ISOPEN) &&
    416 	    (tp->t_state & TS_XCLUDE) &&
    417 	    p->p_ucred->cr_uid != 0)
    418 		return (EBUSY);
    419 
    420 	s  = spltty();
    421 
    422 	/*
    423 	 * Do the following iff this is a first open.
    424 	 */
    425 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    426 		if(tp->t_ispeed == 0) {
    427 			tp->t_iflag = TTYDEF_IFLAG;
    428 			tp->t_oflag = TTYDEF_OFLAG;
    429 			tp->t_cflag = TTYDEF_CFLAG;
    430 			tp->t_lflag = TTYDEF_LFLAG;
    431 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    432 		}
    433 		ttychars(tp);
    434 		ttsetwater(tp);
    435 
    436 		(void)zsparam(tp, &tp->t_termios);
    437 
    438 		/*
    439 		 * Turn on DTR.  We must always do this, even if carrier is not
    440 		 * present, because otherwise we'd have to use TIOCSDTR
    441 		 * immediately after setting CLOCAL, which applications do not
    442 		 * expect.  We always assert DTR while the device is open
    443 		 * unless explicitly requested to deassert it.
    444 		 */
    445 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    446 		/* May never get a status intr. if DCD already on. -gwr */
    447 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
    448 			tp->t_state |= TS_CARR_ON;
    449 		if(cs->cs_softcar)
    450 			tp->t_state |= TS_CARR_ON;
    451 	}
    452 
    453 	splx(s);
    454 
    455 	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
    456 	if (error)
    457 		goto bad;
    458 
    459 	error = tp->t_linesw->l_open(dev, tp);
    460 	if(error)
    461 		goto bad;
    462 	return (0);
    463 
    464 bad:
    465 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    466 		/*
    467 		 * We failed to open the device, and nobody else had it opened.
    468 		 * Clean up the state as appropriate.
    469 		 */
    470 		zs_shutdown(cs);
    471 	}
    472 	return(error);
    473 }
    474 
    475 /*
    476  * Close a zs serial port.
    477  */
    478 int
    479 zsclose(dev, flags, mode, p)
    480 dev_t		dev;
    481 int		flags;
    482 int		mode;
    483 struct proc	*p;
    484 {
    485 	register struct zs_chanstate	*cs;
    486 	register struct tty		*tp;
    487 		 struct zs_softc	*zi;
    488 		 int			unit = ZS_UNIT(dev);
    489 
    490 	zi = zs_cd.cd_devs[unit >> 1];
    491 	cs = &zi->zi_cs[unit & 1];
    492 	tp = cs->cs_ttyp;
    493 
    494 	tp->t_linesw->l_close(tp, flags);
    495 	ttyclose(tp);
    496 
    497 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    498 		/*
    499 		 * Although we got a last close, the device may still be in
    500 		 * use; e.g. if this was the dialout node, and there are still
    501 		 * processes waiting for carrier on the non-dialout node.
    502 		 */
    503 		zs_shutdown(cs);
    504 	}
    505 	return (0);
    506 }
    507 
    508 /*
    509  * Read/write zs serial port.
    510  */
    511 int
    512 zsread(dev, uio, flags)
    513 dev_t		dev;
    514 struct uio	*uio;
    515 int		flags;
    516 {
    517 	register struct zs_chanstate	*cs;
    518 	register struct zs_softc	*zi;
    519 	register struct tty		*tp;
    520 		 int			unit;
    521 
    522 	unit = ZS_UNIT(dev);
    523 	zi   = zs_cd.cd_devs[unit >> 1];
    524 	cs   = &zi->zi_cs[unit & 1];
    525 	tp   = cs->cs_ttyp;
    526 
    527 	return(tp->t_linesw->l_read(tp, uio, flags));
    528 }
    529 
    530 int
    531 zswrite(dev, uio, flags)
    532 dev_t		dev;
    533 struct uio	*uio;
    534 int		flags;
    535 {
    536 	register struct zs_chanstate	*cs;
    537 	register struct zs_softc	*zi;
    538 	register struct tty		*tp;
    539 		 int			unit;
    540 
    541 	unit = ZS_UNIT(dev);
    542 	zi   = zs_cd.cd_devs[unit >> 1];
    543 	cs   = &zi->zi_cs[unit & 1];
    544 	tp   = cs->cs_ttyp;
    545 
    546 	return(tp->t_linesw->l_write(tp, uio, flags));
    547 }
    548 
    549 int
    550 zspoll(dev, events, p)
    551 dev_t		dev;
    552 int		events;
    553 struct proc	*p;
    554 {
    555 	register struct zs_chanstate	*cs;
    556 	register struct zs_softc	*zi;
    557 	register struct tty		*tp;
    558 		 int			unit;
    559 
    560 	unit = ZS_UNIT(dev);
    561 	zi   = zs_cd.cd_devs[unit >> 1];
    562 	cs   = &zi->zi_cs[unit & 1];
    563 	tp   = cs->cs_ttyp;
    564 
    565 	return ((*tp->t_linesw->l_poll)(tp, events, p));
    566 }
    567 
    568 struct tty *
    569 zstty(dev)
    570 dev_t	dev;
    571 {
    572 	register struct zs_chanstate	*cs;
    573 	register struct zs_softc	*zi;
    574 		 int			unit;
    575 
    576 	unit = ZS_UNIT(dev);
    577 	zi   = zs_cd.cd_devs[unit >> 1];
    578 	cs   = &zi->zi_cs[unit & 1];
    579 	return(cs->cs_ttyp);
    580 }
    581 
    582 /*
    583  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    584  * channels are kept in (A,B) pairs.
    585  *
    586  * Do just a little, then get out; set a software interrupt if more
    587  * work is needed.
    588  *
    589  * We deliberately ignore the vectoring Zilog gives us, and match up
    590  * only the number of `reset interrupt under service' operations, not
    591  * the order.
    592  */
    593 
    594 int
    595 zshard(sr)
    596 long sr;
    597 {
    598 	register struct zs_chanstate	*a;
    599 #define	b (a + 1)
    600 	register volatile struct zschan *zc;
    601 	register int			rr3, intflags = 0, v, i;
    602 
    603 	do {
    604 	    intflags &= ~4;
    605 	    for(a = zslist; a != NULL; a = b->cs_next) {
    606 		rr3 = ZS_READ(a->cs_zc, 3);
    607 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    608 			intflags |= 4|2;
    609 			zc = a->cs_zc;
    610 			i  = a->cs_rbput;
    611 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    612 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    613 				intflags |= 1;
    614 			}
    615 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    616 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    617 				intflags |= 1;
    618 			}
    619 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    620 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    621 				intflags |= 1;
    622 			}
    623 			a->cs_rbput = i;
    624 		}
    625 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    626 			intflags |= 4|2;
    627 			zc = b->cs_zc;
    628 			i  = b->cs_rbput;
    629 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    630 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    631 				intflags |= 1;
    632 			}
    633 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    634 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    635 				intflags |= 1;
    636 			}
    637 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    638 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    639 				intflags |= 1;
    640 			}
    641 			b->cs_rbput = i;
    642 		}
    643 	    }
    644 	} while(intflags & 4);
    645 #undef b
    646 
    647 	if(intflags & 1) {
    648 		if(BASEPRI(sr)) {
    649 			spl1();
    650 			zsshortcuts++;
    651 			return(zssoft(sr));
    652 		}
    653 		else if(!cb_scheduled) {
    654 			cb_scheduled++;
    655 			add_sicallback((si_farg)zssoft, 0, 0);
    656 		}
    657 	}
    658 	return(intflags & 2);
    659 }
    660 
    661 static int
    662 zsrint(cs, zc)
    663 register struct zs_chanstate	*cs;
    664 register volatile struct zschan	*zc;
    665 {
    666 	register int c;
    667 
    668 	/*
    669 	 * First read the status, because read of the received char
    670 	 * destroy the status of this char.
    671 	 */
    672 	c = ZS_READ(zc, 1);
    673 	c |= (zc->zc_data << 8);
    674 
    675 	/* clear receive error & interrupt condition */
    676 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    677 	zc->zc_csr = ZSWR0_CLR_INTR;
    678 
    679 	return(ZRING_MAKE(ZRING_RINT, c));
    680 }
    681 
    682 static int
    683 zsxint(cs, zc)
    684 register struct zs_chanstate	*cs;
    685 register volatile struct zschan	*zc;
    686 {
    687 	register int i = cs->cs_tbc;
    688 
    689 	if(i == 0) {
    690 		zc->zc_csr = ZSWR0_RESET_TXINT;
    691 		zc->zc_csr = ZSWR0_CLR_INTR;
    692 		return(ZRING_MAKE(ZRING_XINT, 0));
    693 	}
    694 	cs->cs_tbc = i - 1;
    695 	zc->zc_data = *cs->cs_tba++;
    696 	zc->zc_csr = ZSWR0_CLR_INTR;
    697 	return (0);
    698 }
    699 
    700 static int
    701 zssint(cs, zc)
    702 register struct zs_chanstate	*cs;
    703 register volatile struct zschan	*zc;
    704 {
    705 	register int rr0;
    706 
    707 	rr0 = zc->zc_csr;
    708 	zc->zc_csr = ZSWR0_RESET_STATUS;
    709 	zc->zc_csr = ZSWR0_CLR_INTR;
    710 	/*
    711 	 * The chip's hardware flow control is, as noted in zsreg.h,
    712 	 * busted---if the DCD line goes low the chip shuts off the
    713 	 * receiver (!).  If we want hardware CTS flow control but do
    714 	 * not have it, and carrier is now on, turn HFC on; if we have
    715 	 * HFC now but carrier has gone low, turn it off.
    716 	 */
    717 	if(rr0 & ZSRR0_DCD) {
    718 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    719 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    720 			cs->cs_creg[3] |= ZSWR3_HFC;
    721 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    722 		}
    723 	}
    724 	else {
    725 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    726 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    727 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    728 		}
    729 	}
    730 	return(ZRING_MAKE(ZRING_SINT, rr0));
    731 }
    732 
    733 /*
    734  * Print out a ring or fifo overrun error message.
    735  */
    736 static void
    737 zsoverrun(unit, ptime, what)
    738 int	unit;
    739 long	*ptime;
    740 char	*what;
    741 {
    742 
    743 	if(*ptime != time.tv_sec) {
    744 		*ptime = time.tv_sec;
    745 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    746 		    (unit & 1) + 'a', what);
    747 	}
    748 }
    749 
    750 /*
    751  * ZS software interrupt.  Scan all channels for deferred interrupts.
    752  */
    753 int
    754 zssoft(sr)
    755 long sr;
    756 {
    757     register struct zs_chanstate	*cs;
    758     register volatile struct zschan	*zc;
    759     register struct linesw		*line;
    760     register struct tty			*tp;
    761     register int			get, n, c, cc, unit, s;
    762  	     int			retval = 0;
    763 
    764     cb_scheduled = 0;
    765     s = spltty();
    766     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    767 	get = cs->cs_rbget;
    768 again:
    769 	n = cs->cs_rbput;	/* atomic			*/
    770 	if(get == n)		/* nothing more on this line	*/
    771 		continue;
    772 	retval = 1;
    773 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    774 	zc     = cs->cs_zc;
    775 	tp     = cs->cs_ttyp;
    776 	line   = tp->t_linesw;
    777 	/*
    778 	 * Compute the number of interrupts in the receive ring.
    779 	 * If the count is overlarge, we lost some events, and
    780 	 * must advance to the first valid one.  It may get
    781 	 * overwritten if more data are arriving, but this is
    782 	 * too expensive to check and gains nothing (we already
    783 	 * lost out; all we can do at this point is trade one
    784 	 * kind of loss for another).
    785 	 */
    786 	n -= get;
    787 	if(n > ZLRB_RING_SIZE) {
    788 		zsoverrun(unit, &cs->cs_rotime, "ring");
    789 		get += n - ZLRB_RING_SIZE;
    790 		n    = ZLRB_RING_SIZE;
    791 	}
    792 	while(--n >= 0) {
    793 		/* race to keep ahead of incoming interrupts */
    794 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    795 		switch (ZRING_TYPE(c)) {
    796 
    797 		case ZRING_RINT:
    798 			c = ZRING_VALUE(c);
    799 			if(c & ZSRR1_DO)
    800 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    801 			cc = c >> 8;
    802 			if(c & ZSRR1_FE)
    803 				cc |= TTY_FE;
    804 			if(c & ZSRR1_PE)
    805 				cc |= TTY_PE;
    806 			line->l_rint(cc, tp);
    807 			break;
    808 
    809 		case ZRING_XINT:
    810 			/*
    811 			 * Transmit done: change registers and resume,
    812 			 * or clear BUSY.
    813 			 */
    814 			if(cs->cs_heldchange) {
    815 				int sps;
    816 
    817 				sps = splzs();
    818 				c = zc->zc_csr;
    819 				if((c & ZSRR0_DCD) == 0)
    820 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    821 				bcopy((caddr_t)cs->cs_preg,
    822 				    (caddr_t)cs->cs_creg, 16);
    823 				zs_loadchannelregs(zc, cs->cs_creg);
    824 				splx(sps);
    825 				cs->cs_heldchange = 0;
    826 				if(cs->cs_heldtbc
    827 					&& (tp->t_state & TS_TTSTOP) == 0) {
    828 					cs->cs_tbc = cs->cs_heldtbc - 1;
    829 					zc->zc_data = *cs->cs_tba++;
    830 					goto again;
    831 				}
    832 			}
    833 			tp->t_state &= ~TS_BUSY;
    834 			if(tp->t_state & TS_FLUSH)
    835 				tp->t_state &= ~TS_FLUSH;
    836 			else ndflush(&tp->t_outq,cs->cs_tba
    837 						- (caddr_t)tp->t_outq.c_cf);
    838 			line->l_start(tp);
    839 			break;
    840 
    841 		case ZRING_SINT:
    842 			/*
    843 			 * Status line change.  HFC bit is run in
    844 			 * hardware interrupt, to avoid locking
    845 			 * at splzs here.
    846 			 */
    847 			c = ZRING_VALUE(c);
    848 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    849 				cc = (c & ZSRR0_DCD) != 0;
    850 				if(line->l_modem(tp, cc) == 0)
    851 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    852 							cc ? DMBIS : DMBIC);
    853 			}
    854 			cs->cs_rr0 = c;
    855 			break;
    856 
    857 		default:
    858 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    859 			    unit >> 1, (unit & 1) + 'a', c);
    860 			break;
    861 		}
    862 	}
    863 	cs->cs_rbget = get;
    864 	goto again;
    865     }
    866     splx(s);
    867     return (retval);
    868 }
    869 
    870 int
    871 zsioctl(dev, cmd, data, flag, p)
    872 dev_t		dev;
    873 u_long		cmd;
    874 caddr_t		data;
    875 int		flag;
    876 struct proc	*p;
    877 {
    878 		 int			unit = ZS_UNIT(dev);
    879 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
    880 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    881 	register int			error, s;
    882 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    883 
    884 	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
    885 	if(error != EPASSTHROUGH)
    886 		return(error);
    887 
    888 	error = ttioctl(tp, cmd, data, flag, p);
    889 	if(error !=EPASSTHROUGH)
    890 		return (error);
    891 
    892 	switch (cmd) {
    893 	case TIOCSBRK:
    894 		s = splzs();
    895 		cs->cs_preg[5] |= ZSWR5_BREAK;
    896 		cs->cs_creg[5] |= ZSWR5_BREAK;
    897 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    898 		splx(s);
    899 		break;
    900 	case TIOCCBRK:
    901 		s = splzs();
    902 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    903 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    904 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    905 		splx(s);
    906 		break;
    907 	case TIOCGFLAGS: {
    908 		int bits = 0;
    909 
    910 		if(cs->cs_softcar)
    911 			bits |= TIOCFLAG_SOFTCAR;
    912 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    913 			bits |= TIOCFLAG_CLOCAL;
    914 		if(cs->cs_creg[3] & ZSWR3_HFC)
    915 			bits |= TIOCFLAG_CRTSCTS;
    916 		*(int *)data = bits;
    917 		break;
    918 	}
    919 	case TIOCSFLAGS: {
    920 		int userbits = 0;
    921 
    922 		error = suser(p->p_ucred, &p->p_acflag);
    923 		if(error != 0)
    924 			return (EPERM);
    925 
    926 		userbits = *(int *)data;
    927 
    928 		/*
    929 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    930 		 # defaulting to software flow control.
    931 		 */
    932 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    933 			return(EINVAL);
    934 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    935 			return(ENODEV);
    936 
    937 		s = splzs();
    938 		if((userbits & TIOCFLAG_SOFTCAR)) {
    939 			cs->cs_softcar = 1;	/* turn on softcar */
    940 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    941 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    942 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    943 		}
    944 		else if(userbits & TIOCFLAG_CLOCAL) {
    945 			cs->cs_softcar = 0; 	/* turn off softcar */
    946 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    947 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    948 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    949 			tp->t_termios.c_cflag |= CLOCAL;
    950 		}
    951 		if(userbits & TIOCFLAG_CRTSCTS) {
    952 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    953 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    954 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    955 			cs->cs_preg[3] |= ZSWR3_HFC;
    956 			cs->cs_creg[3] |= ZSWR3_HFC;
    957 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    958 			tp->t_termios.c_cflag |= CRTSCTS;
    959 		}
    960 		else {
    961 			/* no mdmbuf, so we must want software flow control */
    962 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    963 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    964 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    965 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    966 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    967 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    968 			tp->t_termios.c_cflag &= ~CRTSCTS;
    969 		}
    970 		splx(s);
    971 		break;
    972 	}
    973 	case TIOCSDTR:
    974 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    975 		break;
    976 	case TIOCCDTR:
    977 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    978 		break;
    979 	case TIOCMGET:
    980 		zs_modem(cs, 0, DMGET);
    981 		break;
    982 	case TIOCMSET:
    983 	case TIOCMBIS:
    984 	case TIOCMBIC:
    985 	default:
    986 		return (EPASSTHROUGH);
    987 	}
    988 	return (0);
    989 }
    990 
    991 /*
    992  * Start or restart transmission.
    993  */
    994 static void
    995 zsstart(tp)
    996 register struct tty *tp;
    997 {
    998 	register struct zs_chanstate	*cs;
    999 	register int			s, nch;
   1000 		 int			unit = ZS_UNIT(tp->t_dev);
   1001 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
   1002 
   1003 	cs = &zi->zi_cs[unit & 1];
   1004 	s  = spltty();
   1005 
   1006 	/*
   1007 	 * If currently active or delaying, no need to do anything.
   1008 	 */
   1009 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
   1010 		goto out;
   1011 
   1012 	/*
   1013 	 * If there are sleepers, and output has drained below low
   1014 	 * water mark, awaken.
   1015 	 */
   1016 	if(tp->t_outq.c_cc <= tp->t_lowat) {
   1017 		if(tp->t_state & TS_ASLEEP) {
   1018 			tp->t_state &= ~TS_ASLEEP;
   1019 			wakeup((caddr_t)&tp->t_outq);
   1020 		}
   1021 		selwakeup(&tp->t_wsel);
   1022 	}
   1023 
   1024 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
   1025 	if(nch) {
   1026 		register char *p = tp->t_outq.c_cf;
   1027 
   1028 		/* mark busy, enable tx done interrupts, & send first byte */
   1029 		tp->t_state |= TS_BUSY;
   1030 		(void) splzs();
   1031 		cs->cs_preg[1] |= ZSWR1_TIE;
   1032 		cs->cs_creg[1] |= ZSWR1_TIE;
   1033 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1034 		cs->cs_zc->zc_data = *p;
   1035 		cs->cs_tba = p + 1;
   1036 		cs->cs_tbc = nch - 1;
   1037 	} else {
   1038 		/*
   1039 		 * Nothing to send, turn off transmit done interrupts.
   1040 		 * This is useful if something is doing polled output.
   1041 		 */
   1042 		(void) splzs();
   1043 		cs->cs_preg[1] &= ~ZSWR1_TIE;
   1044 		cs->cs_creg[1] &= ~ZSWR1_TIE;
   1045 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1046 	}
   1047 out:
   1048 	splx(s);
   1049 }
   1050 
   1051 /*
   1052  * Stop output, e.g., for ^S or output flush.
   1053  */
   1054 void
   1055 zsstop(tp, flag)
   1056 register struct tty	*tp;
   1057 	 int		flag;
   1058 {
   1059 	register struct zs_chanstate	*cs;
   1060 	register int			s, unit = ZS_UNIT(tp->t_dev);
   1061 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
   1062 
   1063 	cs = &zi->zi_cs[unit & 1];
   1064 	s  = splzs();
   1065 	if(tp->t_state & TS_BUSY) {
   1066 		/*
   1067 		 * Device is transmitting; must stop it.
   1068 		 */
   1069 		cs->cs_tbc = 0;
   1070 		if ((tp->t_state & TS_TTSTOP) == 0)
   1071 			tp->t_state |= TS_FLUSH;
   1072 	}
   1073 	splx(s);
   1074 }
   1075 
   1076 static void
   1077 zs_shutdown(cs)
   1078 	struct zs_chanstate	*cs;
   1079 {
   1080 	struct tty	*tp = cs->cs_ttyp;
   1081 	int		s;
   1082 
   1083 	s = splzs();
   1084 
   1085 	/*
   1086 	 * Hang up if necessary.  Wait a bit, so the other side has time to
   1087 	 * notice even if we immediately open the port again.
   1088 	 */
   1089 	if(tp->t_cflag & HUPCL) {
   1090 		zs_modem(cs, 0, DMSET);
   1091 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
   1092 	}
   1093 
   1094 	/* Clear any break condition set with TIOCSBRK. */
   1095 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
   1096 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
   1097 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
   1098 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1099 	}
   1100 
   1101 	/*
   1102 	 * Drop all lines and cancel interrupts
   1103 	 */
   1104 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
   1105 	splx(s);
   1106 }
   1107 
   1108 /*
   1109  * Set ZS tty parameters from termios.
   1110  *
   1111  * This routine makes use of the fact that only registers
   1112  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
   1113  */
   1114 static int
   1115 zsparam(tp, t)
   1116 register struct tty	*tp;
   1117 register struct termios	*t;
   1118 {
   1119 		 int			unit = ZS_UNIT(tp->t_dev);
   1120 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
   1121 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
   1122 		 int			cdiv, clkm, brgm, tcon;
   1123 	register int			tmp, tmp5, cflag, s;
   1124 
   1125 	tmp  = t->c_ospeed;
   1126 	tmp5 = t->c_ispeed;
   1127 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
   1128 		return(EINVAL);
   1129 	if(tmp == 0) {
   1130 		/* stty 0 => drop DTR and RTS */
   1131 		zs_modem(cs, 0, DMSET);
   1132 		return(0);
   1133 	}
   1134 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
   1135 	if (tmp < 0)
   1136 		return(EINVAL);
   1137 	tp->t_ispeed = tp->t_ospeed = tmp;
   1138 
   1139 	cflag = tp->t_cflag = t->c_cflag;
   1140 	if (cflag & CSTOPB)
   1141 		cdiv |= ZSWR4_TWOSB;
   1142 	else
   1143 		cdiv |= ZSWR4_ONESB;
   1144 	if (!(cflag & PARODD))
   1145 		cdiv |= ZSWR4_EVENP;
   1146 	if (cflag & PARENB)
   1147 		cdiv |= ZSWR4_PARENB;
   1148 
   1149 	switch(cflag & CSIZE) {
   1150 	case CS5:
   1151 		tmp  = ZSWR3_RX_5;
   1152 		tmp5 = ZSWR5_TX_5;
   1153 		break;
   1154 	case CS6:
   1155 		tmp  = ZSWR3_RX_6;
   1156 		tmp5 = ZSWR5_TX_6;
   1157 		break;
   1158 	case CS7:
   1159 		tmp  = ZSWR3_RX_7;
   1160 		tmp5 = ZSWR5_TX_7;
   1161 		break;
   1162 	case CS8:
   1163 	default:
   1164 		tmp  = ZSWR3_RX_8;
   1165 		tmp5 = ZSWR5_TX_8;
   1166 		break;
   1167 	}
   1168 	tmp  |= ZSWR3_RX_ENABLE;
   1169 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1170 
   1171 	/*
   1172 	 * Block interrupts so that state will not
   1173 	 * be altered until we are done setting it up.
   1174 	 */
   1175 	s = splzs();
   1176 	cs->cs_preg[4]  = cdiv;
   1177 	cs->cs_preg[11] = clkm;
   1178 	cs->cs_preg[12] = tcon;
   1179 	cs->cs_preg[13] = tcon >> 8;
   1180 	cs->cs_preg[14] = brgm;
   1181 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1182 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1183 	cs->cs_preg[10] = ZSWR10_NRZ;
   1184 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1185 
   1186 	/*
   1187 	 * Output hardware flow control on the chip is horrendous: if
   1188 	 * carrier detect drops, the receiver is disabled.  Hence we
   1189 	 * can only do this when the carrier is on.
   1190 	 */
   1191 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1192 		tmp |= ZSWR3_HFC;
   1193 	cs->cs_preg[3] = tmp;
   1194 	cs->cs_preg[5] = tmp5;
   1195 
   1196 	/*
   1197 	 * If nothing is being transmitted, set up new current values,
   1198 	 * else mark them as pending.
   1199 	 */
   1200 	if(cs->cs_heldchange == 0) {
   1201 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1202 			cs->cs_heldtbc = cs->cs_tbc;
   1203 			cs->cs_tbc = 0;
   1204 			cs->cs_heldchange = 1;
   1205 		} else {
   1206 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1207 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1208 		}
   1209 	}
   1210 	splx(s);
   1211 	return (0);
   1212 }
   1213 
   1214 /*
   1215  * search for the best matching baudrate
   1216  */
   1217 static int
   1218 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1219 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1220 {
   1221 	int	bestdiff, bestbps, source;
   1222 
   1223 	bestdiff = bestbps = 0;
   1224 	unit = (unit & 1) << 2;
   1225 	for (source = 0; source < 4; ++source) {
   1226 		long	freq = zs_frequencies[unit + source];
   1227 		int	diff, bps, div, clkm, brgm, tcon;
   1228 
   1229 		bps = div = clkm = brgm = tcon = 0;
   1230 		switch (source) {
   1231 			case 0:	/* BRgen, PCLK */
   1232 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1233 				break;
   1234 			case 1:	/* BRgen, RTxC */
   1235 				brgm = ZSWR14_BAUD_ENA;
   1236 				break;
   1237 			case 2: /* RTxC */
   1238 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1239 				break;
   1240 			case 3: /* TRxC */
   1241 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1242 				break;
   1243 		}
   1244 		switch (source) {
   1245 			case 0:
   1246 			case 1:
   1247 				div  = ZSWR4_CLK_X16;
   1248 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1249 				tcon = BPS_TO_TCONST(freq, wanted);
   1250 				if (tcon < 0)
   1251 					tcon = 0;
   1252 				bps  = TCONST_TO_BPS(freq, tcon);
   1253 				break;
   1254 			case 2:
   1255 			case 3:
   1256 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1257 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1258 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1259 
   1260 				if (d1 < d2 && d1 < d3) {
   1261 					div = ZSWR4_CLK_X16;
   1262 					bps = b1;
   1263 				} else if (d2 < d3 && d2 < d1) {
   1264 					div = ZSWR4_CLK_X32;
   1265 					bps = b2;
   1266 				} else {
   1267 					div = ZSWR4_CLK_X64;
   1268 					bps = b3;
   1269 				}
   1270 				brgm = tcon = 0;
   1271 				break;
   1272 			}
   1273 		}
   1274 		diff = abs(bps - wanted);
   1275 		if (!source || diff < bestdiff) {
   1276 			*divisor   = div;
   1277 			*clockmode = clkm;
   1278 			*brgenmode = brgm;
   1279 			*timeconst = tcon;
   1280 			bestbps    = bps;
   1281 			bestdiff   = diff;
   1282 			if (diff == 0)
   1283 				break;
   1284 		}
   1285 	}
   1286 	/* Allow deviations upto 5% */
   1287 	if (20 * bestdiff > wanted)
   1288 		return -1;
   1289 	return bestbps;
   1290 }
   1291 
   1292 /*
   1293  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1294  * in transmission, the change is deferred.
   1295  */
   1296 static int
   1297 zs_modem(cs, bits, how)
   1298 struct zs_chanstate	*cs;
   1299 int			bits, how;
   1300 {
   1301 	int s, mbits;
   1302 
   1303 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1304 
   1305 	s = splzs();
   1306 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1307 
   1308 	switch(how) {
   1309 		case DMSET:
   1310 				mbits  = bits;
   1311 				break;
   1312 		case DMBIS:
   1313 				mbits |= bits;
   1314 				break;
   1315 		case DMBIC:
   1316 				mbits &= ~bits;
   1317 				break;
   1318 		case DMGET:
   1319 				splx(s);
   1320 				return(mbits);
   1321 	}
   1322 
   1323 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1324 	if(cs->cs_heldchange == 0) {
   1325 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1326 			cs->cs_heldtbc = cs->cs_tbc;
   1327 			cs->cs_tbc = 0;
   1328 			cs->cs_heldchange = 1;
   1329 		}
   1330 		else {
   1331 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1332 		}
   1333 	}
   1334 	splx(s);
   1335 	return(0);
   1336 }
   1337 
   1338 /*
   1339  * Write the given register set to the given zs channel in the proper order.
   1340  * The channel must not be transmitting at the time.  The receiver will
   1341  * be disabled for the time it takes to write all the registers.
   1342  */
   1343 static void
   1344 zs_loadchannelregs(zc, reg)
   1345 volatile struct zschan	*zc;
   1346 u_char			*reg;
   1347 {
   1348 	int i;
   1349 
   1350 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1351 	i = zc->zc_data;		/* drain fifo */
   1352 	i = zc->zc_data;
   1353 	i = zc->zc_data;
   1354 	ZS_WRITE(zc,  4, reg[4]);
   1355 	ZS_WRITE(zc, 10, reg[10]);
   1356 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1357 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1358 	ZS_WRITE(zc,  1, reg[1]);
   1359 	ZS_WRITE(zc,  9, reg[9]);
   1360 	ZS_WRITE(zc, 11, reg[11]);
   1361 	ZS_WRITE(zc, 12, reg[12]);
   1362 	ZS_WRITE(zc, 13, reg[13]);
   1363 	ZS_WRITE(zc, 14, reg[14]);
   1364 	ZS_WRITE(zc, 15, reg[15]);
   1365 	ZS_WRITE(zc,  3, reg[3]);
   1366 	ZS_WRITE(zc,  5, reg[5]);
   1367 }
   1368 #endif /* NZS > 1 */
   1369