zs.c revision 1.41 1 /* $NetBSD: zs.c,v 1.41 2003/08/07 16:27:02 agc Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 */
43
44 /*
45 * Copyright (c) 1995 L. Weppelman (Atari modifications)
46 *
47 * This software was developed by the Computer Systems Engineering group
48 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
49 * contributed to Berkeley.
50 *
51 *
52 * All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Lawrence Berkeley Laboratory.
56 *
57 * Redistribution and use in source and binary forms, with or without
58 * modification, are permitted provided that the following conditions
59 * are met:
60 * 1. Redistributions of source code must retain the above copyright
61 * notice, this list of conditions and the following disclaimer.
62 * 2. Redistributions in binary form must reproduce the above copyright
63 * notice, this list of conditions and the following disclaimer in the
64 * documentation and/or other materials provided with the distribution.
65 * 3. All advertising materials mentioning features or use of this software
66 * must display the following acknowledgement:
67 * This product includes software developed by the University of
68 * California, Berkeley and its contributors.
69 * 4. Neither the name of the University nor the names of its contributors
70 * may be used to endorse or promote products derived from this software
71 * without specific prior written permission.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 * SUCH DAMAGE.
84 *
85 * @(#)zs.c 8.1 (Berkeley) 7/19/93
86 */
87
88 /*
89 * Zilog Z8530 (ZSCC) driver.
90 *
91 * Runs two tty ports (modem2 and serial2) on zs0.
92 *
93 * This driver knows far too much about chip to usage mappings.
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.41 2003/08/07 16:27:02 agc Exp $");
98
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/proc.h>
102 #include <sys/device.h>
103 #include <sys/conf.h>
104 #include <sys/file.h>
105 #include <sys/ioctl.h>
106 #include <sys/malloc.h>
107 #include <sys/tty.h>
108 #include <sys/time.h>
109 #include <sys/kernel.h>
110 #include <sys/syslog.h>
111
112 #include <machine/cpu.h>
113 #include <machine/iomap.h>
114 #include <machine/scu.h>
115 #include <machine/mfp.h>
116 #include <atari/dev/ym2149reg.h>
117
118 #include <dev/ic/z8530reg.h>
119 #include <atari/dev/zsvar.h>
120 #include "zs.h"
121 #if NZS > 1
122 #error "This driver supports only 1 85C30!"
123 #endif
124
125 #if NZS > 0
126
127 #define PCLK (8053976) /* PCLK pin input clock rate */
128 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
129
130 #define splzs spl5
131
132 /*
133 * Software state per found chip.
134 */
135 struct zs_softc {
136 struct device zi_dev; /* base device */
137 volatile struct zsdevice *zi_zs; /* chip registers */
138 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
139 };
140
141 static u_char cb_scheduled = 0; /* Already asked for callback? */
142 /*
143 * Define the registers for a closed port
144 */
145 static u_char zs_init_regs[16] = {
146 /* 0 */ 0,
147 /* 1 */ 0,
148 /* 2 */ 0x60,
149 /* 3 */ 0,
150 /* 4 */ 0,
151 /* 5 */ 0,
152 /* 6 */ 0,
153 /* 7 */ 0,
154 /* 8 */ 0,
155 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
156 /* 10 */ ZSWR10_NRZ,
157 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
158 /* 12 */ 0,
159 /* 13 */ 0,
160 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
161 /* 15 */ 0
162 };
163
164 /*
165 * Define the machine dependant clock frequencies
166 * If BRgen feeds sender/receiver we always use a
167 * divisor 16, therefor the division by 16 can as
168 * well be done here.
169 */
170 static u_long zs_freqs_tt[] = {
171 /*
172 * Atari TT, RTxCB is generated by TT-MFP timer C,
173 * which is set to 307.2KHz during initialisation
174 * and never changed afterwards.
175 */
176 PCLK/16, /* BRgen, PCLK, divisor 16 */
177 229500, /* BRgen, RTxCA, divisor 16 */
178 3672000, /* RTxCA, from PCLK4 */
179 0, /* TRxCA, external */
180
181 PCLK/16, /* BRgen, PCLK, divisor 16 */
182 19200, /* BRgen, RTxCB, divisor 16 */
183 307200, /* RTxCB, from TT-MFP TCO */
184 2457600 /* TRxCB, from BCLK */
185 };
186
187 static u_long zs_freqs_falcon[] = {
188 /*
189 * Atari Falcon, XXX no specs available, this might be wrong
190 */
191 PCLK/16, /* BRgen, PCLK, divisor 16 */
192 229500, /* BRgen, RTxCA, divisor 16 */
193 3672000, /* RTxCA, ??? */
194 0, /* TRxCA, external */
195
196 PCLK/16, /* BRgen, PCLK, divisor 16 */
197 229500, /* BRgen, RTxCB, divisor 16 */
198 3672000, /* RTxCB, ??? */
199 2457600 /* TRxCB, ??? */
200 };
201
202 static u_long zs_freqs_hades[] = {
203 /*
204 * XXX: Channel-A unchecked!!!!!
205 */
206 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
207 229500, /* BRgen, RTxCA, divisor 16 */
208 3672000, /* RTxCA, from PCLK4 */
209 0, /* TRxCA, external */
210
211 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
212 235550, /* BRgen, RTxCB, divisor 16 */
213 3768800, /* RTxCB, 3.7688MHz */
214 3768800 /* TRxCB, 3.7688MHz */
215 };
216
217 static u_long zs_freqs_generic[] = {
218 /*
219 * other machines, assume only PCLK is available
220 */
221 PCLK/16, /* BRgen, PCLK, divisor 16 */
222 0, /* BRgen, RTxCA, divisor 16 */
223 0, /* RTxCA, unknown */
224 0, /* TRxCA, unknown */
225
226 PCLK/16, /* BRgen, PCLK, divisor 16 */
227 0, /* BRgen, RTxCB, divisor 16 */
228 0, /* RTxCB, unknown */
229 0 /* TRxCB, unknown */
230 };
231 static u_long *zs_frequencies;
232
233 /* Definition of the driver for autoconfig. */
234 static int zsmatch __P((struct device *, struct cfdata *, void *));
235 static void zsattach __P((struct device *, struct device *, void *));
236
237 CFATTACH_DECL(zs, sizeof(struct zs_softc),
238 zsmatch, zsattach, NULL, NULL);
239
240 extern struct cfdriver zs_cd;
241
242 /* {b,c}devsw[] function prototypes */
243 dev_type_open(zsopen);
244 dev_type_close(zsclose);
245 dev_type_read(zsread);
246 dev_type_write(zswrite);
247 dev_type_ioctl(zsioctl);
248 dev_type_stop(zsstop);
249 dev_type_tty(zstty);
250 dev_type_poll(zspoll);
251
252 const struct cdevsw zs_cdevsw = {
253 zsopen, zsclose, zsread, zswrite, zsioctl,
254 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
255 };
256
257 /* Interrupt handlers. */
258 int zshard __P((long));
259 static int zssoft __P((long));
260 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
261 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
262 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
263
264 static struct zs_chanstate *zslist;
265
266 /* Routines called from other code. */
267 static void zsstart __P((struct tty *));
268
269 /* Routines purely local to this driver. */
270 static void zsoverrun __P((int, long *, char *));
271 static int zsparam __P((struct tty *, struct termios *));
272 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
273 static int zs_modem __P((struct zs_chanstate *, int, int));
274 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
275 static void zs_shutdown __P((struct zs_chanstate *));
276
277 static int zsshortcuts; /* number of "shortcut" software interrupts */
278
279 static int
280 zsmatch(pdp, cfp, auxp)
281 struct device *pdp;
282 struct cfdata *cfp;
283 void *auxp;
284 {
285 static int zs_matched = 0;
286
287 if(strcmp("zs", auxp) || zs_matched)
288 return(0);
289 zs_matched = 1;
290 return(1);
291 }
292
293 /*
294 * Attach a found zs.
295 */
296 static void
297 zsattach(parent, dev, aux)
298 struct device *parent;
299 struct device *dev;
300 void *aux;
301 {
302 register struct zs_softc *zi;
303 register struct zs_chanstate *cs;
304 register volatile struct zsdevice *addr;
305 char tmp;
306
307 addr = (struct zsdevice *)AD_SCC;
308 zi = (struct zs_softc *)dev;
309 zi->zi_zs = addr;
310 cs = zi->zi_cs;
311
312 /*
313 * Get the command register into a known state.
314 */
315 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
316 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
317 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
318 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
319
320 /*
321 * Do a hardware reset.
322 */
323 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
324 delay(50000); /*enough ? */
325 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
326
327 /*
328 * Initialize both channels
329 */
330 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
331 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
332
333 if(machineid & ATARI_TT) {
334 /*
335 * ininitialise TT-MFP timer C: 307200Hz
336 * timer C and D share one control register:
337 * bits 0-2 control timer D
338 * bits 4-6 control timer C
339 */
340 int cr = MFP2->mf_tcdcr & 7;
341 MFP2->mf_tcdcr = cr; /* stop timer C */
342 MFP2->mf_tcdr = 1; /* counter 1 */
343 cr |= T_Q004 << 4; /* divisor 4 */
344 MFP2->mf_tcdcr = cr; /* start timer C */
345 /*
346 * enable scc related interrupts
347 */
348 SCU->vme_mask |= SCU_SCC;
349
350 zs_frequencies = zs_freqs_tt;
351 } else if (machineid & ATARI_FALCON) {
352 zs_frequencies = zs_freqs_falcon;
353 } else if (machineid & ATARI_HADES) {
354 zs_frequencies = zs_freqs_hades;
355 } else {
356 zs_frequencies = zs_freqs_generic;
357 }
358
359 /* link into interrupt list with order (A,B) (B=A+1) */
360 cs[0].cs_next = &cs[1];
361 cs[1].cs_next = zslist;
362 zslist = cs;
363
364 cs->cs_unit = 0;
365 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
366 cs++;
367 cs->cs_unit = 1;
368 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
369
370 printf(": serial2 on channel a and modem2 on channel b\n");
371 }
372
373 /*
374 * Open a zs serial port.
375 */
376 int
377 zsopen(dev, flags, mode, p)
378 dev_t dev;
379 int flags;
380 int mode;
381 struct proc *p;
382 {
383 register struct tty *tp;
384 register struct zs_chanstate *cs;
385 struct zs_softc *zi;
386 int unit = ZS_UNIT(dev);
387 int zs = unit >> 1;
388 int error, s;
389
390 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
391 return (ENXIO);
392 cs = &zi->zi_cs[unit & 1];
393
394 /*
395 * When port A (ser02) is selected on the TT, make sure
396 * the port is enabled.
397 */
398 if((machineid & ATARI_TT) && !(unit & 1))
399 ym2149_ser2(1);
400
401 if (cs->cs_rbuf == NULL) {
402 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
403 M_WAITOK);
404 }
405
406 tp = cs->cs_ttyp;
407 if(tp == NULL) {
408 cs->cs_ttyp = tp = ttymalloc();
409 tty_attach(tp);
410 tp->t_dev = dev;
411 tp->t_oproc = zsstart;
412 tp->t_param = zsparam;
413 }
414
415 if ((tp->t_state & TS_ISOPEN) &&
416 (tp->t_state & TS_XCLUDE) &&
417 p->p_ucred->cr_uid != 0)
418 return (EBUSY);
419
420 s = spltty();
421
422 /*
423 * Do the following iff this is a first open.
424 */
425 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
426 if(tp->t_ispeed == 0) {
427 tp->t_iflag = TTYDEF_IFLAG;
428 tp->t_oflag = TTYDEF_OFLAG;
429 tp->t_cflag = TTYDEF_CFLAG;
430 tp->t_lflag = TTYDEF_LFLAG;
431 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
432 }
433 ttychars(tp);
434 ttsetwater(tp);
435
436 (void)zsparam(tp, &tp->t_termios);
437
438 /*
439 * Turn on DTR. We must always do this, even if carrier is not
440 * present, because otherwise we'd have to use TIOCSDTR
441 * immediately after setting CLOCAL, which applications do not
442 * expect. We always assert DTR while the device is open
443 * unless explicitly requested to deassert it.
444 */
445 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
446 /* May never get a status intr. if DCD already on. -gwr */
447 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
448 tp->t_state |= TS_CARR_ON;
449 if(cs->cs_softcar)
450 tp->t_state |= TS_CARR_ON;
451 }
452
453 splx(s);
454
455 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
456 if (error)
457 goto bad;
458
459 error = tp->t_linesw->l_open(dev, tp);
460 if(error)
461 goto bad;
462 return (0);
463
464 bad:
465 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
466 /*
467 * We failed to open the device, and nobody else had it opened.
468 * Clean up the state as appropriate.
469 */
470 zs_shutdown(cs);
471 }
472 return(error);
473 }
474
475 /*
476 * Close a zs serial port.
477 */
478 int
479 zsclose(dev, flags, mode, p)
480 dev_t dev;
481 int flags;
482 int mode;
483 struct proc *p;
484 {
485 register struct zs_chanstate *cs;
486 register struct tty *tp;
487 struct zs_softc *zi;
488 int unit = ZS_UNIT(dev);
489
490 zi = zs_cd.cd_devs[unit >> 1];
491 cs = &zi->zi_cs[unit & 1];
492 tp = cs->cs_ttyp;
493
494 tp->t_linesw->l_close(tp, flags);
495 ttyclose(tp);
496
497 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
498 /*
499 * Although we got a last close, the device may still be in
500 * use; e.g. if this was the dialout node, and there are still
501 * processes waiting for carrier on the non-dialout node.
502 */
503 zs_shutdown(cs);
504 }
505 return (0);
506 }
507
508 /*
509 * Read/write zs serial port.
510 */
511 int
512 zsread(dev, uio, flags)
513 dev_t dev;
514 struct uio *uio;
515 int flags;
516 {
517 register struct zs_chanstate *cs;
518 register struct zs_softc *zi;
519 register struct tty *tp;
520 int unit;
521
522 unit = ZS_UNIT(dev);
523 zi = zs_cd.cd_devs[unit >> 1];
524 cs = &zi->zi_cs[unit & 1];
525 tp = cs->cs_ttyp;
526
527 return(tp->t_linesw->l_read(tp, uio, flags));
528 }
529
530 int
531 zswrite(dev, uio, flags)
532 dev_t dev;
533 struct uio *uio;
534 int flags;
535 {
536 register struct zs_chanstate *cs;
537 register struct zs_softc *zi;
538 register struct tty *tp;
539 int unit;
540
541 unit = ZS_UNIT(dev);
542 zi = zs_cd.cd_devs[unit >> 1];
543 cs = &zi->zi_cs[unit & 1];
544 tp = cs->cs_ttyp;
545
546 return(tp->t_linesw->l_write(tp, uio, flags));
547 }
548
549 int
550 zspoll(dev, events, p)
551 dev_t dev;
552 int events;
553 struct proc *p;
554 {
555 register struct zs_chanstate *cs;
556 register struct zs_softc *zi;
557 register struct tty *tp;
558 int unit;
559
560 unit = ZS_UNIT(dev);
561 zi = zs_cd.cd_devs[unit >> 1];
562 cs = &zi->zi_cs[unit & 1];
563 tp = cs->cs_ttyp;
564
565 return ((*tp->t_linesw->l_poll)(tp, events, p));
566 }
567
568 struct tty *
569 zstty(dev)
570 dev_t dev;
571 {
572 register struct zs_chanstate *cs;
573 register struct zs_softc *zi;
574 int unit;
575
576 unit = ZS_UNIT(dev);
577 zi = zs_cd.cd_devs[unit >> 1];
578 cs = &zi->zi_cs[unit & 1];
579 return(cs->cs_ttyp);
580 }
581
582 /*
583 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
584 * channels are kept in (A,B) pairs.
585 *
586 * Do just a little, then get out; set a software interrupt if more
587 * work is needed.
588 *
589 * We deliberately ignore the vectoring Zilog gives us, and match up
590 * only the number of `reset interrupt under service' operations, not
591 * the order.
592 */
593
594 int
595 zshard(sr)
596 long sr;
597 {
598 register struct zs_chanstate *a;
599 #define b (a + 1)
600 register volatile struct zschan *zc;
601 register int rr3, intflags = 0, v, i;
602
603 do {
604 intflags &= ~4;
605 for(a = zslist; a != NULL; a = b->cs_next) {
606 rr3 = ZS_READ(a->cs_zc, 3);
607 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
608 intflags |= 4|2;
609 zc = a->cs_zc;
610 i = a->cs_rbput;
611 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
612 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
613 intflags |= 1;
614 }
615 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
616 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
617 intflags |= 1;
618 }
619 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
620 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
621 intflags |= 1;
622 }
623 a->cs_rbput = i;
624 }
625 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
626 intflags |= 4|2;
627 zc = b->cs_zc;
628 i = b->cs_rbput;
629 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
630 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
631 intflags |= 1;
632 }
633 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
634 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
635 intflags |= 1;
636 }
637 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
638 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
639 intflags |= 1;
640 }
641 b->cs_rbput = i;
642 }
643 }
644 } while(intflags & 4);
645 #undef b
646
647 if(intflags & 1) {
648 if(BASEPRI(sr)) {
649 spl1();
650 zsshortcuts++;
651 return(zssoft(sr));
652 }
653 else if(!cb_scheduled) {
654 cb_scheduled++;
655 add_sicallback((si_farg)zssoft, 0, 0);
656 }
657 }
658 return(intflags & 2);
659 }
660
661 static int
662 zsrint(cs, zc)
663 register struct zs_chanstate *cs;
664 register volatile struct zschan *zc;
665 {
666 register int c;
667
668 /*
669 * First read the status, because read of the received char
670 * destroy the status of this char.
671 */
672 c = ZS_READ(zc, 1);
673 c |= (zc->zc_data << 8);
674
675 /* clear receive error & interrupt condition */
676 zc->zc_csr = ZSWR0_RESET_ERRORS;
677 zc->zc_csr = ZSWR0_CLR_INTR;
678
679 return(ZRING_MAKE(ZRING_RINT, c));
680 }
681
682 static int
683 zsxint(cs, zc)
684 register struct zs_chanstate *cs;
685 register volatile struct zschan *zc;
686 {
687 register int i = cs->cs_tbc;
688
689 if(i == 0) {
690 zc->zc_csr = ZSWR0_RESET_TXINT;
691 zc->zc_csr = ZSWR0_CLR_INTR;
692 return(ZRING_MAKE(ZRING_XINT, 0));
693 }
694 cs->cs_tbc = i - 1;
695 zc->zc_data = *cs->cs_tba++;
696 zc->zc_csr = ZSWR0_CLR_INTR;
697 return (0);
698 }
699
700 static int
701 zssint(cs, zc)
702 register struct zs_chanstate *cs;
703 register volatile struct zschan *zc;
704 {
705 register int rr0;
706
707 rr0 = zc->zc_csr;
708 zc->zc_csr = ZSWR0_RESET_STATUS;
709 zc->zc_csr = ZSWR0_CLR_INTR;
710 /*
711 * The chip's hardware flow control is, as noted in zsreg.h,
712 * busted---if the DCD line goes low the chip shuts off the
713 * receiver (!). If we want hardware CTS flow control but do
714 * not have it, and carrier is now on, turn HFC on; if we have
715 * HFC now but carrier has gone low, turn it off.
716 */
717 if(rr0 & ZSRR0_DCD) {
718 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
719 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
720 cs->cs_creg[3] |= ZSWR3_HFC;
721 ZS_WRITE(zc, 3, cs->cs_creg[3]);
722 }
723 }
724 else {
725 if (cs->cs_creg[3] & ZSWR3_HFC) {
726 cs->cs_creg[3] &= ~ZSWR3_HFC;
727 ZS_WRITE(zc, 3, cs->cs_creg[3]);
728 }
729 }
730 return(ZRING_MAKE(ZRING_SINT, rr0));
731 }
732
733 /*
734 * Print out a ring or fifo overrun error message.
735 */
736 static void
737 zsoverrun(unit, ptime, what)
738 int unit;
739 long *ptime;
740 char *what;
741 {
742
743 if(*ptime != time.tv_sec) {
744 *ptime = time.tv_sec;
745 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
746 (unit & 1) + 'a', what);
747 }
748 }
749
750 /*
751 * ZS software interrupt. Scan all channels for deferred interrupts.
752 */
753 int
754 zssoft(sr)
755 long sr;
756 {
757 register struct zs_chanstate *cs;
758 register volatile struct zschan *zc;
759 register struct linesw *line;
760 register struct tty *tp;
761 register int get, n, c, cc, unit, s;
762 int retval = 0;
763
764 cb_scheduled = 0;
765 s = spltty();
766 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
767 get = cs->cs_rbget;
768 again:
769 n = cs->cs_rbput; /* atomic */
770 if(get == n) /* nothing more on this line */
771 continue;
772 retval = 1;
773 unit = cs->cs_unit; /* set up to handle interrupts */
774 zc = cs->cs_zc;
775 tp = cs->cs_ttyp;
776 line = tp->t_linesw;
777 /*
778 * Compute the number of interrupts in the receive ring.
779 * If the count is overlarge, we lost some events, and
780 * must advance to the first valid one. It may get
781 * overwritten if more data are arriving, but this is
782 * too expensive to check and gains nothing (we already
783 * lost out; all we can do at this point is trade one
784 * kind of loss for another).
785 */
786 n -= get;
787 if(n > ZLRB_RING_SIZE) {
788 zsoverrun(unit, &cs->cs_rotime, "ring");
789 get += n - ZLRB_RING_SIZE;
790 n = ZLRB_RING_SIZE;
791 }
792 while(--n >= 0) {
793 /* race to keep ahead of incoming interrupts */
794 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
795 switch (ZRING_TYPE(c)) {
796
797 case ZRING_RINT:
798 c = ZRING_VALUE(c);
799 if(c & ZSRR1_DO)
800 zsoverrun(unit, &cs->cs_fotime, "fifo");
801 cc = c >> 8;
802 if(c & ZSRR1_FE)
803 cc |= TTY_FE;
804 if(c & ZSRR1_PE)
805 cc |= TTY_PE;
806 line->l_rint(cc, tp);
807 break;
808
809 case ZRING_XINT:
810 /*
811 * Transmit done: change registers and resume,
812 * or clear BUSY.
813 */
814 if(cs->cs_heldchange) {
815 int sps;
816
817 sps = splzs();
818 c = zc->zc_csr;
819 if((c & ZSRR0_DCD) == 0)
820 cs->cs_preg[3] &= ~ZSWR3_HFC;
821 bcopy((caddr_t)cs->cs_preg,
822 (caddr_t)cs->cs_creg, 16);
823 zs_loadchannelregs(zc, cs->cs_creg);
824 splx(sps);
825 cs->cs_heldchange = 0;
826 if(cs->cs_heldtbc
827 && (tp->t_state & TS_TTSTOP) == 0) {
828 cs->cs_tbc = cs->cs_heldtbc - 1;
829 zc->zc_data = *cs->cs_tba++;
830 goto again;
831 }
832 }
833 tp->t_state &= ~TS_BUSY;
834 if(tp->t_state & TS_FLUSH)
835 tp->t_state &= ~TS_FLUSH;
836 else ndflush(&tp->t_outq,cs->cs_tba
837 - (caddr_t)tp->t_outq.c_cf);
838 line->l_start(tp);
839 break;
840
841 case ZRING_SINT:
842 /*
843 * Status line change. HFC bit is run in
844 * hardware interrupt, to avoid locking
845 * at splzs here.
846 */
847 c = ZRING_VALUE(c);
848 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
849 cc = (c & ZSRR0_DCD) != 0;
850 if(line->l_modem(tp, cc) == 0)
851 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
852 cc ? DMBIS : DMBIC);
853 }
854 cs->cs_rr0 = c;
855 break;
856
857 default:
858 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
859 unit >> 1, (unit & 1) + 'a', c);
860 break;
861 }
862 }
863 cs->cs_rbget = get;
864 goto again;
865 }
866 splx(s);
867 return (retval);
868 }
869
870 int
871 zsioctl(dev, cmd, data, flag, p)
872 dev_t dev;
873 u_long cmd;
874 caddr_t data;
875 int flag;
876 struct proc *p;
877 {
878 int unit = ZS_UNIT(dev);
879 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
880 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
881 register int error, s;
882 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
883
884 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
885 if(error != EPASSTHROUGH)
886 return(error);
887
888 error = ttioctl(tp, cmd, data, flag, p);
889 if(error !=EPASSTHROUGH)
890 return (error);
891
892 switch (cmd) {
893 case TIOCSBRK:
894 s = splzs();
895 cs->cs_preg[5] |= ZSWR5_BREAK;
896 cs->cs_creg[5] |= ZSWR5_BREAK;
897 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
898 splx(s);
899 break;
900 case TIOCCBRK:
901 s = splzs();
902 cs->cs_preg[5] &= ~ZSWR5_BREAK;
903 cs->cs_creg[5] &= ~ZSWR5_BREAK;
904 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
905 splx(s);
906 break;
907 case TIOCGFLAGS: {
908 int bits = 0;
909
910 if(cs->cs_softcar)
911 bits |= TIOCFLAG_SOFTCAR;
912 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
913 bits |= TIOCFLAG_CLOCAL;
914 if(cs->cs_creg[3] & ZSWR3_HFC)
915 bits |= TIOCFLAG_CRTSCTS;
916 *(int *)data = bits;
917 break;
918 }
919 case TIOCSFLAGS: {
920 int userbits = 0;
921
922 error = suser(p->p_ucred, &p->p_acflag);
923 if(error != 0)
924 return (EPERM);
925
926 userbits = *(int *)data;
927
928 /*
929 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
930 # defaulting to software flow control.
931 */
932 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
933 return(EINVAL);
934 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
935 return(ENODEV);
936
937 s = splzs();
938 if((userbits & TIOCFLAG_SOFTCAR)) {
939 cs->cs_softcar = 1; /* turn on softcar */
940 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
941 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
942 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
943 }
944 else if(userbits & TIOCFLAG_CLOCAL) {
945 cs->cs_softcar = 0; /* turn off softcar */
946 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
947 cs->cs_creg[15] |= ZSWR15_DCD_IE;
948 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
949 tp->t_termios.c_cflag |= CLOCAL;
950 }
951 if(userbits & TIOCFLAG_CRTSCTS) {
952 cs->cs_preg[15] |= ZSWR15_CTS_IE;
953 cs->cs_creg[15] |= ZSWR15_CTS_IE;
954 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
955 cs->cs_preg[3] |= ZSWR3_HFC;
956 cs->cs_creg[3] |= ZSWR3_HFC;
957 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
958 tp->t_termios.c_cflag |= CRTSCTS;
959 }
960 else {
961 /* no mdmbuf, so we must want software flow control */
962 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
963 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
964 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
965 cs->cs_preg[3] &= ~ZSWR3_HFC;
966 cs->cs_creg[3] &= ~ZSWR3_HFC;
967 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
968 tp->t_termios.c_cflag &= ~CRTSCTS;
969 }
970 splx(s);
971 break;
972 }
973 case TIOCSDTR:
974 zs_modem(cs, ZSWR5_DTR, DMBIS);
975 break;
976 case TIOCCDTR:
977 zs_modem(cs, ZSWR5_DTR, DMBIC);
978 break;
979 case TIOCMGET:
980 zs_modem(cs, 0, DMGET);
981 break;
982 case TIOCMSET:
983 case TIOCMBIS:
984 case TIOCMBIC:
985 default:
986 return (EPASSTHROUGH);
987 }
988 return (0);
989 }
990
991 /*
992 * Start or restart transmission.
993 */
994 static void
995 zsstart(tp)
996 register struct tty *tp;
997 {
998 register struct zs_chanstate *cs;
999 register int s, nch;
1000 int unit = ZS_UNIT(tp->t_dev);
1001 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1002
1003 cs = &zi->zi_cs[unit & 1];
1004 s = spltty();
1005
1006 /*
1007 * If currently active or delaying, no need to do anything.
1008 */
1009 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1010 goto out;
1011
1012 /*
1013 * If there are sleepers, and output has drained below low
1014 * water mark, awaken.
1015 */
1016 if(tp->t_outq.c_cc <= tp->t_lowat) {
1017 if(tp->t_state & TS_ASLEEP) {
1018 tp->t_state &= ~TS_ASLEEP;
1019 wakeup((caddr_t)&tp->t_outq);
1020 }
1021 selwakeup(&tp->t_wsel);
1022 }
1023
1024 nch = ndqb(&tp->t_outq, 0); /* XXX */
1025 if(nch) {
1026 register char *p = tp->t_outq.c_cf;
1027
1028 /* mark busy, enable tx done interrupts, & send first byte */
1029 tp->t_state |= TS_BUSY;
1030 (void) splzs();
1031 cs->cs_preg[1] |= ZSWR1_TIE;
1032 cs->cs_creg[1] |= ZSWR1_TIE;
1033 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1034 cs->cs_zc->zc_data = *p;
1035 cs->cs_tba = p + 1;
1036 cs->cs_tbc = nch - 1;
1037 } else {
1038 /*
1039 * Nothing to send, turn off transmit done interrupts.
1040 * This is useful if something is doing polled output.
1041 */
1042 (void) splzs();
1043 cs->cs_preg[1] &= ~ZSWR1_TIE;
1044 cs->cs_creg[1] &= ~ZSWR1_TIE;
1045 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1046 }
1047 out:
1048 splx(s);
1049 }
1050
1051 /*
1052 * Stop output, e.g., for ^S or output flush.
1053 */
1054 void
1055 zsstop(tp, flag)
1056 register struct tty *tp;
1057 int flag;
1058 {
1059 register struct zs_chanstate *cs;
1060 register int s, unit = ZS_UNIT(tp->t_dev);
1061 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1062
1063 cs = &zi->zi_cs[unit & 1];
1064 s = splzs();
1065 if(tp->t_state & TS_BUSY) {
1066 /*
1067 * Device is transmitting; must stop it.
1068 */
1069 cs->cs_tbc = 0;
1070 if ((tp->t_state & TS_TTSTOP) == 0)
1071 tp->t_state |= TS_FLUSH;
1072 }
1073 splx(s);
1074 }
1075
1076 static void
1077 zs_shutdown(cs)
1078 struct zs_chanstate *cs;
1079 {
1080 struct tty *tp = cs->cs_ttyp;
1081 int s;
1082
1083 s = splzs();
1084
1085 /*
1086 * Hang up if necessary. Wait a bit, so the other side has time to
1087 * notice even if we immediately open the port again.
1088 */
1089 if(tp->t_cflag & HUPCL) {
1090 zs_modem(cs, 0, DMSET);
1091 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1092 }
1093
1094 /* Clear any break condition set with TIOCSBRK. */
1095 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1096 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1097 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1098 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1099 }
1100
1101 /*
1102 * Drop all lines and cancel interrupts
1103 */
1104 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1105 splx(s);
1106 }
1107
1108 /*
1109 * Set ZS tty parameters from termios.
1110 *
1111 * This routine makes use of the fact that only registers
1112 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1113 */
1114 static int
1115 zsparam(tp, t)
1116 register struct tty *tp;
1117 register struct termios *t;
1118 {
1119 int unit = ZS_UNIT(tp->t_dev);
1120 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1121 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1122 int cdiv, clkm, brgm, tcon;
1123 register int tmp, tmp5, cflag, s;
1124
1125 tmp = t->c_ospeed;
1126 tmp5 = t->c_ispeed;
1127 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1128 return(EINVAL);
1129 if(tmp == 0) {
1130 /* stty 0 => drop DTR and RTS */
1131 zs_modem(cs, 0, DMSET);
1132 return(0);
1133 }
1134 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1135 if (tmp < 0)
1136 return(EINVAL);
1137 tp->t_ispeed = tp->t_ospeed = tmp;
1138
1139 cflag = tp->t_cflag = t->c_cflag;
1140 if (cflag & CSTOPB)
1141 cdiv |= ZSWR4_TWOSB;
1142 else
1143 cdiv |= ZSWR4_ONESB;
1144 if (!(cflag & PARODD))
1145 cdiv |= ZSWR4_EVENP;
1146 if (cflag & PARENB)
1147 cdiv |= ZSWR4_PARENB;
1148
1149 switch(cflag & CSIZE) {
1150 case CS5:
1151 tmp = ZSWR3_RX_5;
1152 tmp5 = ZSWR5_TX_5;
1153 break;
1154 case CS6:
1155 tmp = ZSWR3_RX_6;
1156 tmp5 = ZSWR5_TX_6;
1157 break;
1158 case CS7:
1159 tmp = ZSWR3_RX_7;
1160 tmp5 = ZSWR5_TX_7;
1161 break;
1162 case CS8:
1163 default:
1164 tmp = ZSWR3_RX_8;
1165 tmp5 = ZSWR5_TX_8;
1166 break;
1167 }
1168 tmp |= ZSWR3_RX_ENABLE;
1169 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1170
1171 /*
1172 * Block interrupts so that state will not
1173 * be altered until we are done setting it up.
1174 */
1175 s = splzs();
1176 cs->cs_preg[4] = cdiv;
1177 cs->cs_preg[11] = clkm;
1178 cs->cs_preg[12] = tcon;
1179 cs->cs_preg[13] = tcon >> 8;
1180 cs->cs_preg[14] = brgm;
1181 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1182 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1183 cs->cs_preg[10] = ZSWR10_NRZ;
1184 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1185
1186 /*
1187 * Output hardware flow control on the chip is horrendous: if
1188 * carrier detect drops, the receiver is disabled. Hence we
1189 * can only do this when the carrier is on.
1190 */
1191 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1192 tmp |= ZSWR3_HFC;
1193 cs->cs_preg[3] = tmp;
1194 cs->cs_preg[5] = tmp5;
1195
1196 /*
1197 * If nothing is being transmitted, set up new current values,
1198 * else mark them as pending.
1199 */
1200 if(cs->cs_heldchange == 0) {
1201 if (cs->cs_ttyp->t_state & TS_BUSY) {
1202 cs->cs_heldtbc = cs->cs_tbc;
1203 cs->cs_tbc = 0;
1204 cs->cs_heldchange = 1;
1205 } else {
1206 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1207 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1208 }
1209 }
1210 splx(s);
1211 return (0);
1212 }
1213
1214 /*
1215 * search for the best matching baudrate
1216 */
1217 static int
1218 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1219 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1220 {
1221 int bestdiff, bestbps, source;
1222
1223 bestdiff = bestbps = 0;
1224 unit = (unit & 1) << 2;
1225 for (source = 0; source < 4; ++source) {
1226 long freq = zs_frequencies[unit + source];
1227 int diff, bps, div, clkm, brgm, tcon;
1228
1229 bps = div = clkm = brgm = tcon = 0;
1230 switch (source) {
1231 case 0: /* BRgen, PCLK */
1232 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1233 break;
1234 case 1: /* BRgen, RTxC */
1235 brgm = ZSWR14_BAUD_ENA;
1236 break;
1237 case 2: /* RTxC */
1238 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1239 break;
1240 case 3: /* TRxC */
1241 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1242 break;
1243 }
1244 switch (source) {
1245 case 0:
1246 case 1:
1247 div = ZSWR4_CLK_X16;
1248 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1249 tcon = BPS_TO_TCONST(freq, wanted);
1250 if (tcon < 0)
1251 tcon = 0;
1252 bps = TCONST_TO_BPS(freq, tcon);
1253 break;
1254 case 2:
1255 case 3:
1256 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1257 int b2 = freq / 32, d2 = abs(b2 - wanted);
1258 int b3 = freq / 64, d3 = abs(b3 - wanted);
1259
1260 if (d1 < d2 && d1 < d3) {
1261 div = ZSWR4_CLK_X16;
1262 bps = b1;
1263 } else if (d2 < d3 && d2 < d1) {
1264 div = ZSWR4_CLK_X32;
1265 bps = b2;
1266 } else {
1267 div = ZSWR4_CLK_X64;
1268 bps = b3;
1269 }
1270 brgm = tcon = 0;
1271 break;
1272 }
1273 }
1274 diff = abs(bps - wanted);
1275 if (!source || diff < bestdiff) {
1276 *divisor = div;
1277 *clockmode = clkm;
1278 *brgenmode = brgm;
1279 *timeconst = tcon;
1280 bestbps = bps;
1281 bestdiff = diff;
1282 if (diff == 0)
1283 break;
1284 }
1285 }
1286 /* Allow deviations upto 5% */
1287 if (20 * bestdiff > wanted)
1288 return -1;
1289 return bestbps;
1290 }
1291
1292 /*
1293 * Raise or lower modem control (DTR/RTS) signals. If a character is
1294 * in transmission, the change is deferred.
1295 */
1296 static int
1297 zs_modem(cs, bits, how)
1298 struct zs_chanstate *cs;
1299 int bits, how;
1300 {
1301 int s, mbits;
1302
1303 bits &= ZSWR5_DTR | ZSWR5_RTS;
1304
1305 s = splzs();
1306 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1307
1308 switch(how) {
1309 case DMSET:
1310 mbits = bits;
1311 break;
1312 case DMBIS:
1313 mbits |= bits;
1314 break;
1315 case DMBIC:
1316 mbits &= ~bits;
1317 break;
1318 case DMGET:
1319 splx(s);
1320 return(mbits);
1321 }
1322
1323 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1324 if(cs->cs_heldchange == 0) {
1325 if(cs->cs_ttyp->t_state & TS_BUSY) {
1326 cs->cs_heldtbc = cs->cs_tbc;
1327 cs->cs_tbc = 0;
1328 cs->cs_heldchange = 1;
1329 }
1330 else {
1331 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1332 }
1333 }
1334 splx(s);
1335 return(0);
1336 }
1337
1338 /*
1339 * Write the given register set to the given zs channel in the proper order.
1340 * The channel must not be transmitting at the time. The receiver will
1341 * be disabled for the time it takes to write all the registers.
1342 */
1343 static void
1344 zs_loadchannelregs(zc, reg)
1345 volatile struct zschan *zc;
1346 u_char *reg;
1347 {
1348 int i;
1349
1350 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1351 i = zc->zc_data; /* drain fifo */
1352 i = zc->zc_data;
1353 i = zc->zc_data;
1354 ZS_WRITE(zc, 4, reg[4]);
1355 ZS_WRITE(zc, 10, reg[10]);
1356 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1357 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1358 ZS_WRITE(zc, 1, reg[1]);
1359 ZS_WRITE(zc, 9, reg[9]);
1360 ZS_WRITE(zc, 11, reg[11]);
1361 ZS_WRITE(zc, 12, reg[12]);
1362 ZS_WRITE(zc, 13, reg[13]);
1363 ZS_WRITE(zc, 14, reg[14]);
1364 ZS_WRITE(zc, 15, reg[15]);
1365 ZS_WRITE(zc, 3, reg[3]);
1366 ZS_WRITE(zc, 5, reg[5]);
1367 }
1368 #endif /* NZS > 1 */
1369