zs.c revision 1.53.20.2 1 /* zs.c,v 1.53.20.1 2008/01/09 01:45:32 matt Exp */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 */
43
44 /*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of The NetBSD Foundation nor the names of its
60 * contributors may be used to endorse or promote products derived
61 * from this software without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
64 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 /*
77 * Zilog Z8530 (ZSCC) driver.
78 *
79 * Runs two tty ports (modem2 and serial2) on zs0.
80 *
81 * This driver knows far too much about chip to usage mappings.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "zs.c,v 1.53.20.1 2008/01/09 01:45:32 matt Exp");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/device.h>
91 #include <sys/conf.h>
92 #include <sys/file.h>
93 #include <sys/ioctl.h>
94 #include <sys/malloc.h>
95 #include <sys/tty.h>
96 #include <sys/time.h>
97 #include <sys/kernel.h>
98 #include <sys/syslog.h>
99 #include <sys/kauth.h>
100
101 #include <machine/cpu.h>
102 #include <machine/iomap.h>
103 #include <machine/scu.h>
104 #include <machine/mfp.h>
105 #include <atari/dev/ym2149reg.h>
106
107 #include <dev/ic/z8530reg.h>
108 #include <atari/dev/zsvar.h>
109 #include "zs.h"
110 #if NZS > 1
111 #error "This driver supports only 1 85C30!"
112 #endif
113
114 #if NZS > 0
115
116 #define PCLK (8053976) /* PCLK pin input clock rate */
117 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
118
119 #define splzs spl5
120
121 /*
122 * Software state per found chip.
123 */
124 struct zs_softc {
125 struct device zi_dev; /* base device */
126 volatile struct zsdevice *zi_zs; /* chip registers */
127 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
128 };
129
130 static u_char cb_scheduled = 0; /* Already asked for callback? */
131 /*
132 * Define the registers for a closed port
133 */
134 static u_char zs_init_regs[16] = {
135 /* 0 */ 0,
136 /* 1 */ 0,
137 /* 2 */ 0x60,
138 /* 3 */ 0,
139 /* 4 */ 0,
140 /* 5 */ 0,
141 /* 6 */ 0,
142 /* 7 */ 0,
143 /* 8 */ 0,
144 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
145 /* 10 */ ZSWR10_NRZ,
146 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
147 /* 12 */ 0,
148 /* 13 */ 0,
149 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
150 /* 15 */ 0
151 };
152
153 /*
154 * Define the machine dependant clock frequencies
155 * If BRgen feeds sender/receiver we always use a
156 * divisor 16, therefor the division by 16 can as
157 * well be done here.
158 */
159 static u_long zs_freqs_tt[] = {
160 /*
161 * Atari TT, RTxCB is generated by TT-MFP timer C,
162 * which is set to 307.2 kHz during initialisation
163 * and never changed afterwards.
164 */
165 PCLK/16, /* BRgen, PCLK, divisor 16 */
166 229500, /* BRgen, RTxCA, divisor 16 */
167 3672000, /* RTxCA, from PCLK4 */
168 0, /* TRxCA, external */
169
170 PCLK/16, /* BRgen, PCLK, divisor 16 */
171 19200, /* BRgen, RTxCB, divisor 16 */
172 307200, /* RTxCB, from TT-MFP TCO */
173 2457600 /* TRxCB, from BCLK */
174 };
175
176 static u_long zs_freqs_falcon[] = {
177 /*
178 * Atari Falcon, XXX no specs available, this might be wrong
179 */
180 PCLK/16, /* BRgen, PCLK, divisor 16 */
181 229500, /* BRgen, RTxCA, divisor 16 */
182 3672000, /* RTxCA, ??? */
183 0, /* TRxCA, external */
184
185 PCLK/16, /* BRgen, PCLK, divisor 16 */
186 229500, /* BRgen, RTxCB, divisor 16 */
187 3672000, /* RTxCB, ??? */
188 2457600 /* TRxCB, ??? */
189 };
190
191 static u_long zs_freqs_hades[] = {
192 /*
193 * XXX: Channel-A unchecked!!!!!
194 */
195 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
196 229500, /* BRgen, RTxCA, divisor 16 */
197 3672000, /* RTxCA, from PCLK4 */
198 0, /* TRxCA, external */
199
200 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
201 235550, /* BRgen, RTxCB, divisor 16 */
202 3768800, /* RTxCB, 3.7688MHz */
203 3768800 /* TRxCB, 3.7688MHz */
204 };
205
206 static u_long zs_freqs_generic[] = {
207 /*
208 * other machines, assume only PCLK is available
209 */
210 PCLK/16, /* BRgen, PCLK, divisor 16 */
211 0, /* BRgen, RTxCA, divisor 16 */
212 0, /* RTxCA, unknown */
213 0, /* TRxCA, unknown */
214
215 PCLK/16, /* BRgen, PCLK, divisor 16 */
216 0, /* BRgen, RTxCB, divisor 16 */
217 0, /* RTxCB, unknown */
218 0 /* TRxCB, unknown */
219 };
220 static u_long *zs_frequencies;
221
222 /* Definition of the driver for autoconfig. */
223 static int zsmatch __P((struct device *, struct cfdata *, void *));
224 static void zsattach __P((struct device *, struct device *, void *));
225
226 CFATTACH_DECL(zs, sizeof(struct zs_softc),
227 zsmatch, zsattach, NULL, NULL);
228
229 extern struct cfdriver zs_cd;
230
231 /* {b,c}devsw[] function prototypes */
232 dev_type_open(zsopen);
233 dev_type_close(zsclose);
234 dev_type_read(zsread);
235 dev_type_write(zswrite);
236 dev_type_ioctl(zsioctl);
237 dev_type_stop(zsstop);
238 dev_type_tty(zstty);
239 dev_type_poll(zspoll);
240
241 const struct cdevsw zs_cdevsw = {
242 zsopen, zsclose, zsread, zswrite, zsioctl,
243 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
244 };
245
246 /* Interrupt handlers. */
247 int zshard __P((long));
248 static int zssoft __P((long));
249 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
250 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
251 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
252
253 static struct zs_chanstate *zslist;
254
255 /* Routines called from other code. */
256 static void zsstart __P((struct tty *));
257
258 /* Routines purely local to this driver. */
259 static void zsoverrun __P((int, long *, const char *));
260 static int zsparam __P((struct tty *, struct termios *));
261 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
262 static int zs_modem __P((struct zs_chanstate *, int, int));
263 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
264 static void zs_shutdown __P((struct zs_chanstate *));
265
266 static int zsshortcuts; /* number of "shortcut" software interrupts */
267
268 static int
269 zsmatch(pdp, cfp, auxp)
270 struct device *pdp;
271 struct cfdata *cfp;
272 void *auxp;
273 {
274 static int zs_matched = 0;
275
276 if(strcmp("zs", auxp) || zs_matched)
277 return(0);
278 zs_matched = 1;
279 return(1);
280 }
281
282 /*
283 * Attach a found zs.
284 */
285 static void
286 zsattach(parent, dev, aux)
287 struct device *parent;
288 struct device *dev;
289 void *aux;
290 {
291 register struct zs_softc *zi;
292 register struct zs_chanstate *cs;
293 register volatile struct zsdevice *addr;
294 char tmp;
295
296 addr = (struct zsdevice *)AD_SCC;
297 zi = (struct zs_softc *)dev;
298 zi->zi_zs = addr;
299 cs = zi->zi_cs;
300
301 /*
302 * Get the command register into a known state.
303 */
304 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
305 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
306 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
307 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
308
309 /*
310 * Do a hardware reset.
311 */
312 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
313 delay(50000); /*enough ? */
314 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
315
316 /*
317 * Initialize both channels
318 */
319 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
320 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
321
322 if(machineid & ATARI_TT) {
323 /*
324 * ininitialise TT-MFP timer C: 307200Hz
325 * timer C and D share one control register:
326 * bits 0-2 control timer D
327 * bits 4-6 control timer C
328 */
329 int cr = MFP2->mf_tcdcr & 7;
330 MFP2->mf_tcdcr = cr; /* stop timer C */
331 MFP2->mf_tcdr = 1; /* counter 1 */
332 cr |= T_Q004 << 4; /* divisor 4 */
333 MFP2->mf_tcdcr = cr; /* start timer C */
334 /*
335 * enable scc related interrupts
336 */
337 SCU->vme_mask |= SCU_SCC;
338
339 zs_frequencies = zs_freqs_tt;
340 } else if (machineid & ATARI_FALCON) {
341 zs_frequencies = zs_freqs_falcon;
342 } else if (machineid & ATARI_HADES) {
343 zs_frequencies = zs_freqs_hades;
344 } else {
345 zs_frequencies = zs_freqs_generic;
346 }
347
348 /* link into interrupt list with order (A,B) (B=A+1) */
349 cs[0].cs_next = &cs[1];
350 cs[1].cs_next = zslist;
351 zslist = cs;
352
353 cs->cs_unit = 0;
354 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
355 cs++;
356 cs->cs_unit = 1;
357 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
358
359 printf(": serial2 on channel a and modem2 on channel b\n");
360 }
361
362 /*
363 * Open a zs serial port.
364 */
365 int
366 zsopen(dev, flags, mode, l)
367 dev_t dev;
368 int flags;
369 int mode;
370 struct lwp *l;
371 {
372 register struct tty *tp;
373 register struct zs_chanstate *cs;
374 struct zs_softc *zi;
375 int unit = ZS_UNIT(dev);
376 int zs = unit >> 1;
377 int error, s;
378
379 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
380 return (ENXIO);
381 cs = &zi->zi_cs[unit & 1];
382
383 /*
384 * When port A (ser02) is selected on the TT, make sure
385 * the port is enabled.
386 */
387 if((machineid & ATARI_TT) && !(unit & 1))
388 ym2149_ser2(1);
389
390 if (cs->cs_rbuf == NULL) {
391 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
392 M_WAITOK);
393 }
394
395 tp = cs->cs_ttyp;
396 if(tp == NULL) {
397 cs->cs_ttyp = tp = ttymalloc();
398 tty_attach(tp);
399 tp->t_dev = dev;
400 tp->t_oproc = zsstart;
401 tp->t_param = zsparam;
402 }
403
404 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
405 return (EBUSY);
406
407 s = spltty();
408
409 /*
410 * Do the following iff this is a first open.
411 */
412 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
413 if(tp->t_ispeed == 0) {
414 tp->t_iflag = TTYDEF_IFLAG;
415 tp->t_oflag = TTYDEF_OFLAG;
416 tp->t_cflag = TTYDEF_CFLAG;
417 tp->t_lflag = TTYDEF_LFLAG;
418 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
419 }
420 ttychars(tp);
421 ttsetwater(tp);
422
423 (void)zsparam(tp, &tp->t_termios);
424
425 /*
426 * Turn on DTR. We must always do this, even if carrier is not
427 * present, because otherwise we'd have to use TIOCSDTR
428 * immediately after setting CLOCAL, which applications do not
429 * expect. We always assert DTR while the device is open
430 * unless explicitly requested to deassert it.
431 */
432 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
433 /* May never get a status intr. if DCD already on. -gwr */
434 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
435 tp->t_state |= TS_CARR_ON;
436 if(cs->cs_softcar)
437 tp->t_state |= TS_CARR_ON;
438 }
439
440 splx(s);
441
442 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
443 if (error)
444 goto bad;
445
446 error = tp->t_linesw->l_open(dev, tp);
447 if(error)
448 goto bad;
449 return (0);
450
451 bad:
452 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
453 /*
454 * We failed to open the device, and nobody else had it opened.
455 * Clean up the state as appropriate.
456 */
457 zs_shutdown(cs);
458 }
459 return(error);
460 }
461
462 /*
463 * Close a zs serial port.
464 */
465 int
466 zsclose(dev, flags, mode, l)
467 dev_t dev;
468 int flags;
469 int mode;
470 struct lwp *l;
471 {
472 register struct zs_chanstate *cs;
473 register struct tty *tp;
474 struct zs_softc *zi;
475 int unit = ZS_UNIT(dev);
476
477 zi = zs_cd.cd_devs[unit >> 1];
478 cs = &zi->zi_cs[unit & 1];
479 tp = cs->cs_ttyp;
480
481 tp->t_linesw->l_close(tp, flags);
482 ttyclose(tp);
483
484 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
485 /*
486 * Although we got a last close, the device may still be in
487 * use; e.g. if this was the dialout node, and there are still
488 * processes waiting for carrier on the non-dialout node.
489 */
490 zs_shutdown(cs);
491 }
492 return (0);
493 }
494
495 /*
496 * Read/write zs serial port.
497 */
498 int
499 zsread(dev, uio, flags)
500 dev_t dev;
501 struct uio *uio;
502 int flags;
503 {
504 register struct zs_chanstate *cs;
505 register struct zs_softc *zi;
506 register struct tty *tp;
507 int unit;
508
509 unit = ZS_UNIT(dev);
510 zi = zs_cd.cd_devs[unit >> 1];
511 cs = &zi->zi_cs[unit & 1];
512 tp = cs->cs_ttyp;
513
514 return(tp->t_linesw->l_read(tp, uio, flags));
515 }
516
517 int
518 zswrite(dev, uio, flags)
519 dev_t dev;
520 struct uio *uio;
521 int flags;
522 {
523 register struct zs_chanstate *cs;
524 register struct zs_softc *zi;
525 register struct tty *tp;
526 int unit;
527
528 unit = ZS_UNIT(dev);
529 zi = zs_cd.cd_devs[unit >> 1];
530 cs = &zi->zi_cs[unit & 1];
531 tp = cs->cs_ttyp;
532
533 return(tp->t_linesw->l_write(tp, uio, flags));
534 }
535
536 int
537 zspoll(dev, events, l)
538 dev_t dev;
539 int events;
540 struct lwp *l;
541 {
542 register struct zs_chanstate *cs;
543 register struct zs_softc *zi;
544 register struct tty *tp;
545 int unit;
546
547 unit = ZS_UNIT(dev);
548 zi = zs_cd.cd_devs[unit >> 1];
549 cs = &zi->zi_cs[unit & 1];
550 tp = cs->cs_ttyp;
551
552 return ((*tp->t_linesw->l_poll)(tp, events, l));
553 }
554
555 struct tty *
556 zstty(dev)
557 dev_t dev;
558 {
559 register struct zs_chanstate *cs;
560 register struct zs_softc *zi;
561 int unit;
562
563 unit = ZS_UNIT(dev);
564 zi = zs_cd.cd_devs[unit >> 1];
565 cs = &zi->zi_cs[unit & 1];
566 return(cs->cs_ttyp);
567 }
568
569 /*
570 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
571 * channels are kept in (A,B) pairs.
572 *
573 * Do just a little, then get out; set a software interrupt if more
574 * work is needed.
575 *
576 * We deliberately ignore the vectoring Zilog gives us, and match up
577 * only the number of `reset interrupt under service' operations, not
578 * the order.
579 */
580
581 int
582 zshard(sr)
583 long sr;
584 {
585 register struct zs_chanstate *a;
586 #define b (a + 1)
587 register volatile struct zschan *zc;
588 register int rr3, intflags = 0, v, i;
589
590 do {
591 intflags &= ~4;
592 for(a = zslist; a != NULL; a = b->cs_next) {
593 rr3 = ZS_READ(a->cs_zc, 3);
594 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
595 intflags |= 4|2;
596 zc = a->cs_zc;
597 i = a->cs_rbput;
598 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
599 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
600 intflags |= 1;
601 }
602 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
603 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
604 intflags |= 1;
605 }
606 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
607 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
608 intflags |= 1;
609 }
610 a->cs_rbput = i;
611 }
612 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
613 intflags |= 4|2;
614 zc = b->cs_zc;
615 i = b->cs_rbput;
616 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
617 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
618 intflags |= 1;
619 }
620 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
621 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
622 intflags |= 1;
623 }
624 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
625 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
626 intflags |= 1;
627 }
628 b->cs_rbput = i;
629 }
630 }
631 } while(intflags & 4);
632 #undef b
633
634 if(intflags & 1) {
635 if(BASEPRI(sr)) {
636 spl1();
637 zsshortcuts++;
638 return(zssoft(sr));
639 }
640 else if(!cb_scheduled) {
641 cb_scheduled++;
642 add_sicallback((si_farg)zssoft, 0, 0);
643 }
644 }
645 return(intflags & 2);
646 }
647
648 static int
649 zsrint(cs, zc)
650 register struct zs_chanstate *cs;
651 register volatile struct zschan *zc;
652 {
653 register int c;
654
655 /*
656 * First read the status, because read of the received char
657 * destroy the status of this char.
658 */
659 c = ZS_READ(zc, 1);
660 c |= (zc->zc_data << 8);
661
662 /* clear receive error & interrupt condition */
663 zc->zc_csr = ZSWR0_RESET_ERRORS;
664 zc->zc_csr = ZSWR0_CLR_INTR;
665
666 return(ZRING_MAKE(ZRING_RINT, c));
667 }
668
669 static int
670 zsxint(cs, zc)
671 register struct zs_chanstate *cs;
672 register volatile struct zschan *zc;
673 {
674 register int i = cs->cs_tbc;
675
676 if(i == 0) {
677 zc->zc_csr = ZSWR0_RESET_TXINT;
678 zc->zc_csr = ZSWR0_CLR_INTR;
679 return(ZRING_MAKE(ZRING_XINT, 0));
680 }
681 cs->cs_tbc = i - 1;
682 zc->zc_data = *cs->cs_tba++;
683 zc->zc_csr = ZSWR0_CLR_INTR;
684 return (0);
685 }
686
687 static int
688 zssint(cs, zc)
689 register struct zs_chanstate *cs;
690 register volatile struct zschan *zc;
691 {
692 register int rr0;
693
694 rr0 = zc->zc_csr;
695 zc->zc_csr = ZSWR0_RESET_STATUS;
696 zc->zc_csr = ZSWR0_CLR_INTR;
697 /*
698 * The chip's hardware flow control is, as noted in zsreg.h,
699 * busted---if the DCD line goes low the chip shuts off the
700 * receiver (!). If we want hardware CTS flow control but do
701 * not have it, and carrier is now on, turn HFC on; if we have
702 * HFC now but carrier has gone low, turn it off.
703 */
704 if(rr0 & ZSRR0_DCD) {
705 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
706 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
707 cs->cs_creg[3] |= ZSWR3_HFC;
708 ZS_WRITE(zc, 3, cs->cs_creg[3]);
709 }
710 }
711 else {
712 if (cs->cs_creg[3] & ZSWR3_HFC) {
713 cs->cs_creg[3] &= ~ZSWR3_HFC;
714 ZS_WRITE(zc, 3, cs->cs_creg[3]);
715 }
716 }
717 return(ZRING_MAKE(ZRING_SINT, rr0));
718 }
719
720 /*
721 * Print out a ring or fifo overrun error message.
722 */
723 static void
724 zsoverrun(unit, ptime, what)
725 int unit;
726 long *ptime;
727 const char *what;
728 {
729 time_t cur_sec = time_second;
730
731 if(*ptime != cur_sec) {
732 *ptime = cur_sec;
733 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
734 (unit & 1) + 'a', what);
735 }
736 }
737
738 /*
739 * ZS software interrupt. Scan all channels for deferred interrupts.
740 */
741 int
742 zssoft(sr)
743 long sr;
744 {
745 register struct zs_chanstate *cs;
746 register volatile struct zschan *zc;
747 register struct linesw *line;
748 register struct tty *tp;
749 register int get, n, c, cc, unit, s;
750 int retval = 0;
751
752 cb_scheduled = 0;
753 s = spltty();
754 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
755 get = cs->cs_rbget;
756 again:
757 n = cs->cs_rbput; /* atomic */
758 if(get == n) /* nothing more on this line */
759 continue;
760 retval = 1;
761 unit = cs->cs_unit; /* set up to handle interrupts */
762 zc = cs->cs_zc;
763 tp = cs->cs_ttyp;
764 line = tp->t_linesw;
765 /*
766 * Compute the number of interrupts in the receive ring.
767 * If the count is overlarge, we lost some events, and
768 * must advance to the first valid one. It may get
769 * overwritten if more data are arriving, but this is
770 * too expensive to check and gains nothing (we already
771 * lost out; all we can do at this point is trade one
772 * kind of loss for another).
773 */
774 n -= get;
775 if(n > ZLRB_RING_SIZE) {
776 zsoverrun(unit, &cs->cs_rotime, "ring");
777 get += n - ZLRB_RING_SIZE;
778 n = ZLRB_RING_SIZE;
779 }
780 while(--n >= 0) {
781 /* race to keep ahead of incoming interrupts */
782 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
783 switch (ZRING_TYPE(c)) {
784
785 case ZRING_RINT:
786 c = ZRING_VALUE(c);
787 if(c & ZSRR1_DO)
788 zsoverrun(unit, &cs->cs_fotime, "fifo");
789 cc = c >> 8;
790 if(c & ZSRR1_FE)
791 cc |= TTY_FE;
792 if(c & ZSRR1_PE)
793 cc |= TTY_PE;
794 line->l_rint(cc, tp);
795 break;
796
797 case ZRING_XINT:
798 /*
799 * Transmit done: change registers and resume,
800 * or clear BUSY.
801 */
802 if(cs->cs_heldchange) {
803 int sps;
804
805 sps = splzs();
806 c = zc->zc_csr;
807 if((c & ZSRR0_DCD) == 0)
808 cs->cs_preg[3] &= ~ZSWR3_HFC;
809 bcopy((void *)cs->cs_preg,
810 (void *)cs->cs_creg, 16);
811 zs_loadchannelregs(zc, cs->cs_creg);
812 splx(sps);
813 cs->cs_heldchange = 0;
814 if(cs->cs_heldtbc
815 && (tp->t_state & TS_TTSTOP) == 0) {
816 cs->cs_tbc = cs->cs_heldtbc - 1;
817 zc->zc_data = *cs->cs_tba++;
818 goto again;
819 }
820 }
821 tp->t_state &= ~TS_BUSY;
822 if(tp->t_state & TS_FLUSH)
823 tp->t_state &= ~TS_FLUSH;
824 else ndflush(&tp->t_outq,cs->cs_tba
825 - tp->t_outq.c_cf);
826 line->l_start(tp);
827 break;
828
829 case ZRING_SINT:
830 /*
831 * Status line change. HFC bit is run in
832 * hardware interrupt, to avoid locking
833 * at splzs here.
834 */
835 c = ZRING_VALUE(c);
836 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
837 cc = (c & ZSRR0_DCD) != 0;
838 if(line->l_modem(tp, cc) == 0)
839 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
840 cc ? DMBIS : DMBIC);
841 }
842 cs->cs_rr0 = c;
843 break;
844
845 default:
846 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
847 unit >> 1, (unit & 1) + 'a', c);
848 break;
849 }
850 }
851 cs->cs_rbget = get;
852 goto again;
853 }
854 splx(s);
855 return (retval);
856 }
857
858 int
859 zsioctl(dev, cmd, data, flag, l)
860 dev_t dev;
861 u_long cmd;
862 void * data;
863 int flag;
864 struct lwp *l;
865 {
866 int unit = ZS_UNIT(dev);
867 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
868 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
869 register int error, s;
870 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
871
872 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
873 if(error != EPASSTHROUGH)
874 return(error);
875
876 error = ttioctl(tp, cmd, data, flag, l);
877 if(error !=EPASSTHROUGH)
878 return (error);
879
880 switch (cmd) {
881 case TIOCSBRK:
882 s = splzs();
883 cs->cs_preg[5] |= ZSWR5_BREAK;
884 cs->cs_creg[5] |= ZSWR5_BREAK;
885 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
886 splx(s);
887 break;
888 case TIOCCBRK:
889 s = splzs();
890 cs->cs_preg[5] &= ~ZSWR5_BREAK;
891 cs->cs_creg[5] &= ~ZSWR5_BREAK;
892 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
893 splx(s);
894 break;
895 case TIOCGFLAGS: {
896 int bits = 0;
897
898 if(cs->cs_softcar)
899 bits |= TIOCFLAG_SOFTCAR;
900 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
901 bits |= TIOCFLAG_CLOCAL;
902 if(cs->cs_creg[3] & ZSWR3_HFC)
903 bits |= TIOCFLAG_CRTSCTS;
904 *(int *)data = bits;
905 break;
906 }
907 case TIOCSFLAGS: {
908 int userbits = 0;
909
910 error = kauth_authorize_device_tty(l->l_cred,
911 KAUTH_DEVICE_TTY_PRIVSET, tp);
912 if(error != 0)
913 return (EPERM);
914
915 userbits = *(int *)data;
916
917 /*
918 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
919 # defaulting to software flow control.
920 */
921 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
922 return(EINVAL);
923 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
924 return(ENODEV);
925
926 s = splzs();
927 if((userbits & TIOCFLAG_SOFTCAR)) {
928 cs->cs_softcar = 1; /* turn on softcar */
929 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
930 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
931 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
932 }
933 else if(userbits & TIOCFLAG_CLOCAL) {
934 cs->cs_softcar = 0; /* turn off softcar */
935 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
936 cs->cs_creg[15] |= ZSWR15_DCD_IE;
937 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
938 tp->t_termios.c_cflag |= CLOCAL;
939 }
940 if(userbits & TIOCFLAG_CRTSCTS) {
941 cs->cs_preg[15] |= ZSWR15_CTS_IE;
942 cs->cs_creg[15] |= ZSWR15_CTS_IE;
943 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
944 cs->cs_preg[3] |= ZSWR3_HFC;
945 cs->cs_creg[3] |= ZSWR3_HFC;
946 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
947 tp->t_termios.c_cflag |= CRTSCTS;
948 }
949 else {
950 /* no mdmbuf, so we must want software flow control */
951 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
952 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
953 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
954 cs->cs_preg[3] &= ~ZSWR3_HFC;
955 cs->cs_creg[3] &= ~ZSWR3_HFC;
956 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
957 tp->t_termios.c_cflag &= ~CRTSCTS;
958 }
959 splx(s);
960 break;
961 }
962 case TIOCSDTR:
963 zs_modem(cs, ZSWR5_DTR, DMBIS);
964 break;
965 case TIOCCDTR:
966 zs_modem(cs, ZSWR5_DTR, DMBIC);
967 break;
968 case TIOCMGET:
969 zs_modem(cs, 0, DMGET);
970 break;
971 case TIOCMSET:
972 case TIOCMBIS:
973 case TIOCMBIC:
974 default:
975 return (EPASSTHROUGH);
976 }
977 return (0);
978 }
979
980 /*
981 * Start or restart transmission.
982 */
983 static void
984 zsstart(tp)
985 register struct tty *tp;
986 {
987 register struct zs_chanstate *cs;
988 register int s, nch;
989 int unit = ZS_UNIT(tp->t_dev);
990 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
991
992 cs = &zi->zi_cs[unit & 1];
993 s = spltty();
994
995 /*
996 * If currently active or delaying, no need to do anything.
997 */
998 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
999 goto out;
1000
1001 /*
1002 * If there are sleepers, and output has drained below low
1003 * water mark, awaken.
1004 */
1005 ttypull(tp);
1006
1007 nch = ndqb(&tp->t_outq, 0); /* XXX */
1008 if(nch) {
1009 register char *p = tp->t_outq.c_cf;
1010
1011 /* mark busy, enable tx done interrupts, & send first byte */
1012 tp->t_state |= TS_BUSY;
1013 (void) splzs();
1014 cs->cs_preg[1] |= ZSWR1_TIE;
1015 cs->cs_creg[1] |= ZSWR1_TIE;
1016 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1017 cs->cs_zc->zc_data = *p;
1018 cs->cs_tba = p + 1;
1019 cs->cs_tbc = nch - 1;
1020 } else {
1021 /*
1022 * Nothing to send, turn off transmit done interrupts.
1023 * This is useful if something is doing polled output.
1024 */
1025 (void) splzs();
1026 cs->cs_preg[1] &= ~ZSWR1_TIE;
1027 cs->cs_creg[1] &= ~ZSWR1_TIE;
1028 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1029 }
1030 out:
1031 splx(s);
1032 }
1033
1034 /*
1035 * Stop output, e.g., for ^S or output flush.
1036 */
1037 void
1038 zsstop(tp, flag)
1039 register struct tty *tp;
1040 int flag;
1041 {
1042 register struct zs_chanstate *cs;
1043 register int s, unit = ZS_UNIT(tp->t_dev);
1044 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1045
1046 cs = &zi->zi_cs[unit & 1];
1047 s = splzs();
1048 if(tp->t_state & TS_BUSY) {
1049 /*
1050 * Device is transmitting; must stop it.
1051 */
1052 cs->cs_tbc = 0;
1053 if ((tp->t_state & TS_TTSTOP) == 0)
1054 tp->t_state |= TS_FLUSH;
1055 }
1056 splx(s);
1057 }
1058
1059 static void
1060 zs_shutdown(cs)
1061 struct zs_chanstate *cs;
1062 {
1063 struct tty *tp = cs->cs_ttyp;
1064 int s;
1065
1066 s = splzs();
1067
1068 /*
1069 * Hang up if necessary. Wait a bit, so the other side has time to
1070 * notice even if we immediately open the port again.
1071 */
1072 if(tp->t_cflag & HUPCL) {
1073 zs_modem(cs, 0, DMSET);
1074 (void)tsleep((void *)cs, TTIPRI, ttclos, hz);
1075 }
1076
1077 /* Clear any break condition set with TIOCSBRK. */
1078 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1079 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1080 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1081 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1082 }
1083
1084 /*
1085 * Drop all lines and cancel interrupts
1086 */
1087 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1088 splx(s);
1089 }
1090
1091 /*
1092 * Set ZS tty parameters from termios.
1093 *
1094 * This routine makes use of the fact that only registers
1095 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1096 */
1097 static int
1098 zsparam(tp, t)
1099 register struct tty *tp;
1100 register struct termios *t;
1101 {
1102 int unit = ZS_UNIT(tp->t_dev);
1103 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1104 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1105 int cdiv = 0, /* XXX gcc4 -Wuninitialized */
1106 clkm = 0, /* XXX gcc4 -Wuninitialized */
1107 brgm = 0, /* XXX gcc4 -Wuninitialized */
1108 tcon = 0; /* XXX gcc4 -Wuninitialized */
1109 register int tmp, tmp5, cflag, s;
1110
1111 tmp = t->c_ospeed;
1112 tmp5 = t->c_ispeed;
1113 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1114 return(EINVAL);
1115 if(tmp == 0) {
1116 /* stty 0 => drop DTR and RTS */
1117 zs_modem(cs, 0, DMSET);
1118 return(0);
1119 }
1120 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1121 if (tmp < 0)
1122 return(EINVAL);
1123 tp->t_ispeed = tp->t_ospeed = tmp;
1124
1125 cflag = tp->t_cflag = t->c_cflag;
1126 if (cflag & CSTOPB)
1127 cdiv |= ZSWR4_TWOSB;
1128 else
1129 cdiv |= ZSWR4_ONESB;
1130 if (!(cflag & PARODD))
1131 cdiv |= ZSWR4_EVENP;
1132 if (cflag & PARENB)
1133 cdiv |= ZSWR4_PARENB;
1134
1135 switch(cflag & CSIZE) {
1136 case CS5:
1137 tmp = ZSWR3_RX_5;
1138 tmp5 = ZSWR5_TX_5;
1139 break;
1140 case CS6:
1141 tmp = ZSWR3_RX_6;
1142 tmp5 = ZSWR5_TX_6;
1143 break;
1144 case CS7:
1145 tmp = ZSWR3_RX_7;
1146 tmp5 = ZSWR5_TX_7;
1147 break;
1148 case CS8:
1149 default:
1150 tmp = ZSWR3_RX_8;
1151 tmp5 = ZSWR5_TX_8;
1152 break;
1153 }
1154 tmp |= ZSWR3_RX_ENABLE;
1155 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1156
1157 /*
1158 * Block interrupts so that state will not
1159 * be altered until we are done setting it up.
1160 */
1161 s = splzs();
1162 cs->cs_preg[4] = cdiv;
1163 cs->cs_preg[11] = clkm;
1164 cs->cs_preg[12] = tcon;
1165 cs->cs_preg[13] = tcon >> 8;
1166 cs->cs_preg[14] = brgm;
1167 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1168 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1169 cs->cs_preg[10] = ZSWR10_NRZ;
1170 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1171
1172 /*
1173 * Output hardware flow control on the chip is horrendous: if
1174 * carrier detect drops, the receiver is disabled. Hence we
1175 * can only do this when the carrier is on.
1176 */
1177 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1178 tmp |= ZSWR3_HFC;
1179 cs->cs_preg[3] = tmp;
1180 cs->cs_preg[5] = tmp5;
1181
1182 /*
1183 * If nothing is being transmitted, set up new current values,
1184 * else mark them as pending.
1185 */
1186 if(cs->cs_heldchange == 0) {
1187 if (cs->cs_ttyp->t_state & TS_BUSY) {
1188 cs->cs_heldtbc = cs->cs_tbc;
1189 cs->cs_tbc = 0;
1190 cs->cs_heldchange = 1;
1191 } else {
1192 bcopy((void *)cs->cs_preg, (void *)cs->cs_creg, 16);
1193 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1194 }
1195 }
1196 splx(s);
1197 return (0);
1198 }
1199
1200 /*
1201 * search for the best matching baudrate
1202 */
1203 static int
1204 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1205 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1206 {
1207 int bestdiff, bestbps, source;
1208
1209 bestdiff = bestbps = 0;
1210 unit = (unit & 1) << 2;
1211 for (source = 0; source < 4; ++source) {
1212 long freq = zs_frequencies[unit + source];
1213 int diff, bps, div, clkm, brgm, tcon;
1214
1215 bps = div = clkm = brgm = tcon = 0;
1216 switch (source) {
1217 case 0: /* BRgen, PCLK */
1218 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1219 break;
1220 case 1: /* BRgen, RTxC */
1221 brgm = ZSWR14_BAUD_ENA;
1222 break;
1223 case 2: /* RTxC */
1224 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1225 break;
1226 case 3: /* TRxC */
1227 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1228 break;
1229 }
1230 switch (source) {
1231 case 0:
1232 case 1:
1233 div = ZSWR4_CLK_X16;
1234 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1235 tcon = BPS_TO_TCONST(freq, wanted);
1236 if (tcon < 0)
1237 tcon = 0;
1238 bps = TCONST_TO_BPS(freq, tcon);
1239 break;
1240 case 2:
1241 case 3:
1242 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1243 int b2 = freq / 32, d2 = abs(b2 - wanted);
1244 int b3 = freq / 64, d3 = abs(b3 - wanted);
1245
1246 if (d1 < d2 && d1 < d3) {
1247 div = ZSWR4_CLK_X16;
1248 bps = b1;
1249 } else if (d2 < d3 && d2 < d1) {
1250 div = ZSWR4_CLK_X32;
1251 bps = b2;
1252 } else {
1253 div = ZSWR4_CLK_X64;
1254 bps = b3;
1255 }
1256 brgm = tcon = 0;
1257 break;
1258 }
1259 }
1260 diff = abs(bps - wanted);
1261 if (!source || diff < bestdiff) {
1262 *divisor = div;
1263 *clockmode = clkm;
1264 *brgenmode = brgm;
1265 *timeconst = tcon;
1266 bestbps = bps;
1267 bestdiff = diff;
1268 if (diff == 0)
1269 break;
1270 }
1271 }
1272 /* Allow deviations upto 5% */
1273 if (20 * bestdiff > wanted)
1274 return -1;
1275 return bestbps;
1276 }
1277
1278 /*
1279 * Raise or lower modem control (DTR/RTS) signals. If a character is
1280 * in transmission, the change is deferred.
1281 */
1282 static int
1283 zs_modem(cs, bits, how)
1284 struct zs_chanstate *cs;
1285 int bits, how;
1286 {
1287 int s, mbits;
1288
1289 bits &= ZSWR5_DTR | ZSWR5_RTS;
1290
1291 s = splzs();
1292 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1293
1294 switch(how) {
1295 case DMSET:
1296 mbits = bits;
1297 break;
1298 case DMBIS:
1299 mbits |= bits;
1300 break;
1301 case DMBIC:
1302 mbits &= ~bits;
1303 break;
1304 case DMGET:
1305 splx(s);
1306 return(mbits);
1307 }
1308
1309 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1310 if(cs->cs_heldchange == 0) {
1311 if(cs->cs_ttyp->t_state & TS_BUSY) {
1312 cs->cs_heldtbc = cs->cs_tbc;
1313 cs->cs_tbc = 0;
1314 cs->cs_heldchange = 1;
1315 }
1316 else {
1317 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1318 }
1319 }
1320 splx(s);
1321 return(0);
1322 }
1323
1324 /*
1325 * Write the given register set to the given zs channel in the proper order.
1326 * The channel must not be transmitting at the time. The receiver will
1327 * be disabled for the time it takes to write all the registers.
1328 */
1329 static void
1330 zs_loadchannelregs(zc, reg)
1331 volatile struct zschan *zc;
1332 u_char *reg;
1333 {
1334 int i;
1335
1336 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1337 i = zc->zc_data; /* drain fifo */
1338 i = zc->zc_data;
1339 i = zc->zc_data;
1340 ZS_WRITE(zc, 4, reg[4]);
1341 ZS_WRITE(zc, 10, reg[10]);
1342 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1343 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1344 ZS_WRITE(zc, 1, reg[1]);
1345 ZS_WRITE(zc, 9, reg[9]);
1346 ZS_WRITE(zc, 11, reg[11]);
1347 ZS_WRITE(zc, 12, reg[12]);
1348 ZS_WRITE(zc, 13, reg[13]);
1349 ZS_WRITE(zc, 14, reg[14]);
1350 ZS_WRITE(zc, 15, reg[15]);
1351 ZS_WRITE(zc, 3, reg[3]);
1352 ZS_WRITE(zc, 5, reg[5]);
1353 }
1354 #endif /* NZS > 1 */
1355