zs.c revision 1.47 1 /* $NetBSD: zs.c,v 1.47 2006/05/14 21:55:10 elad Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 */
43
44 /*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of The NetBSD Foundation nor the names of its
60 * contributors may be used to endorse or promote products derived
61 * from this software without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
64 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 /*
77 * Zilog Z8530 (ZSCC) driver.
78 *
79 * Runs two tty ports (modem2 and serial2) on zs0.
80 *
81 * This driver knows far too much about chip to usage mappings.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.47 2006/05/14 21:55:10 elad Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/device.h>
91 #include <sys/conf.h>
92 #include <sys/file.h>
93 #include <sys/ioctl.h>
94 #include <sys/malloc.h>
95 #include <sys/tty.h>
96 #include <sys/time.h>
97 #include <sys/kernel.h>
98 #include <sys/syslog.h>
99 #include <sys/kauth.h>
100
101 #include <machine/cpu.h>
102 #include <machine/iomap.h>
103 #include <machine/scu.h>
104 #include <machine/mfp.h>
105 #include <atari/dev/ym2149reg.h>
106
107 #include <dev/ic/z8530reg.h>
108 #include <atari/dev/zsvar.h>
109 #include "zs.h"
110 #if NZS > 1
111 #error "This driver supports only 1 85C30!"
112 #endif
113
114 #if NZS > 0
115
116 #define PCLK (8053976) /* PCLK pin input clock rate */
117 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
118
119 #define splzs spl5
120
121 /*
122 * Software state per found chip.
123 */
124 struct zs_softc {
125 struct device zi_dev; /* base device */
126 volatile struct zsdevice *zi_zs; /* chip registers */
127 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
128 };
129
130 static u_char cb_scheduled = 0; /* Already asked for callback? */
131 /*
132 * Define the registers for a closed port
133 */
134 static u_char zs_init_regs[16] = {
135 /* 0 */ 0,
136 /* 1 */ 0,
137 /* 2 */ 0x60,
138 /* 3 */ 0,
139 /* 4 */ 0,
140 /* 5 */ 0,
141 /* 6 */ 0,
142 /* 7 */ 0,
143 /* 8 */ 0,
144 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
145 /* 10 */ ZSWR10_NRZ,
146 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
147 /* 12 */ 0,
148 /* 13 */ 0,
149 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
150 /* 15 */ 0
151 };
152
153 /*
154 * Define the machine dependant clock frequencies
155 * If BRgen feeds sender/receiver we always use a
156 * divisor 16, therefor the division by 16 can as
157 * well be done here.
158 */
159 static u_long zs_freqs_tt[] = {
160 /*
161 * Atari TT, RTxCB is generated by TT-MFP timer C,
162 * which is set to 307.2 kHz during initialisation
163 * and never changed afterwards.
164 */
165 PCLK/16, /* BRgen, PCLK, divisor 16 */
166 229500, /* BRgen, RTxCA, divisor 16 */
167 3672000, /* RTxCA, from PCLK4 */
168 0, /* TRxCA, external */
169
170 PCLK/16, /* BRgen, PCLK, divisor 16 */
171 19200, /* BRgen, RTxCB, divisor 16 */
172 307200, /* RTxCB, from TT-MFP TCO */
173 2457600 /* TRxCB, from BCLK */
174 };
175
176 static u_long zs_freqs_falcon[] = {
177 /*
178 * Atari Falcon, XXX no specs available, this might be wrong
179 */
180 PCLK/16, /* BRgen, PCLK, divisor 16 */
181 229500, /* BRgen, RTxCA, divisor 16 */
182 3672000, /* RTxCA, ??? */
183 0, /* TRxCA, external */
184
185 PCLK/16, /* BRgen, PCLK, divisor 16 */
186 229500, /* BRgen, RTxCB, divisor 16 */
187 3672000, /* RTxCB, ??? */
188 2457600 /* TRxCB, ??? */
189 };
190
191 static u_long zs_freqs_hades[] = {
192 /*
193 * XXX: Channel-A unchecked!!!!!
194 */
195 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
196 229500, /* BRgen, RTxCA, divisor 16 */
197 3672000, /* RTxCA, from PCLK4 */
198 0, /* TRxCA, external */
199
200 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
201 235550, /* BRgen, RTxCB, divisor 16 */
202 3768800, /* RTxCB, 3.7688MHz */
203 3768800 /* TRxCB, 3.7688MHz */
204 };
205
206 static u_long zs_freqs_generic[] = {
207 /*
208 * other machines, assume only PCLK is available
209 */
210 PCLK/16, /* BRgen, PCLK, divisor 16 */
211 0, /* BRgen, RTxCA, divisor 16 */
212 0, /* RTxCA, unknown */
213 0, /* TRxCA, unknown */
214
215 PCLK/16, /* BRgen, PCLK, divisor 16 */
216 0, /* BRgen, RTxCB, divisor 16 */
217 0, /* RTxCB, unknown */
218 0 /* TRxCB, unknown */
219 };
220 static u_long *zs_frequencies;
221
222 /* Definition of the driver for autoconfig. */
223 static int zsmatch __P((struct device *, struct cfdata *, void *));
224 static void zsattach __P((struct device *, struct device *, void *));
225
226 CFATTACH_DECL(zs, sizeof(struct zs_softc),
227 zsmatch, zsattach, NULL, NULL);
228
229 extern struct cfdriver zs_cd;
230
231 /* {b,c}devsw[] function prototypes */
232 dev_type_open(zsopen);
233 dev_type_close(zsclose);
234 dev_type_read(zsread);
235 dev_type_write(zswrite);
236 dev_type_ioctl(zsioctl);
237 dev_type_stop(zsstop);
238 dev_type_tty(zstty);
239 dev_type_poll(zspoll);
240
241 const struct cdevsw zs_cdevsw = {
242 zsopen, zsclose, zsread, zswrite, zsioctl,
243 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
244 };
245
246 /* Interrupt handlers. */
247 int zshard __P((long));
248 static int zssoft __P((long));
249 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
250 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
251 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
252
253 static struct zs_chanstate *zslist;
254
255 /* Routines called from other code. */
256 static void zsstart __P((struct tty *));
257
258 /* Routines purely local to this driver. */
259 static void zsoverrun __P((int, long *, const char *));
260 static int zsparam __P((struct tty *, struct termios *));
261 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
262 static int zs_modem __P((struct zs_chanstate *, int, int));
263 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
264 static void zs_shutdown __P((struct zs_chanstate *));
265
266 static int zsshortcuts; /* number of "shortcut" software interrupts */
267
268 static int
269 zsmatch(pdp, cfp, auxp)
270 struct device *pdp;
271 struct cfdata *cfp;
272 void *auxp;
273 {
274 static int zs_matched = 0;
275
276 if(strcmp("zs", auxp) || zs_matched)
277 return(0);
278 zs_matched = 1;
279 return(1);
280 }
281
282 /*
283 * Attach a found zs.
284 */
285 static void
286 zsattach(parent, dev, aux)
287 struct device *parent;
288 struct device *dev;
289 void *aux;
290 {
291 register struct zs_softc *zi;
292 register struct zs_chanstate *cs;
293 register volatile struct zsdevice *addr;
294 char tmp;
295
296 addr = (struct zsdevice *)AD_SCC;
297 zi = (struct zs_softc *)dev;
298 zi->zi_zs = addr;
299 cs = zi->zi_cs;
300
301 /*
302 * Get the command register into a known state.
303 */
304 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
305 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
306 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
307 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
308
309 /*
310 * Do a hardware reset.
311 */
312 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
313 delay(50000); /*enough ? */
314 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
315
316 /*
317 * Initialize both channels
318 */
319 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
320 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
321
322 if(machineid & ATARI_TT) {
323 /*
324 * ininitialise TT-MFP timer C: 307200Hz
325 * timer C and D share one control register:
326 * bits 0-2 control timer D
327 * bits 4-6 control timer C
328 */
329 int cr = MFP2->mf_tcdcr & 7;
330 MFP2->mf_tcdcr = cr; /* stop timer C */
331 MFP2->mf_tcdr = 1; /* counter 1 */
332 cr |= T_Q004 << 4; /* divisor 4 */
333 MFP2->mf_tcdcr = cr; /* start timer C */
334 /*
335 * enable scc related interrupts
336 */
337 SCU->vme_mask |= SCU_SCC;
338
339 zs_frequencies = zs_freqs_tt;
340 } else if (machineid & ATARI_FALCON) {
341 zs_frequencies = zs_freqs_falcon;
342 } else if (machineid & ATARI_HADES) {
343 zs_frequencies = zs_freqs_hades;
344 } else {
345 zs_frequencies = zs_freqs_generic;
346 }
347
348 /* link into interrupt list with order (A,B) (B=A+1) */
349 cs[0].cs_next = &cs[1];
350 cs[1].cs_next = zslist;
351 zslist = cs;
352
353 cs->cs_unit = 0;
354 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
355 cs++;
356 cs->cs_unit = 1;
357 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
358
359 printf(": serial2 on channel a and modem2 on channel b\n");
360 }
361
362 /*
363 * Open a zs serial port.
364 */
365 int
366 zsopen(dev, flags, mode, l)
367 dev_t dev;
368 int flags;
369 int mode;
370 struct lwp *l;
371 {
372 register struct tty *tp;
373 register struct zs_chanstate *cs;
374 struct zs_softc *zi;
375 int unit = ZS_UNIT(dev);
376 int zs = unit >> 1;
377 int error, s;
378
379 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
380 return (ENXIO);
381 cs = &zi->zi_cs[unit & 1];
382
383 /*
384 * When port A (ser02) is selected on the TT, make sure
385 * the port is enabled.
386 */
387 if((machineid & ATARI_TT) && !(unit & 1))
388 ym2149_ser2(1);
389
390 if (cs->cs_rbuf == NULL) {
391 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
392 M_WAITOK);
393 }
394
395 tp = cs->cs_ttyp;
396 if(tp == NULL) {
397 cs->cs_ttyp = tp = ttymalloc();
398 tty_attach(tp);
399 tp->t_dev = dev;
400 tp->t_oproc = zsstart;
401 tp->t_param = zsparam;
402 }
403
404 if ((tp->t_state & TS_ISOPEN) &&
405 (tp->t_state & TS_XCLUDE) &&
406 kauth_authorize_generic(l->l_proc->p_cred, KAUTH_GENERIC_ISSUSER, &l->l_proc->p_acflag) != 0)
407 return (EBUSY);
408
409 s = spltty();
410
411 /*
412 * Do the following iff this is a first open.
413 */
414 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
415 if(tp->t_ispeed == 0) {
416 tp->t_iflag = TTYDEF_IFLAG;
417 tp->t_oflag = TTYDEF_OFLAG;
418 tp->t_cflag = TTYDEF_CFLAG;
419 tp->t_lflag = TTYDEF_LFLAG;
420 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
421 }
422 ttychars(tp);
423 ttsetwater(tp);
424
425 (void)zsparam(tp, &tp->t_termios);
426
427 /*
428 * Turn on DTR. We must always do this, even if carrier is not
429 * present, because otherwise we'd have to use TIOCSDTR
430 * immediately after setting CLOCAL, which applications do not
431 * expect. We always assert DTR while the device is open
432 * unless explicitly requested to deassert it.
433 */
434 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
435 /* May never get a status intr. if DCD already on. -gwr */
436 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
437 tp->t_state |= TS_CARR_ON;
438 if(cs->cs_softcar)
439 tp->t_state |= TS_CARR_ON;
440 }
441
442 splx(s);
443
444 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
445 if (error)
446 goto bad;
447
448 error = tp->t_linesw->l_open(dev, tp);
449 if(error)
450 goto bad;
451 return (0);
452
453 bad:
454 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
455 /*
456 * We failed to open the device, and nobody else had it opened.
457 * Clean up the state as appropriate.
458 */
459 zs_shutdown(cs);
460 }
461 return(error);
462 }
463
464 /*
465 * Close a zs serial port.
466 */
467 int
468 zsclose(dev, flags, mode, l)
469 dev_t dev;
470 int flags;
471 int mode;
472 struct lwp *l;
473 {
474 register struct zs_chanstate *cs;
475 register struct tty *tp;
476 struct zs_softc *zi;
477 int unit = ZS_UNIT(dev);
478
479 zi = zs_cd.cd_devs[unit >> 1];
480 cs = &zi->zi_cs[unit & 1];
481 tp = cs->cs_ttyp;
482
483 tp->t_linesw->l_close(tp, flags);
484 ttyclose(tp);
485
486 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
487 /*
488 * Although we got a last close, the device may still be in
489 * use; e.g. if this was the dialout node, and there are still
490 * processes waiting for carrier on the non-dialout node.
491 */
492 zs_shutdown(cs);
493 }
494 return (0);
495 }
496
497 /*
498 * Read/write zs serial port.
499 */
500 int
501 zsread(dev, uio, flags)
502 dev_t dev;
503 struct uio *uio;
504 int flags;
505 {
506 register struct zs_chanstate *cs;
507 register struct zs_softc *zi;
508 register struct tty *tp;
509 int unit;
510
511 unit = ZS_UNIT(dev);
512 zi = zs_cd.cd_devs[unit >> 1];
513 cs = &zi->zi_cs[unit & 1];
514 tp = cs->cs_ttyp;
515
516 return(tp->t_linesw->l_read(tp, uio, flags));
517 }
518
519 int
520 zswrite(dev, uio, flags)
521 dev_t dev;
522 struct uio *uio;
523 int flags;
524 {
525 register struct zs_chanstate *cs;
526 register struct zs_softc *zi;
527 register struct tty *tp;
528 int unit;
529
530 unit = ZS_UNIT(dev);
531 zi = zs_cd.cd_devs[unit >> 1];
532 cs = &zi->zi_cs[unit & 1];
533 tp = cs->cs_ttyp;
534
535 return(tp->t_linesw->l_write(tp, uio, flags));
536 }
537
538 int
539 zspoll(dev, events, l)
540 dev_t dev;
541 int events;
542 struct lwp *l;
543 {
544 register struct zs_chanstate *cs;
545 register struct zs_softc *zi;
546 register struct tty *tp;
547 int unit;
548
549 unit = ZS_UNIT(dev);
550 zi = zs_cd.cd_devs[unit >> 1];
551 cs = &zi->zi_cs[unit & 1];
552 tp = cs->cs_ttyp;
553
554 return ((*tp->t_linesw->l_poll)(tp, events, l));
555 }
556
557 struct tty *
558 zstty(dev)
559 dev_t dev;
560 {
561 register struct zs_chanstate *cs;
562 register struct zs_softc *zi;
563 int unit;
564
565 unit = ZS_UNIT(dev);
566 zi = zs_cd.cd_devs[unit >> 1];
567 cs = &zi->zi_cs[unit & 1];
568 return(cs->cs_ttyp);
569 }
570
571 /*
572 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
573 * channels are kept in (A,B) pairs.
574 *
575 * Do just a little, then get out; set a software interrupt if more
576 * work is needed.
577 *
578 * We deliberately ignore the vectoring Zilog gives us, and match up
579 * only the number of `reset interrupt under service' operations, not
580 * the order.
581 */
582
583 int
584 zshard(sr)
585 long sr;
586 {
587 register struct zs_chanstate *a;
588 #define b (a + 1)
589 register volatile struct zschan *zc;
590 register int rr3, intflags = 0, v, i;
591
592 do {
593 intflags &= ~4;
594 for(a = zslist; a != NULL; a = b->cs_next) {
595 rr3 = ZS_READ(a->cs_zc, 3);
596 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
597 intflags |= 4|2;
598 zc = a->cs_zc;
599 i = a->cs_rbput;
600 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
601 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
602 intflags |= 1;
603 }
604 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
605 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
606 intflags |= 1;
607 }
608 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
609 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
610 intflags |= 1;
611 }
612 a->cs_rbput = i;
613 }
614 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
615 intflags |= 4|2;
616 zc = b->cs_zc;
617 i = b->cs_rbput;
618 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
619 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
620 intflags |= 1;
621 }
622 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
623 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
624 intflags |= 1;
625 }
626 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
627 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
628 intflags |= 1;
629 }
630 b->cs_rbput = i;
631 }
632 }
633 } while(intflags & 4);
634 #undef b
635
636 if(intflags & 1) {
637 if(BASEPRI(sr)) {
638 spl1();
639 zsshortcuts++;
640 return(zssoft(sr));
641 }
642 else if(!cb_scheduled) {
643 cb_scheduled++;
644 add_sicallback((si_farg)zssoft, 0, 0);
645 }
646 }
647 return(intflags & 2);
648 }
649
650 static int
651 zsrint(cs, zc)
652 register struct zs_chanstate *cs;
653 register volatile struct zschan *zc;
654 {
655 register int c;
656
657 /*
658 * First read the status, because read of the received char
659 * destroy the status of this char.
660 */
661 c = ZS_READ(zc, 1);
662 c |= (zc->zc_data << 8);
663
664 /* clear receive error & interrupt condition */
665 zc->zc_csr = ZSWR0_RESET_ERRORS;
666 zc->zc_csr = ZSWR0_CLR_INTR;
667
668 return(ZRING_MAKE(ZRING_RINT, c));
669 }
670
671 static int
672 zsxint(cs, zc)
673 register struct zs_chanstate *cs;
674 register volatile struct zschan *zc;
675 {
676 register int i = cs->cs_tbc;
677
678 if(i == 0) {
679 zc->zc_csr = ZSWR0_RESET_TXINT;
680 zc->zc_csr = ZSWR0_CLR_INTR;
681 return(ZRING_MAKE(ZRING_XINT, 0));
682 }
683 cs->cs_tbc = i - 1;
684 zc->zc_data = *cs->cs_tba++;
685 zc->zc_csr = ZSWR0_CLR_INTR;
686 return (0);
687 }
688
689 static int
690 zssint(cs, zc)
691 register struct zs_chanstate *cs;
692 register volatile struct zschan *zc;
693 {
694 register int rr0;
695
696 rr0 = zc->zc_csr;
697 zc->zc_csr = ZSWR0_RESET_STATUS;
698 zc->zc_csr = ZSWR0_CLR_INTR;
699 /*
700 * The chip's hardware flow control is, as noted in zsreg.h,
701 * busted---if the DCD line goes low the chip shuts off the
702 * receiver (!). If we want hardware CTS flow control but do
703 * not have it, and carrier is now on, turn HFC on; if we have
704 * HFC now but carrier has gone low, turn it off.
705 */
706 if(rr0 & ZSRR0_DCD) {
707 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
708 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
709 cs->cs_creg[3] |= ZSWR3_HFC;
710 ZS_WRITE(zc, 3, cs->cs_creg[3]);
711 }
712 }
713 else {
714 if (cs->cs_creg[3] & ZSWR3_HFC) {
715 cs->cs_creg[3] &= ~ZSWR3_HFC;
716 ZS_WRITE(zc, 3, cs->cs_creg[3]);
717 }
718 }
719 return(ZRING_MAKE(ZRING_SINT, rr0));
720 }
721
722 /*
723 * Print out a ring or fifo overrun error message.
724 */
725 static void
726 zsoverrun(unit, ptime, what)
727 int unit;
728 long *ptime;
729 const char *what;
730 {
731
732 if(*ptime != time.tv_sec) {
733 *ptime = time.tv_sec;
734 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
735 (unit & 1) + 'a', what);
736 }
737 }
738
739 /*
740 * ZS software interrupt. Scan all channels for deferred interrupts.
741 */
742 int
743 zssoft(sr)
744 long sr;
745 {
746 register struct zs_chanstate *cs;
747 register volatile struct zschan *zc;
748 register struct linesw *line;
749 register struct tty *tp;
750 register int get, n, c, cc, unit, s;
751 int retval = 0;
752
753 cb_scheduled = 0;
754 s = spltty();
755 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
756 get = cs->cs_rbget;
757 again:
758 n = cs->cs_rbput; /* atomic */
759 if(get == n) /* nothing more on this line */
760 continue;
761 retval = 1;
762 unit = cs->cs_unit; /* set up to handle interrupts */
763 zc = cs->cs_zc;
764 tp = cs->cs_ttyp;
765 line = tp->t_linesw;
766 /*
767 * Compute the number of interrupts in the receive ring.
768 * If the count is overlarge, we lost some events, and
769 * must advance to the first valid one. It may get
770 * overwritten if more data are arriving, but this is
771 * too expensive to check and gains nothing (we already
772 * lost out; all we can do at this point is trade one
773 * kind of loss for another).
774 */
775 n -= get;
776 if(n > ZLRB_RING_SIZE) {
777 zsoverrun(unit, &cs->cs_rotime, "ring");
778 get += n - ZLRB_RING_SIZE;
779 n = ZLRB_RING_SIZE;
780 }
781 while(--n >= 0) {
782 /* race to keep ahead of incoming interrupts */
783 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
784 switch (ZRING_TYPE(c)) {
785
786 case ZRING_RINT:
787 c = ZRING_VALUE(c);
788 if(c & ZSRR1_DO)
789 zsoverrun(unit, &cs->cs_fotime, "fifo");
790 cc = c >> 8;
791 if(c & ZSRR1_FE)
792 cc |= TTY_FE;
793 if(c & ZSRR1_PE)
794 cc |= TTY_PE;
795 line->l_rint(cc, tp);
796 break;
797
798 case ZRING_XINT:
799 /*
800 * Transmit done: change registers and resume,
801 * or clear BUSY.
802 */
803 if(cs->cs_heldchange) {
804 int sps;
805
806 sps = splzs();
807 c = zc->zc_csr;
808 if((c & ZSRR0_DCD) == 0)
809 cs->cs_preg[3] &= ~ZSWR3_HFC;
810 bcopy((caddr_t)cs->cs_preg,
811 (caddr_t)cs->cs_creg, 16);
812 zs_loadchannelregs(zc, cs->cs_creg);
813 splx(sps);
814 cs->cs_heldchange = 0;
815 if(cs->cs_heldtbc
816 && (tp->t_state & TS_TTSTOP) == 0) {
817 cs->cs_tbc = cs->cs_heldtbc - 1;
818 zc->zc_data = *cs->cs_tba++;
819 goto again;
820 }
821 }
822 tp->t_state &= ~TS_BUSY;
823 if(tp->t_state & TS_FLUSH)
824 tp->t_state &= ~TS_FLUSH;
825 else ndflush(&tp->t_outq,cs->cs_tba
826 - (caddr_t)tp->t_outq.c_cf);
827 line->l_start(tp);
828 break;
829
830 case ZRING_SINT:
831 /*
832 * Status line change. HFC bit is run in
833 * hardware interrupt, to avoid locking
834 * at splzs here.
835 */
836 c = ZRING_VALUE(c);
837 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
838 cc = (c & ZSRR0_DCD) != 0;
839 if(line->l_modem(tp, cc) == 0)
840 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
841 cc ? DMBIS : DMBIC);
842 }
843 cs->cs_rr0 = c;
844 break;
845
846 default:
847 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
848 unit >> 1, (unit & 1) + 'a', c);
849 break;
850 }
851 }
852 cs->cs_rbget = get;
853 goto again;
854 }
855 splx(s);
856 return (retval);
857 }
858
859 int
860 zsioctl(dev, cmd, data, flag, l)
861 dev_t dev;
862 u_long cmd;
863 caddr_t data;
864 int flag;
865 struct lwp *l;
866 {
867 int unit = ZS_UNIT(dev);
868 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
869 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
870 register int error, s;
871 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
872
873 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
874 if(error != EPASSTHROUGH)
875 return(error);
876
877 error = ttioctl(tp, cmd, data, flag, l);
878 if(error !=EPASSTHROUGH)
879 return (error);
880
881 switch (cmd) {
882 case TIOCSBRK:
883 s = splzs();
884 cs->cs_preg[5] |= ZSWR5_BREAK;
885 cs->cs_creg[5] |= ZSWR5_BREAK;
886 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
887 splx(s);
888 break;
889 case TIOCCBRK:
890 s = splzs();
891 cs->cs_preg[5] &= ~ZSWR5_BREAK;
892 cs->cs_creg[5] &= ~ZSWR5_BREAK;
893 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
894 splx(s);
895 break;
896 case TIOCGFLAGS: {
897 int bits = 0;
898
899 if(cs->cs_softcar)
900 bits |= TIOCFLAG_SOFTCAR;
901 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
902 bits |= TIOCFLAG_CLOCAL;
903 if(cs->cs_creg[3] & ZSWR3_HFC)
904 bits |= TIOCFLAG_CRTSCTS;
905 *(int *)data = bits;
906 break;
907 }
908 case TIOCSFLAGS: {
909 int userbits = 0;
910
911 error = kauth_authorize_generic(l->l_proc->p_cred, KAUTH_GENERIC_ISSUSER, &l->l_proc->p_acflag);
912 if(error != 0)
913 return (EPERM);
914
915 userbits = *(int *)data;
916
917 /*
918 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
919 # defaulting to software flow control.
920 */
921 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
922 return(EINVAL);
923 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
924 return(ENODEV);
925
926 s = splzs();
927 if((userbits & TIOCFLAG_SOFTCAR)) {
928 cs->cs_softcar = 1; /* turn on softcar */
929 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
930 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
931 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
932 }
933 else if(userbits & TIOCFLAG_CLOCAL) {
934 cs->cs_softcar = 0; /* turn off softcar */
935 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
936 cs->cs_creg[15] |= ZSWR15_DCD_IE;
937 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
938 tp->t_termios.c_cflag |= CLOCAL;
939 }
940 if(userbits & TIOCFLAG_CRTSCTS) {
941 cs->cs_preg[15] |= ZSWR15_CTS_IE;
942 cs->cs_creg[15] |= ZSWR15_CTS_IE;
943 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
944 cs->cs_preg[3] |= ZSWR3_HFC;
945 cs->cs_creg[3] |= ZSWR3_HFC;
946 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
947 tp->t_termios.c_cflag |= CRTSCTS;
948 }
949 else {
950 /* no mdmbuf, so we must want software flow control */
951 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
952 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
953 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
954 cs->cs_preg[3] &= ~ZSWR3_HFC;
955 cs->cs_creg[3] &= ~ZSWR3_HFC;
956 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
957 tp->t_termios.c_cflag &= ~CRTSCTS;
958 }
959 splx(s);
960 break;
961 }
962 case TIOCSDTR:
963 zs_modem(cs, ZSWR5_DTR, DMBIS);
964 break;
965 case TIOCCDTR:
966 zs_modem(cs, ZSWR5_DTR, DMBIC);
967 break;
968 case TIOCMGET:
969 zs_modem(cs, 0, DMGET);
970 break;
971 case TIOCMSET:
972 case TIOCMBIS:
973 case TIOCMBIC:
974 default:
975 return (EPASSTHROUGH);
976 }
977 return (0);
978 }
979
980 /*
981 * Start or restart transmission.
982 */
983 static void
984 zsstart(tp)
985 register struct tty *tp;
986 {
987 register struct zs_chanstate *cs;
988 register int s, nch;
989 int unit = ZS_UNIT(tp->t_dev);
990 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
991
992 cs = &zi->zi_cs[unit & 1];
993 s = spltty();
994
995 /*
996 * If currently active or delaying, no need to do anything.
997 */
998 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
999 goto out;
1000
1001 /*
1002 * If there are sleepers, and output has drained below low
1003 * water mark, awaken.
1004 */
1005 if(tp->t_outq.c_cc <= tp->t_lowat) {
1006 if(tp->t_state & TS_ASLEEP) {
1007 tp->t_state &= ~TS_ASLEEP;
1008 wakeup((caddr_t)&tp->t_outq);
1009 }
1010 selwakeup(&tp->t_wsel);
1011 }
1012
1013 nch = ndqb(&tp->t_outq, 0); /* XXX */
1014 if(nch) {
1015 register char *p = tp->t_outq.c_cf;
1016
1017 /* mark busy, enable tx done interrupts, & send first byte */
1018 tp->t_state |= TS_BUSY;
1019 (void) splzs();
1020 cs->cs_preg[1] |= ZSWR1_TIE;
1021 cs->cs_creg[1] |= ZSWR1_TIE;
1022 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1023 cs->cs_zc->zc_data = *p;
1024 cs->cs_tba = p + 1;
1025 cs->cs_tbc = nch - 1;
1026 } else {
1027 /*
1028 * Nothing to send, turn off transmit done interrupts.
1029 * This is useful if something is doing polled output.
1030 */
1031 (void) splzs();
1032 cs->cs_preg[1] &= ~ZSWR1_TIE;
1033 cs->cs_creg[1] &= ~ZSWR1_TIE;
1034 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1035 }
1036 out:
1037 splx(s);
1038 }
1039
1040 /*
1041 * Stop output, e.g., for ^S or output flush.
1042 */
1043 void
1044 zsstop(tp, flag)
1045 register struct tty *tp;
1046 int flag;
1047 {
1048 register struct zs_chanstate *cs;
1049 register int s, unit = ZS_UNIT(tp->t_dev);
1050 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1051
1052 cs = &zi->zi_cs[unit & 1];
1053 s = splzs();
1054 if(tp->t_state & TS_BUSY) {
1055 /*
1056 * Device is transmitting; must stop it.
1057 */
1058 cs->cs_tbc = 0;
1059 if ((tp->t_state & TS_TTSTOP) == 0)
1060 tp->t_state |= TS_FLUSH;
1061 }
1062 splx(s);
1063 }
1064
1065 static void
1066 zs_shutdown(cs)
1067 struct zs_chanstate *cs;
1068 {
1069 struct tty *tp = cs->cs_ttyp;
1070 int s;
1071
1072 s = splzs();
1073
1074 /*
1075 * Hang up if necessary. Wait a bit, so the other side has time to
1076 * notice even if we immediately open the port again.
1077 */
1078 if(tp->t_cflag & HUPCL) {
1079 zs_modem(cs, 0, DMSET);
1080 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1081 }
1082
1083 /* Clear any break condition set with TIOCSBRK. */
1084 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1085 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1086 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1087 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1088 }
1089
1090 /*
1091 * Drop all lines and cancel interrupts
1092 */
1093 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1094 splx(s);
1095 }
1096
1097 /*
1098 * Set ZS tty parameters from termios.
1099 *
1100 * This routine makes use of the fact that only registers
1101 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1102 */
1103 static int
1104 zsparam(tp, t)
1105 register struct tty *tp;
1106 register struct termios *t;
1107 {
1108 int unit = ZS_UNIT(tp->t_dev);
1109 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1110 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1111 int cdiv, clkm, brgm, tcon;
1112 register int tmp, tmp5, cflag, s;
1113
1114 tmp = t->c_ospeed;
1115 tmp5 = t->c_ispeed;
1116 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1117 return(EINVAL);
1118 if(tmp == 0) {
1119 /* stty 0 => drop DTR and RTS */
1120 zs_modem(cs, 0, DMSET);
1121 return(0);
1122 }
1123 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1124 if (tmp < 0)
1125 return(EINVAL);
1126 tp->t_ispeed = tp->t_ospeed = tmp;
1127
1128 cflag = tp->t_cflag = t->c_cflag;
1129 if (cflag & CSTOPB)
1130 cdiv |= ZSWR4_TWOSB;
1131 else
1132 cdiv |= ZSWR4_ONESB;
1133 if (!(cflag & PARODD))
1134 cdiv |= ZSWR4_EVENP;
1135 if (cflag & PARENB)
1136 cdiv |= ZSWR4_PARENB;
1137
1138 switch(cflag & CSIZE) {
1139 case CS5:
1140 tmp = ZSWR3_RX_5;
1141 tmp5 = ZSWR5_TX_5;
1142 break;
1143 case CS6:
1144 tmp = ZSWR3_RX_6;
1145 tmp5 = ZSWR5_TX_6;
1146 break;
1147 case CS7:
1148 tmp = ZSWR3_RX_7;
1149 tmp5 = ZSWR5_TX_7;
1150 break;
1151 case CS8:
1152 default:
1153 tmp = ZSWR3_RX_8;
1154 tmp5 = ZSWR5_TX_8;
1155 break;
1156 }
1157 tmp |= ZSWR3_RX_ENABLE;
1158 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1159
1160 /*
1161 * Block interrupts so that state will not
1162 * be altered until we are done setting it up.
1163 */
1164 s = splzs();
1165 cs->cs_preg[4] = cdiv;
1166 cs->cs_preg[11] = clkm;
1167 cs->cs_preg[12] = tcon;
1168 cs->cs_preg[13] = tcon >> 8;
1169 cs->cs_preg[14] = brgm;
1170 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1171 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1172 cs->cs_preg[10] = ZSWR10_NRZ;
1173 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1174
1175 /*
1176 * Output hardware flow control on the chip is horrendous: if
1177 * carrier detect drops, the receiver is disabled. Hence we
1178 * can only do this when the carrier is on.
1179 */
1180 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1181 tmp |= ZSWR3_HFC;
1182 cs->cs_preg[3] = tmp;
1183 cs->cs_preg[5] = tmp5;
1184
1185 /*
1186 * If nothing is being transmitted, set up new current values,
1187 * else mark them as pending.
1188 */
1189 if(cs->cs_heldchange == 0) {
1190 if (cs->cs_ttyp->t_state & TS_BUSY) {
1191 cs->cs_heldtbc = cs->cs_tbc;
1192 cs->cs_tbc = 0;
1193 cs->cs_heldchange = 1;
1194 } else {
1195 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1196 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1197 }
1198 }
1199 splx(s);
1200 return (0);
1201 }
1202
1203 /*
1204 * search for the best matching baudrate
1205 */
1206 static int
1207 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1208 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1209 {
1210 int bestdiff, bestbps, source;
1211
1212 bestdiff = bestbps = 0;
1213 unit = (unit & 1) << 2;
1214 for (source = 0; source < 4; ++source) {
1215 long freq = zs_frequencies[unit + source];
1216 int diff, bps, div, clkm, brgm, tcon;
1217
1218 bps = div = clkm = brgm = tcon = 0;
1219 switch (source) {
1220 case 0: /* BRgen, PCLK */
1221 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1222 break;
1223 case 1: /* BRgen, RTxC */
1224 brgm = ZSWR14_BAUD_ENA;
1225 break;
1226 case 2: /* RTxC */
1227 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1228 break;
1229 case 3: /* TRxC */
1230 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1231 break;
1232 }
1233 switch (source) {
1234 case 0:
1235 case 1:
1236 div = ZSWR4_CLK_X16;
1237 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1238 tcon = BPS_TO_TCONST(freq, wanted);
1239 if (tcon < 0)
1240 tcon = 0;
1241 bps = TCONST_TO_BPS(freq, tcon);
1242 break;
1243 case 2:
1244 case 3:
1245 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1246 int b2 = freq / 32, d2 = abs(b2 - wanted);
1247 int b3 = freq / 64, d3 = abs(b3 - wanted);
1248
1249 if (d1 < d2 && d1 < d3) {
1250 div = ZSWR4_CLK_X16;
1251 bps = b1;
1252 } else if (d2 < d3 && d2 < d1) {
1253 div = ZSWR4_CLK_X32;
1254 bps = b2;
1255 } else {
1256 div = ZSWR4_CLK_X64;
1257 bps = b3;
1258 }
1259 brgm = tcon = 0;
1260 break;
1261 }
1262 }
1263 diff = abs(bps - wanted);
1264 if (!source || diff < bestdiff) {
1265 *divisor = div;
1266 *clockmode = clkm;
1267 *brgenmode = brgm;
1268 *timeconst = tcon;
1269 bestbps = bps;
1270 bestdiff = diff;
1271 if (diff == 0)
1272 break;
1273 }
1274 }
1275 /* Allow deviations upto 5% */
1276 if (20 * bestdiff > wanted)
1277 return -1;
1278 return bestbps;
1279 }
1280
1281 /*
1282 * Raise or lower modem control (DTR/RTS) signals. If a character is
1283 * in transmission, the change is deferred.
1284 */
1285 static int
1286 zs_modem(cs, bits, how)
1287 struct zs_chanstate *cs;
1288 int bits, how;
1289 {
1290 int s, mbits;
1291
1292 bits &= ZSWR5_DTR | ZSWR5_RTS;
1293
1294 s = splzs();
1295 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1296
1297 switch(how) {
1298 case DMSET:
1299 mbits = bits;
1300 break;
1301 case DMBIS:
1302 mbits |= bits;
1303 break;
1304 case DMBIC:
1305 mbits &= ~bits;
1306 break;
1307 case DMGET:
1308 splx(s);
1309 return(mbits);
1310 }
1311
1312 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1313 if(cs->cs_heldchange == 0) {
1314 if(cs->cs_ttyp->t_state & TS_BUSY) {
1315 cs->cs_heldtbc = cs->cs_tbc;
1316 cs->cs_tbc = 0;
1317 cs->cs_heldchange = 1;
1318 }
1319 else {
1320 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1321 }
1322 }
1323 splx(s);
1324 return(0);
1325 }
1326
1327 /*
1328 * Write the given register set to the given zs channel in the proper order.
1329 * The channel must not be transmitting at the time. The receiver will
1330 * be disabled for the time it takes to write all the registers.
1331 */
1332 static void
1333 zs_loadchannelregs(zc, reg)
1334 volatile struct zschan *zc;
1335 u_char *reg;
1336 {
1337 int i;
1338
1339 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1340 i = zc->zc_data; /* drain fifo */
1341 i = zc->zc_data;
1342 i = zc->zc_data;
1343 ZS_WRITE(zc, 4, reg[4]);
1344 ZS_WRITE(zc, 10, reg[10]);
1345 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1346 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1347 ZS_WRITE(zc, 1, reg[1]);
1348 ZS_WRITE(zc, 9, reg[9]);
1349 ZS_WRITE(zc, 11, reg[11]);
1350 ZS_WRITE(zc, 12, reg[12]);
1351 ZS_WRITE(zc, 13, reg[13]);
1352 ZS_WRITE(zc, 14, reg[14]);
1353 ZS_WRITE(zc, 15, reg[15]);
1354 ZS_WRITE(zc, 3, reg[3]);
1355 ZS_WRITE(zc, 5, reg[5]);
1356 }
1357 #endif /* NZS > 1 */
1358