zs.c revision 1.48 1 /* $NetBSD: zs.c,v 1.48 2006/07/23 22:06:04 ad Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 */
43
44 /*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of The NetBSD Foundation nor the names of its
60 * contributors may be used to endorse or promote products derived
61 * from this software without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
64 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 /*
77 * Zilog Z8530 (ZSCC) driver.
78 *
79 * Runs two tty ports (modem2 and serial2) on zs0.
80 *
81 * This driver knows far too much about chip to usage mappings.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.48 2006/07/23 22:06:04 ad Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/device.h>
91 #include <sys/conf.h>
92 #include <sys/file.h>
93 #include <sys/ioctl.h>
94 #include <sys/malloc.h>
95 #include <sys/tty.h>
96 #include <sys/time.h>
97 #include <sys/kernel.h>
98 #include <sys/syslog.h>
99 #include <sys/kauth.h>
100
101 #include <machine/cpu.h>
102 #include <machine/iomap.h>
103 #include <machine/scu.h>
104 #include <machine/mfp.h>
105 #include <atari/dev/ym2149reg.h>
106
107 #include <dev/ic/z8530reg.h>
108 #include <atari/dev/zsvar.h>
109 #include "zs.h"
110 #if NZS > 1
111 #error "This driver supports only 1 85C30!"
112 #endif
113
114 #if NZS > 0
115
116 #define PCLK (8053976) /* PCLK pin input clock rate */
117 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
118
119 #define splzs spl5
120
121 /*
122 * Software state per found chip.
123 */
124 struct zs_softc {
125 struct device zi_dev; /* base device */
126 volatile struct zsdevice *zi_zs; /* chip registers */
127 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
128 };
129
130 static u_char cb_scheduled = 0; /* Already asked for callback? */
131 /*
132 * Define the registers for a closed port
133 */
134 static u_char zs_init_regs[16] = {
135 /* 0 */ 0,
136 /* 1 */ 0,
137 /* 2 */ 0x60,
138 /* 3 */ 0,
139 /* 4 */ 0,
140 /* 5 */ 0,
141 /* 6 */ 0,
142 /* 7 */ 0,
143 /* 8 */ 0,
144 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
145 /* 10 */ ZSWR10_NRZ,
146 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
147 /* 12 */ 0,
148 /* 13 */ 0,
149 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
150 /* 15 */ 0
151 };
152
153 /*
154 * Define the machine dependant clock frequencies
155 * If BRgen feeds sender/receiver we always use a
156 * divisor 16, therefor the division by 16 can as
157 * well be done here.
158 */
159 static u_long zs_freqs_tt[] = {
160 /*
161 * Atari TT, RTxCB is generated by TT-MFP timer C,
162 * which is set to 307.2 kHz during initialisation
163 * and never changed afterwards.
164 */
165 PCLK/16, /* BRgen, PCLK, divisor 16 */
166 229500, /* BRgen, RTxCA, divisor 16 */
167 3672000, /* RTxCA, from PCLK4 */
168 0, /* TRxCA, external */
169
170 PCLK/16, /* BRgen, PCLK, divisor 16 */
171 19200, /* BRgen, RTxCB, divisor 16 */
172 307200, /* RTxCB, from TT-MFP TCO */
173 2457600 /* TRxCB, from BCLK */
174 };
175
176 static u_long zs_freqs_falcon[] = {
177 /*
178 * Atari Falcon, XXX no specs available, this might be wrong
179 */
180 PCLK/16, /* BRgen, PCLK, divisor 16 */
181 229500, /* BRgen, RTxCA, divisor 16 */
182 3672000, /* RTxCA, ??? */
183 0, /* TRxCA, external */
184
185 PCLK/16, /* BRgen, PCLK, divisor 16 */
186 229500, /* BRgen, RTxCB, divisor 16 */
187 3672000, /* RTxCB, ??? */
188 2457600 /* TRxCB, ??? */
189 };
190
191 static u_long zs_freqs_hades[] = {
192 /*
193 * XXX: Channel-A unchecked!!!!!
194 */
195 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
196 229500, /* BRgen, RTxCA, divisor 16 */
197 3672000, /* RTxCA, from PCLK4 */
198 0, /* TRxCA, external */
199
200 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
201 235550, /* BRgen, RTxCB, divisor 16 */
202 3768800, /* RTxCB, 3.7688MHz */
203 3768800 /* TRxCB, 3.7688MHz */
204 };
205
206 static u_long zs_freqs_generic[] = {
207 /*
208 * other machines, assume only PCLK is available
209 */
210 PCLK/16, /* BRgen, PCLK, divisor 16 */
211 0, /* BRgen, RTxCA, divisor 16 */
212 0, /* RTxCA, unknown */
213 0, /* TRxCA, unknown */
214
215 PCLK/16, /* BRgen, PCLK, divisor 16 */
216 0, /* BRgen, RTxCB, divisor 16 */
217 0, /* RTxCB, unknown */
218 0 /* TRxCB, unknown */
219 };
220 static u_long *zs_frequencies;
221
222 /* Definition of the driver for autoconfig. */
223 static int zsmatch __P((struct device *, struct cfdata *, void *));
224 static void zsattach __P((struct device *, struct device *, void *));
225
226 CFATTACH_DECL(zs, sizeof(struct zs_softc),
227 zsmatch, zsattach, NULL, NULL);
228
229 extern struct cfdriver zs_cd;
230
231 /* {b,c}devsw[] function prototypes */
232 dev_type_open(zsopen);
233 dev_type_close(zsclose);
234 dev_type_read(zsread);
235 dev_type_write(zswrite);
236 dev_type_ioctl(zsioctl);
237 dev_type_stop(zsstop);
238 dev_type_tty(zstty);
239 dev_type_poll(zspoll);
240
241 const struct cdevsw zs_cdevsw = {
242 zsopen, zsclose, zsread, zswrite, zsioctl,
243 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
244 };
245
246 /* Interrupt handlers. */
247 int zshard __P((long));
248 static int zssoft __P((long));
249 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
250 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
251 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
252
253 static struct zs_chanstate *zslist;
254
255 /* Routines called from other code. */
256 static void zsstart __P((struct tty *));
257
258 /* Routines purely local to this driver. */
259 static void zsoverrun __P((int, long *, const char *));
260 static int zsparam __P((struct tty *, struct termios *));
261 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
262 static int zs_modem __P((struct zs_chanstate *, int, int));
263 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
264 static void zs_shutdown __P((struct zs_chanstate *));
265
266 static int zsshortcuts; /* number of "shortcut" software interrupts */
267
268 static int
269 zsmatch(pdp, cfp, auxp)
270 struct device *pdp;
271 struct cfdata *cfp;
272 void *auxp;
273 {
274 static int zs_matched = 0;
275
276 if(strcmp("zs", auxp) || zs_matched)
277 return(0);
278 zs_matched = 1;
279 return(1);
280 }
281
282 /*
283 * Attach a found zs.
284 */
285 static void
286 zsattach(parent, dev, aux)
287 struct device *parent;
288 struct device *dev;
289 void *aux;
290 {
291 register struct zs_softc *zi;
292 register struct zs_chanstate *cs;
293 register volatile struct zsdevice *addr;
294 char tmp;
295
296 addr = (struct zsdevice *)AD_SCC;
297 zi = (struct zs_softc *)dev;
298 zi->zi_zs = addr;
299 cs = zi->zi_cs;
300
301 /*
302 * Get the command register into a known state.
303 */
304 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
305 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
306 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
307 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
308
309 /*
310 * Do a hardware reset.
311 */
312 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
313 delay(50000); /*enough ? */
314 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
315
316 /*
317 * Initialize both channels
318 */
319 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
320 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
321
322 if(machineid & ATARI_TT) {
323 /*
324 * ininitialise TT-MFP timer C: 307200Hz
325 * timer C and D share one control register:
326 * bits 0-2 control timer D
327 * bits 4-6 control timer C
328 */
329 int cr = MFP2->mf_tcdcr & 7;
330 MFP2->mf_tcdcr = cr; /* stop timer C */
331 MFP2->mf_tcdr = 1; /* counter 1 */
332 cr |= T_Q004 << 4; /* divisor 4 */
333 MFP2->mf_tcdcr = cr; /* start timer C */
334 /*
335 * enable scc related interrupts
336 */
337 SCU->vme_mask |= SCU_SCC;
338
339 zs_frequencies = zs_freqs_tt;
340 } else if (machineid & ATARI_FALCON) {
341 zs_frequencies = zs_freqs_falcon;
342 } else if (machineid & ATARI_HADES) {
343 zs_frequencies = zs_freqs_hades;
344 } else {
345 zs_frequencies = zs_freqs_generic;
346 }
347
348 /* link into interrupt list with order (A,B) (B=A+1) */
349 cs[0].cs_next = &cs[1];
350 cs[1].cs_next = zslist;
351 zslist = cs;
352
353 cs->cs_unit = 0;
354 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
355 cs++;
356 cs->cs_unit = 1;
357 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
358
359 printf(": serial2 on channel a and modem2 on channel b\n");
360 }
361
362 /*
363 * Open a zs serial port.
364 */
365 int
366 zsopen(dev, flags, mode, l)
367 dev_t dev;
368 int flags;
369 int mode;
370 struct lwp *l;
371 {
372 register struct tty *tp;
373 register struct zs_chanstate *cs;
374 struct zs_softc *zi;
375 int unit = ZS_UNIT(dev);
376 int zs = unit >> 1;
377 int error, s;
378
379 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
380 return (ENXIO);
381 cs = &zi->zi_cs[unit & 1];
382
383 /*
384 * When port A (ser02) is selected on the TT, make sure
385 * the port is enabled.
386 */
387 if((machineid & ATARI_TT) && !(unit & 1))
388 ym2149_ser2(1);
389
390 if (cs->cs_rbuf == NULL) {
391 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
392 M_WAITOK);
393 }
394
395 tp = cs->cs_ttyp;
396 if(tp == NULL) {
397 cs->cs_ttyp = tp = ttymalloc();
398 tty_attach(tp);
399 tp->t_dev = dev;
400 tp->t_oproc = zsstart;
401 tp->t_param = zsparam;
402 }
403
404 if ((tp->t_state & TS_ISOPEN) &&
405 (tp->t_state & TS_XCLUDE) &&
406 kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
407 &l->l_acflag) != 0)
408 return (EBUSY);
409
410 s = spltty();
411
412 /*
413 * Do the following iff this is a first open.
414 */
415 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
416 if(tp->t_ispeed == 0) {
417 tp->t_iflag = TTYDEF_IFLAG;
418 tp->t_oflag = TTYDEF_OFLAG;
419 tp->t_cflag = TTYDEF_CFLAG;
420 tp->t_lflag = TTYDEF_LFLAG;
421 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
422 }
423 ttychars(tp);
424 ttsetwater(tp);
425
426 (void)zsparam(tp, &tp->t_termios);
427
428 /*
429 * Turn on DTR. We must always do this, even if carrier is not
430 * present, because otherwise we'd have to use TIOCSDTR
431 * immediately after setting CLOCAL, which applications do not
432 * expect. We always assert DTR while the device is open
433 * unless explicitly requested to deassert it.
434 */
435 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
436 /* May never get a status intr. if DCD already on. -gwr */
437 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
438 tp->t_state |= TS_CARR_ON;
439 if(cs->cs_softcar)
440 tp->t_state |= TS_CARR_ON;
441 }
442
443 splx(s);
444
445 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
446 if (error)
447 goto bad;
448
449 error = tp->t_linesw->l_open(dev, tp);
450 if(error)
451 goto bad;
452 return (0);
453
454 bad:
455 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
456 /*
457 * We failed to open the device, and nobody else had it opened.
458 * Clean up the state as appropriate.
459 */
460 zs_shutdown(cs);
461 }
462 return(error);
463 }
464
465 /*
466 * Close a zs serial port.
467 */
468 int
469 zsclose(dev, flags, mode, l)
470 dev_t dev;
471 int flags;
472 int mode;
473 struct lwp *l;
474 {
475 register struct zs_chanstate *cs;
476 register struct tty *tp;
477 struct zs_softc *zi;
478 int unit = ZS_UNIT(dev);
479
480 zi = zs_cd.cd_devs[unit >> 1];
481 cs = &zi->zi_cs[unit & 1];
482 tp = cs->cs_ttyp;
483
484 tp->t_linesw->l_close(tp, flags);
485 ttyclose(tp);
486
487 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
488 /*
489 * Although we got a last close, the device may still be in
490 * use; e.g. if this was the dialout node, and there are still
491 * processes waiting for carrier on the non-dialout node.
492 */
493 zs_shutdown(cs);
494 }
495 return (0);
496 }
497
498 /*
499 * Read/write zs serial port.
500 */
501 int
502 zsread(dev, uio, flags)
503 dev_t dev;
504 struct uio *uio;
505 int flags;
506 {
507 register struct zs_chanstate *cs;
508 register struct zs_softc *zi;
509 register struct tty *tp;
510 int unit;
511
512 unit = ZS_UNIT(dev);
513 zi = zs_cd.cd_devs[unit >> 1];
514 cs = &zi->zi_cs[unit & 1];
515 tp = cs->cs_ttyp;
516
517 return(tp->t_linesw->l_read(tp, uio, flags));
518 }
519
520 int
521 zswrite(dev, uio, flags)
522 dev_t dev;
523 struct uio *uio;
524 int flags;
525 {
526 register struct zs_chanstate *cs;
527 register struct zs_softc *zi;
528 register struct tty *tp;
529 int unit;
530
531 unit = ZS_UNIT(dev);
532 zi = zs_cd.cd_devs[unit >> 1];
533 cs = &zi->zi_cs[unit & 1];
534 tp = cs->cs_ttyp;
535
536 return(tp->t_linesw->l_write(tp, uio, flags));
537 }
538
539 int
540 zspoll(dev, events, l)
541 dev_t dev;
542 int events;
543 struct lwp *l;
544 {
545 register struct zs_chanstate *cs;
546 register struct zs_softc *zi;
547 register struct tty *tp;
548 int unit;
549
550 unit = ZS_UNIT(dev);
551 zi = zs_cd.cd_devs[unit >> 1];
552 cs = &zi->zi_cs[unit & 1];
553 tp = cs->cs_ttyp;
554
555 return ((*tp->t_linesw->l_poll)(tp, events, l));
556 }
557
558 struct tty *
559 zstty(dev)
560 dev_t dev;
561 {
562 register struct zs_chanstate *cs;
563 register struct zs_softc *zi;
564 int unit;
565
566 unit = ZS_UNIT(dev);
567 zi = zs_cd.cd_devs[unit >> 1];
568 cs = &zi->zi_cs[unit & 1];
569 return(cs->cs_ttyp);
570 }
571
572 /*
573 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
574 * channels are kept in (A,B) pairs.
575 *
576 * Do just a little, then get out; set a software interrupt if more
577 * work is needed.
578 *
579 * We deliberately ignore the vectoring Zilog gives us, and match up
580 * only the number of `reset interrupt under service' operations, not
581 * the order.
582 */
583
584 int
585 zshard(sr)
586 long sr;
587 {
588 register struct zs_chanstate *a;
589 #define b (a + 1)
590 register volatile struct zschan *zc;
591 register int rr3, intflags = 0, v, i;
592
593 do {
594 intflags &= ~4;
595 for(a = zslist; a != NULL; a = b->cs_next) {
596 rr3 = ZS_READ(a->cs_zc, 3);
597 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
598 intflags |= 4|2;
599 zc = a->cs_zc;
600 i = a->cs_rbput;
601 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
602 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
603 intflags |= 1;
604 }
605 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
606 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
607 intflags |= 1;
608 }
609 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
610 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
611 intflags |= 1;
612 }
613 a->cs_rbput = i;
614 }
615 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
616 intflags |= 4|2;
617 zc = b->cs_zc;
618 i = b->cs_rbput;
619 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
620 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
621 intflags |= 1;
622 }
623 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
624 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
625 intflags |= 1;
626 }
627 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
628 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
629 intflags |= 1;
630 }
631 b->cs_rbput = i;
632 }
633 }
634 } while(intflags & 4);
635 #undef b
636
637 if(intflags & 1) {
638 if(BASEPRI(sr)) {
639 spl1();
640 zsshortcuts++;
641 return(zssoft(sr));
642 }
643 else if(!cb_scheduled) {
644 cb_scheduled++;
645 add_sicallback((si_farg)zssoft, 0, 0);
646 }
647 }
648 return(intflags & 2);
649 }
650
651 static int
652 zsrint(cs, zc)
653 register struct zs_chanstate *cs;
654 register volatile struct zschan *zc;
655 {
656 register int c;
657
658 /*
659 * First read the status, because read of the received char
660 * destroy the status of this char.
661 */
662 c = ZS_READ(zc, 1);
663 c |= (zc->zc_data << 8);
664
665 /* clear receive error & interrupt condition */
666 zc->zc_csr = ZSWR0_RESET_ERRORS;
667 zc->zc_csr = ZSWR0_CLR_INTR;
668
669 return(ZRING_MAKE(ZRING_RINT, c));
670 }
671
672 static int
673 zsxint(cs, zc)
674 register struct zs_chanstate *cs;
675 register volatile struct zschan *zc;
676 {
677 register int i = cs->cs_tbc;
678
679 if(i == 0) {
680 zc->zc_csr = ZSWR0_RESET_TXINT;
681 zc->zc_csr = ZSWR0_CLR_INTR;
682 return(ZRING_MAKE(ZRING_XINT, 0));
683 }
684 cs->cs_tbc = i - 1;
685 zc->zc_data = *cs->cs_tba++;
686 zc->zc_csr = ZSWR0_CLR_INTR;
687 return (0);
688 }
689
690 static int
691 zssint(cs, zc)
692 register struct zs_chanstate *cs;
693 register volatile struct zschan *zc;
694 {
695 register int rr0;
696
697 rr0 = zc->zc_csr;
698 zc->zc_csr = ZSWR0_RESET_STATUS;
699 zc->zc_csr = ZSWR0_CLR_INTR;
700 /*
701 * The chip's hardware flow control is, as noted in zsreg.h,
702 * busted---if the DCD line goes low the chip shuts off the
703 * receiver (!). If we want hardware CTS flow control but do
704 * not have it, and carrier is now on, turn HFC on; if we have
705 * HFC now but carrier has gone low, turn it off.
706 */
707 if(rr0 & ZSRR0_DCD) {
708 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
709 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
710 cs->cs_creg[3] |= ZSWR3_HFC;
711 ZS_WRITE(zc, 3, cs->cs_creg[3]);
712 }
713 }
714 else {
715 if (cs->cs_creg[3] & ZSWR3_HFC) {
716 cs->cs_creg[3] &= ~ZSWR3_HFC;
717 ZS_WRITE(zc, 3, cs->cs_creg[3]);
718 }
719 }
720 return(ZRING_MAKE(ZRING_SINT, rr0));
721 }
722
723 /*
724 * Print out a ring or fifo overrun error message.
725 */
726 static void
727 zsoverrun(unit, ptime, what)
728 int unit;
729 long *ptime;
730 const char *what;
731 {
732
733 if(*ptime != time.tv_sec) {
734 *ptime = time.tv_sec;
735 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
736 (unit & 1) + 'a', what);
737 }
738 }
739
740 /*
741 * ZS software interrupt. Scan all channels for deferred interrupts.
742 */
743 int
744 zssoft(sr)
745 long sr;
746 {
747 register struct zs_chanstate *cs;
748 register volatile struct zschan *zc;
749 register struct linesw *line;
750 register struct tty *tp;
751 register int get, n, c, cc, unit, s;
752 int retval = 0;
753
754 cb_scheduled = 0;
755 s = spltty();
756 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
757 get = cs->cs_rbget;
758 again:
759 n = cs->cs_rbput; /* atomic */
760 if(get == n) /* nothing more on this line */
761 continue;
762 retval = 1;
763 unit = cs->cs_unit; /* set up to handle interrupts */
764 zc = cs->cs_zc;
765 tp = cs->cs_ttyp;
766 line = tp->t_linesw;
767 /*
768 * Compute the number of interrupts in the receive ring.
769 * If the count is overlarge, we lost some events, and
770 * must advance to the first valid one. It may get
771 * overwritten if more data are arriving, but this is
772 * too expensive to check and gains nothing (we already
773 * lost out; all we can do at this point is trade one
774 * kind of loss for another).
775 */
776 n -= get;
777 if(n > ZLRB_RING_SIZE) {
778 zsoverrun(unit, &cs->cs_rotime, "ring");
779 get += n - ZLRB_RING_SIZE;
780 n = ZLRB_RING_SIZE;
781 }
782 while(--n >= 0) {
783 /* race to keep ahead of incoming interrupts */
784 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
785 switch (ZRING_TYPE(c)) {
786
787 case ZRING_RINT:
788 c = ZRING_VALUE(c);
789 if(c & ZSRR1_DO)
790 zsoverrun(unit, &cs->cs_fotime, "fifo");
791 cc = c >> 8;
792 if(c & ZSRR1_FE)
793 cc |= TTY_FE;
794 if(c & ZSRR1_PE)
795 cc |= TTY_PE;
796 line->l_rint(cc, tp);
797 break;
798
799 case ZRING_XINT:
800 /*
801 * Transmit done: change registers and resume,
802 * or clear BUSY.
803 */
804 if(cs->cs_heldchange) {
805 int sps;
806
807 sps = splzs();
808 c = zc->zc_csr;
809 if((c & ZSRR0_DCD) == 0)
810 cs->cs_preg[3] &= ~ZSWR3_HFC;
811 bcopy((caddr_t)cs->cs_preg,
812 (caddr_t)cs->cs_creg, 16);
813 zs_loadchannelregs(zc, cs->cs_creg);
814 splx(sps);
815 cs->cs_heldchange = 0;
816 if(cs->cs_heldtbc
817 && (tp->t_state & TS_TTSTOP) == 0) {
818 cs->cs_tbc = cs->cs_heldtbc - 1;
819 zc->zc_data = *cs->cs_tba++;
820 goto again;
821 }
822 }
823 tp->t_state &= ~TS_BUSY;
824 if(tp->t_state & TS_FLUSH)
825 tp->t_state &= ~TS_FLUSH;
826 else ndflush(&tp->t_outq,cs->cs_tba
827 - (caddr_t)tp->t_outq.c_cf);
828 line->l_start(tp);
829 break;
830
831 case ZRING_SINT:
832 /*
833 * Status line change. HFC bit is run in
834 * hardware interrupt, to avoid locking
835 * at splzs here.
836 */
837 c = ZRING_VALUE(c);
838 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
839 cc = (c & ZSRR0_DCD) != 0;
840 if(line->l_modem(tp, cc) == 0)
841 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
842 cc ? DMBIS : DMBIC);
843 }
844 cs->cs_rr0 = c;
845 break;
846
847 default:
848 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
849 unit >> 1, (unit & 1) + 'a', c);
850 break;
851 }
852 }
853 cs->cs_rbget = get;
854 goto again;
855 }
856 splx(s);
857 return (retval);
858 }
859
860 int
861 zsioctl(dev, cmd, data, flag, l)
862 dev_t dev;
863 u_long cmd;
864 caddr_t data;
865 int flag;
866 struct lwp *l;
867 {
868 int unit = ZS_UNIT(dev);
869 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
870 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
871 register int error, s;
872 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
873
874 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
875 if(error != EPASSTHROUGH)
876 return(error);
877
878 error = ttioctl(tp, cmd, data, flag, l);
879 if(error !=EPASSTHROUGH)
880 return (error);
881
882 switch (cmd) {
883 case TIOCSBRK:
884 s = splzs();
885 cs->cs_preg[5] |= ZSWR5_BREAK;
886 cs->cs_creg[5] |= ZSWR5_BREAK;
887 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
888 splx(s);
889 break;
890 case TIOCCBRK:
891 s = splzs();
892 cs->cs_preg[5] &= ~ZSWR5_BREAK;
893 cs->cs_creg[5] &= ~ZSWR5_BREAK;
894 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
895 splx(s);
896 break;
897 case TIOCGFLAGS: {
898 int bits = 0;
899
900 if(cs->cs_softcar)
901 bits |= TIOCFLAG_SOFTCAR;
902 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
903 bits |= TIOCFLAG_CLOCAL;
904 if(cs->cs_creg[3] & ZSWR3_HFC)
905 bits |= TIOCFLAG_CRTSCTS;
906 *(int *)data = bits;
907 break;
908 }
909 case TIOCSFLAGS: {
910 int userbits = 0;
911
912 error = kauth_authorize_generic(l->l_cred,
913 KAUTH_GENERIC_ISSUSER, &l->l_acflag);
914 if(error != 0)
915 return (EPERM);
916
917 userbits = *(int *)data;
918
919 /*
920 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
921 # defaulting to software flow control.
922 */
923 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
924 return(EINVAL);
925 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
926 return(ENODEV);
927
928 s = splzs();
929 if((userbits & TIOCFLAG_SOFTCAR)) {
930 cs->cs_softcar = 1; /* turn on softcar */
931 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
932 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
933 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
934 }
935 else if(userbits & TIOCFLAG_CLOCAL) {
936 cs->cs_softcar = 0; /* turn off softcar */
937 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
938 cs->cs_creg[15] |= ZSWR15_DCD_IE;
939 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
940 tp->t_termios.c_cflag |= CLOCAL;
941 }
942 if(userbits & TIOCFLAG_CRTSCTS) {
943 cs->cs_preg[15] |= ZSWR15_CTS_IE;
944 cs->cs_creg[15] |= ZSWR15_CTS_IE;
945 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
946 cs->cs_preg[3] |= ZSWR3_HFC;
947 cs->cs_creg[3] |= ZSWR3_HFC;
948 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
949 tp->t_termios.c_cflag |= CRTSCTS;
950 }
951 else {
952 /* no mdmbuf, so we must want software flow control */
953 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
954 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
955 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
956 cs->cs_preg[3] &= ~ZSWR3_HFC;
957 cs->cs_creg[3] &= ~ZSWR3_HFC;
958 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
959 tp->t_termios.c_cflag &= ~CRTSCTS;
960 }
961 splx(s);
962 break;
963 }
964 case TIOCSDTR:
965 zs_modem(cs, ZSWR5_DTR, DMBIS);
966 break;
967 case TIOCCDTR:
968 zs_modem(cs, ZSWR5_DTR, DMBIC);
969 break;
970 case TIOCMGET:
971 zs_modem(cs, 0, DMGET);
972 break;
973 case TIOCMSET:
974 case TIOCMBIS:
975 case TIOCMBIC:
976 default:
977 return (EPASSTHROUGH);
978 }
979 return (0);
980 }
981
982 /*
983 * Start or restart transmission.
984 */
985 static void
986 zsstart(tp)
987 register struct tty *tp;
988 {
989 register struct zs_chanstate *cs;
990 register int s, nch;
991 int unit = ZS_UNIT(tp->t_dev);
992 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
993
994 cs = &zi->zi_cs[unit & 1];
995 s = spltty();
996
997 /*
998 * If currently active or delaying, no need to do anything.
999 */
1000 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1001 goto out;
1002
1003 /*
1004 * If there are sleepers, and output has drained below low
1005 * water mark, awaken.
1006 */
1007 if(tp->t_outq.c_cc <= tp->t_lowat) {
1008 if(tp->t_state & TS_ASLEEP) {
1009 tp->t_state &= ~TS_ASLEEP;
1010 wakeup((caddr_t)&tp->t_outq);
1011 }
1012 selwakeup(&tp->t_wsel);
1013 }
1014
1015 nch = ndqb(&tp->t_outq, 0); /* XXX */
1016 if(nch) {
1017 register char *p = tp->t_outq.c_cf;
1018
1019 /* mark busy, enable tx done interrupts, & send first byte */
1020 tp->t_state |= TS_BUSY;
1021 (void) splzs();
1022 cs->cs_preg[1] |= ZSWR1_TIE;
1023 cs->cs_creg[1] |= ZSWR1_TIE;
1024 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1025 cs->cs_zc->zc_data = *p;
1026 cs->cs_tba = p + 1;
1027 cs->cs_tbc = nch - 1;
1028 } else {
1029 /*
1030 * Nothing to send, turn off transmit done interrupts.
1031 * This is useful if something is doing polled output.
1032 */
1033 (void) splzs();
1034 cs->cs_preg[1] &= ~ZSWR1_TIE;
1035 cs->cs_creg[1] &= ~ZSWR1_TIE;
1036 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1037 }
1038 out:
1039 splx(s);
1040 }
1041
1042 /*
1043 * Stop output, e.g., for ^S or output flush.
1044 */
1045 void
1046 zsstop(tp, flag)
1047 register struct tty *tp;
1048 int flag;
1049 {
1050 register struct zs_chanstate *cs;
1051 register int s, unit = ZS_UNIT(tp->t_dev);
1052 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1053
1054 cs = &zi->zi_cs[unit & 1];
1055 s = splzs();
1056 if(tp->t_state & TS_BUSY) {
1057 /*
1058 * Device is transmitting; must stop it.
1059 */
1060 cs->cs_tbc = 0;
1061 if ((tp->t_state & TS_TTSTOP) == 0)
1062 tp->t_state |= TS_FLUSH;
1063 }
1064 splx(s);
1065 }
1066
1067 static void
1068 zs_shutdown(cs)
1069 struct zs_chanstate *cs;
1070 {
1071 struct tty *tp = cs->cs_ttyp;
1072 int s;
1073
1074 s = splzs();
1075
1076 /*
1077 * Hang up if necessary. Wait a bit, so the other side has time to
1078 * notice even if we immediately open the port again.
1079 */
1080 if(tp->t_cflag & HUPCL) {
1081 zs_modem(cs, 0, DMSET);
1082 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1083 }
1084
1085 /* Clear any break condition set with TIOCSBRK. */
1086 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1087 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1088 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1089 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1090 }
1091
1092 /*
1093 * Drop all lines and cancel interrupts
1094 */
1095 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1096 splx(s);
1097 }
1098
1099 /*
1100 * Set ZS tty parameters from termios.
1101 *
1102 * This routine makes use of the fact that only registers
1103 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1104 */
1105 static int
1106 zsparam(tp, t)
1107 register struct tty *tp;
1108 register struct termios *t;
1109 {
1110 int unit = ZS_UNIT(tp->t_dev);
1111 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1112 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1113 int cdiv, clkm, brgm, tcon;
1114 register int tmp, tmp5, cflag, s;
1115
1116 tmp = t->c_ospeed;
1117 tmp5 = t->c_ispeed;
1118 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1119 return(EINVAL);
1120 if(tmp == 0) {
1121 /* stty 0 => drop DTR and RTS */
1122 zs_modem(cs, 0, DMSET);
1123 return(0);
1124 }
1125 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1126 if (tmp < 0)
1127 return(EINVAL);
1128 tp->t_ispeed = tp->t_ospeed = tmp;
1129
1130 cflag = tp->t_cflag = t->c_cflag;
1131 if (cflag & CSTOPB)
1132 cdiv |= ZSWR4_TWOSB;
1133 else
1134 cdiv |= ZSWR4_ONESB;
1135 if (!(cflag & PARODD))
1136 cdiv |= ZSWR4_EVENP;
1137 if (cflag & PARENB)
1138 cdiv |= ZSWR4_PARENB;
1139
1140 switch(cflag & CSIZE) {
1141 case CS5:
1142 tmp = ZSWR3_RX_5;
1143 tmp5 = ZSWR5_TX_5;
1144 break;
1145 case CS6:
1146 tmp = ZSWR3_RX_6;
1147 tmp5 = ZSWR5_TX_6;
1148 break;
1149 case CS7:
1150 tmp = ZSWR3_RX_7;
1151 tmp5 = ZSWR5_TX_7;
1152 break;
1153 case CS8:
1154 default:
1155 tmp = ZSWR3_RX_8;
1156 tmp5 = ZSWR5_TX_8;
1157 break;
1158 }
1159 tmp |= ZSWR3_RX_ENABLE;
1160 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1161
1162 /*
1163 * Block interrupts so that state will not
1164 * be altered until we are done setting it up.
1165 */
1166 s = splzs();
1167 cs->cs_preg[4] = cdiv;
1168 cs->cs_preg[11] = clkm;
1169 cs->cs_preg[12] = tcon;
1170 cs->cs_preg[13] = tcon >> 8;
1171 cs->cs_preg[14] = brgm;
1172 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1173 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1174 cs->cs_preg[10] = ZSWR10_NRZ;
1175 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1176
1177 /*
1178 * Output hardware flow control on the chip is horrendous: if
1179 * carrier detect drops, the receiver is disabled. Hence we
1180 * can only do this when the carrier is on.
1181 */
1182 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1183 tmp |= ZSWR3_HFC;
1184 cs->cs_preg[3] = tmp;
1185 cs->cs_preg[5] = tmp5;
1186
1187 /*
1188 * If nothing is being transmitted, set up new current values,
1189 * else mark them as pending.
1190 */
1191 if(cs->cs_heldchange == 0) {
1192 if (cs->cs_ttyp->t_state & TS_BUSY) {
1193 cs->cs_heldtbc = cs->cs_tbc;
1194 cs->cs_tbc = 0;
1195 cs->cs_heldchange = 1;
1196 } else {
1197 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1198 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1199 }
1200 }
1201 splx(s);
1202 return (0);
1203 }
1204
1205 /*
1206 * search for the best matching baudrate
1207 */
1208 static int
1209 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1210 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1211 {
1212 int bestdiff, bestbps, source;
1213
1214 bestdiff = bestbps = 0;
1215 unit = (unit & 1) << 2;
1216 for (source = 0; source < 4; ++source) {
1217 long freq = zs_frequencies[unit + source];
1218 int diff, bps, div, clkm, brgm, tcon;
1219
1220 bps = div = clkm = brgm = tcon = 0;
1221 switch (source) {
1222 case 0: /* BRgen, PCLK */
1223 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1224 break;
1225 case 1: /* BRgen, RTxC */
1226 brgm = ZSWR14_BAUD_ENA;
1227 break;
1228 case 2: /* RTxC */
1229 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1230 break;
1231 case 3: /* TRxC */
1232 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1233 break;
1234 }
1235 switch (source) {
1236 case 0:
1237 case 1:
1238 div = ZSWR4_CLK_X16;
1239 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1240 tcon = BPS_TO_TCONST(freq, wanted);
1241 if (tcon < 0)
1242 tcon = 0;
1243 bps = TCONST_TO_BPS(freq, tcon);
1244 break;
1245 case 2:
1246 case 3:
1247 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1248 int b2 = freq / 32, d2 = abs(b2 - wanted);
1249 int b3 = freq / 64, d3 = abs(b3 - wanted);
1250
1251 if (d1 < d2 && d1 < d3) {
1252 div = ZSWR4_CLK_X16;
1253 bps = b1;
1254 } else if (d2 < d3 && d2 < d1) {
1255 div = ZSWR4_CLK_X32;
1256 bps = b2;
1257 } else {
1258 div = ZSWR4_CLK_X64;
1259 bps = b3;
1260 }
1261 brgm = tcon = 0;
1262 break;
1263 }
1264 }
1265 diff = abs(bps - wanted);
1266 if (!source || diff < bestdiff) {
1267 *divisor = div;
1268 *clockmode = clkm;
1269 *brgenmode = brgm;
1270 *timeconst = tcon;
1271 bestbps = bps;
1272 bestdiff = diff;
1273 if (diff == 0)
1274 break;
1275 }
1276 }
1277 /* Allow deviations upto 5% */
1278 if (20 * bestdiff > wanted)
1279 return -1;
1280 return bestbps;
1281 }
1282
1283 /*
1284 * Raise or lower modem control (DTR/RTS) signals. If a character is
1285 * in transmission, the change is deferred.
1286 */
1287 static int
1288 zs_modem(cs, bits, how)
1289 struct zs_chanstate *cs;
1290 int bits, how;
1291 {
1292 int s, mbits;
1293
1294 bits &= ZSWR5_DTR | ZSWR5_RTS;
1295
1296 s = splzs();
1297 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1298
1299 switch(how) {
1300 case DMSET:
1301 mbits = bits;
1302 break;
1303 case DMBIS:
1304 mbits |= bits;
1305 break;
1306 case DMBIC:
1307 mbits &= ~bits;
1308 break;
1309 case DMGET:
1310 splx(s);
1311 return(mbits);
1312 }
1313
1314 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1315 if(cs->cs_heldchange == 0) {
1316 if(cs->cs_ttyp->t_state & TS_BUSY) {
1317 cs->cs_heldtbc = cs->cs_tbc;
1318 cs->cs_tbc = 0;
1319 cs->cs_heldchange = 1;
1320 }
1321 else {
1322 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1323 }
1324 }
1325 splx(s);
1326 return(0);
1327 }
1328
1329 /*
1330 * Write the given register set to the given zs channel in the proper order.
1331 * The channel must not be transmitting at the time. The receiver will
1332 * be disabled for the time it takes to write all the registers.
1333 */
1334 static void
1335 zs_loadchannelregs(zc, reg)
1336 volatile struct zschan *zc;
1337 u_char *reg;
1338 {
1339 int i;
1340
1341 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1342 i = zc->zc_data; /* drain fifo */
1343 i = zc->zc_data;
1344 i = zc->zc_data;
1345 ZS_WRITE(zc, 4, reg[4]);
1346 ZS_WRITE(zc, 10, reg[10]);
1347 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1348 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1349 ZS_WRITE(zc, 1, reg[1]);
1350 ZS_WRITE(zc, 9, reg[9]);
1351 ZS_WRITE(zc, 11, reg[11]);
1352 ZS_WRITE(zc, 12, reg[12]);
1353 ZS_WRITE(zc, 13, reg[13]);
1354 ZS_WRITE(zc, 14, reg[14]);
1355 ZS_WRITE(zc, 15, reg[15]);
1356 ZS_WRITE(zc, 3, reg[3]);
1357 ZS_WRITE(zc, 5, reg[5]);
1358 }
1359 #endif /* NZS > 1 */
1360