Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.55.10.3
      1 /*	$NetBSD: zs.c,v 1.55.10.3 2009/08/19 18:46:02 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  *
     12  * All advertising materials mentioning features or use of this software
     13  * must display the following acknowledgement:
     14  *	This product includes software developed by the University of
     15  *	California, Lawrence Berkeley Laboratory.
     16  *
     17  * Redistribution and use in source and binary forms, with or without
     18  * modification, are permitted provided that the following conditions
     19  * are met:
     20  * 1. Redistributions of source code must retain the above copyright
     21  *    notice, this list of conditions and the following disclaimer.
     22  * 2. Redistributions in binary form must reproduce the above copyright
     23  *    notice, this list of conditions and the following disclaimer in the
     24  *    documentation and/or other materials provided with the distribution.
     25  * 3. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     42  */
     43 
     44 /*-
     45  * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
     46  * All rights reserved.
     47  *
     48  * This code is derived from software contributed to The NetBSD Foundation
     49  * by Leo Weppelman.
     50  *
     51  * Redistribution and use in source and binary forms, with or without
     52  * modification, are permitted provided that the following conditions
     53  * are met:
     54  * 1. Redistributions of source code must retain the above copyright
     55  *    notice, this list of conditions and the following disclaimer.
     56  * 2. Redistributions in binary form must reproduce the above copyright
     57  *    notice, this list of conditions and the following disclaimer in the
     58  *    documentation and/or other materials provided with the distribution.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     61  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     62  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     63  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     64  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     65  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     66  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     67  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     68  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     69  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     70  * POSSIBILITY OF SUCH DAMAGE.
     71  */
     72 
     73 /*
     74  * Zilog Z8530 (ZSCC) driver.
     75  *
     76  * Runs two tty ports (modem2 and serial2) on zs0.
     77  *
     78  * This driver knows far too much about chip to usage mappings.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.55.10.3 2009/08/19 18:46:02 yamt Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/systm.h>
     86 #include <sys/proc.h>
     87 #include <sys/device.h>
     88 #include <sys/conf.h>
     89 #include <sys/file.h>
     90 #include <sys/ioctl.h>
     91 #include <sys/malloc.h>
     92 #include <sys/tty.h>
     93 #include <sys/time.h>
     94 #include <sys/kernel.h>
     95 #include <sys/syslog.h>
     96 #include <sys/kauth.h>
     97 
     98 #include <machine/cpu.h>
     99 #include <machine/iomap.h>
    100 #include <machine/scu.h>
    101 #include <machine/mfp.h>
    102 #include <atari/dev/ym2149reg.h>
    103 
    104 #include <dev/ic/z8530reg.h>
    105 #include <atari/dev/zsvar.h>
    106 #include "zs.h"
    107 #if NZS > 1
    108 #error "This driver supports only 1 85C30!"
    109 #endif
    110 
    111 #if NZS > 0
    112 
    113 #define PCLK	(8053976)	/* PCLK pin input clock rate */
    114 #define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
    115 
    116 #define splzs	spl5
    117 
    118 /*
    119  * Software state per found chip.
    120  */
    121 struct zs_softc {
    122     struct	device		zi_dev;    /* base device		  */
    123     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
    124     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
    125 };
    126 
    127 static void	*zs_softint_cookie;	/* for callback */
    128 /*
    129  * Define the registers for a closed port
    130  */
    131 static u_char zs_init_regs[16] = {
    132 /*  0 */	0,
    133 /*  1 */	0,
    134 /*  2 */	0x60,
    135 /*  3 */	0,
    136 /*  4 */	0,
    137 /*  5 */	0,
    138 /*  6 */	0,
    139 /*  7 */	0,
    140 /*  8 */	0,
    141 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
    142 /* 10 */	ZSWR10_NRZ,
    143 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    144 /* 12 */	0,
    145 /* 13 */	0,
    146 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    147 /* 15 */	0
    148 };
    149 
    150 /*
    151  * Define the machine dependant clock frequencies
    152  * If BRgen feeds sender/receiver we always use a
    153  * divisor 16, therefor the division by 16 can as
    154  * well be done here.
    155  */
    156 static u_long zs_freqs_tt[] = {
    157 	/*
    158 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    159 	 * which is set to 307.2 kHz during initialisation
    160 	 * and never changed afterwards.
    161 	 */
    162 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    163 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    164 	3672000,	/* RTxCA, from PCLK4		*/
    165 	      0,	/* TRxCA, external		*/
    166 
    167 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    168 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    169 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    170 	2457600		/* TRxCB, from BCLK		*/
    171 };
    172 
    173 static u_long zs_freqs_falcon[] = {
    174 	/*
    175 	 * Atari Falcon, XXX no specs available, this might be wrong
    176 	 */
    177 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    178 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    179 	3672000,	/* RTxCA, ???			*/
    180 	      0,	/* TRxCA, external		*/
    181 
    182 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    183 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    184 	3672000,	/* RTxCB, ???			*/
    185 	2457600		/* TRxCB, ???			*/
    186 };
    187 
    188 static u_long zs_freqs_hades[] = {
    189 	/*
    190 	 * XXX: Channel-A unchecked!!!!!
    191 	 */
    192      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    193 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    194 	3672000,	/* RTxCA, from PCLK4		*/
    195 	      0,	/* TRxCA, external		*/
    196 
    197      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
    198 	 235550,	/* BRgen, RTxCB, divisor 16	*/
    199 	3768800,	/* RTxCB, 3.7688MHz		*/
    200 	3768800		/* TRxCB, 3.7688MHz		*/
    201 };
    202 
    203 static u_long zs_freqs_generic[] = {
    204 	/*
    205 	 * other machines, assume only PCLK is available
    206 	 */
    207 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    208 	      0,	/* BRgen, RTxCA, divisor 16	*/
    209 	      0,	/* RTxCA, unknown		*/
    210 	      0,	/* TRxCA, unknown		*/
    211 
    212 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    213 	      0,	/* BRgen, RTxCB, divisor 16	*/
    214 	      0,	/* RTxCB, unknown		*/
    215 	      0		/* TRxCB, unknown		*/
    216 };
    217 static u_long *zs_frequencies;
    218 
    219 /* Definition of the driver for autoconfig. */
    220 static int	zsmatch(struct device *, struct cfdata *, void *);
    221 static void	zsattach(struct device *, struct device *, void *);
    222 
    223 CFATTACH_DECL(zs, sizeof(struct zs_softc),
    224     zsmatch, zsattach, NULL, NULL);
    225 
    226 extern struct cfdriver zs_cd;
    227 
    228 /* {b,c}devsw[] function prototypes */
    229 dev_type_open(zsopen);
    230 dev_type_close(zsclose);
    231 dev_type_read(zsread);
    232 dev_type_write(zswrite);
    233 dev_type_ioctl(zsioctl);
    234 dev_type_stop(zsstop);
    235 dev_type_tty(zstty);
    236 dev_type_poll(zspoll);
    237 
    238 const struct cdevsw zs_cdevsw = {
    239 	zsopen, zsclose, zsread, zswrite, zsioctl,
    240 	zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
    241 };
    242 
    243 /* Interrupt handlers. */
    244 int		zshard(long);
    245 static int	zssoft(long);
    246 static int	zsrint(struct zs_chanstate *, volatile struct zschan *);
    247 static int	zsxint(struct zs_chanstate *, volatile struct zschan *);
    248 static int	zssint(struct zs_chanstate *, volatile struct zschan *);
    249 
    250 static struct zs_chanstate *zslist;
    251 
    252 /* Routines called from other code. */
    253 static void	zsstart(struct tty *);
    254 
    255 /* Routines purely local to this driver. */
    256 static void	zsoverrun(int, long *, const char *);
    257 static int	zsparam(struct tty *, struct termios *);
    258 static int	zsbaudrate(int, int, int *, int *, int *, int *);
    259 static int	zs_modem(struct zs_chanstate *, int, int);
    260 static void	zs_loadchannelregs(volatile struct zschan *, u_char *);
    261 static void	zs_shutdown(struct zs_chanstate *);
    262 
    263 static int
    264 zsmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
    265 {
    266 	static int	zs_matched = 0;
    267 
    268 	if(strcmp("zs", auxp) || zs_matched)
    269 		return(0);
    270 	zs_matched = 1;
    271 	return(1);
    272 }
    273 
    274 /*
    275  * Attach a found zs.
    276  */
    277 static void
    278 zsattach(struct device *parent, struct device *dev, void *aux)
    279 {
    280 	register struct zs_softc		*zi;
    281 	register struct zs_chanstate		*cs;
    282 	register volatile struct zsdevice	*addr;
    283 		 char				tmp;
    284 
    285 	addr      = (struct zsdevice *)AD_SCC;
    286 	zi        = (struct zs_softc *)dev;
    287 	zi->zi_zs = addr;
    288 	cs        = zi->zi_cs;
    289 
    290 	/*
    291 	 * Get the command register into a known state.
    292 	 */
    293 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    294 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    295 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    296 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    297 
    298 	/*
    299 	 * Do a hardware reset.
    300 	 */
    301 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    302 	delay(50000);	/*enough ? */
    303 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    304 
    305 	/*
    306 	 * Initialize both channels
    307 	 */
    308 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    309 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    310 
    311 	if(machineid & ATARI_TT) {
    312 		/*
    313 		 * ininitialise TT-MFP timer C: 307200Hz
    314 		 * timer C and D share one control register:
    315 		 *	bits 0-2 control timer D
    316 		 *	bits 4-6 control timer C
    317 		 */
    318 		int cr = MFP2->mf_tcdcr & 7;
    319 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    320 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    321 		cr |= T_Q004 << 4;		/* divisor 4     */
    322 		MFP2->mf_tcdcr = cr;		/* start timer C */
    323 		/*
    324 		 * enable scc related interrupts
    325 		 */
    326 		SCU->vme_mask |= SCU_SCC;
    327 
    328 		zs_frequencies = zs_freqs_tt;
    329 	} else if (machineid & ATARI_FALCON) {
    330 		zs_frequencies = zs_freqs_falcon;
    331 	} else if (machineid & ATARI_HADES) {
    332 		zs_frequencies = zs_freqs_hades;
    333 	} else {
    334 		zs_frequencies = zs_freqs_generic;
    335 	}
    336 
    337 	/* link into interrupt list with order (A,B) (B=A+1) */
    338 	cs[0].cs_next = &cs[1];
    339 	cs[1].cs_next = zslist;
    340 	zslist        = cs;
    341 
    342 	cs->cs_unit  = 0;
    343 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    344 	cs++;
    345 	cs->cs_unit  = 1;
    346 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    347 
    348 	zs_softint_cookie = softint_establish(SOFTINT_SERIAL,
    349 	    (void (*)(void *))zssoft, 0);
    350 
    351 	printf(": serial2 on channel a and modem2 on channel b\n");
    352 }
    353 
    354 /*
    355  * Open a zs serial port.
    356  */
    357 int
    358 zsopen(dev_t dev, int flags, int mode, struct lwp *l)
    359 {
    360 	register struct tty		*tp;
    361 	register struct zs_chanstate	*cs;
    362 		 struct zs_softc	*zi;
    363 		 int			unit = ZS_UNIT(dev);
    364 		 int			zs = unit >> 1;
    365 		 int			error, s;
    366 
    367 	zi = device_lookup_private(&zs_cd, zs);
    368 	if (zi == NULL)
    369 		return (ENXIO);
    370 	cs = &zi->zi_cs[unit & 1];
    371 
    372 	/*
    373 	 * When port A (ser02) is selected on the TT, make sure
    374 	 * the port is enabled.
    375 	 */
    376 	if((machineid & ATARI_TT) && !(unit & 1))
    377 		ym2149_ser2(1);
    378 
    379 	if (cs->cs_rbuf == NULL) {
    380 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
    381 								   M_WAITOK);
    382 	}
    383 
    384 	tp = cs->cs_ttyp;
    385 	if(tp == NULL) {
    386 		cs->cs_ttyp = tp = ttymalloc();
    387 		tty_attach(tp);
    388 		tp->t_dev   = dev;
    389 		tp->t_oproc = zsstart;
    390 		tp->t_param = zsparam;
    391 	}
    392 
    393 	if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
    394 		return (EBUSY);
    395 
    396 	s  = spltty();
    397 
    398 	/*
    399 	 * Do the following iff this is a first open.
    400 	 */
    401 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    402 		if(tp->t_ispeed == 0) {
    403 			tp->t_iflag = TTYDEF_IFLAG;
    404 			tp->t_oflag = TTYDEF_OFLAG;
    405 			tp->t_cflag = TTYDEF_CFLAG;
    406 			tp->t_lflag = TTYDEF_LFLAG;
    407 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    408 		}
    409 		ttychars(tp);
    410 		ttsetwater(tp);
    411 
    412 		(void)zsparam(tp, &tp->t_termios);
    413 
    414 		/*
    415 		 * Turn on DTR.  We must always do this, even if carrier is not
    416 		 * present, because otherwise we'd have to use TIOCSDTR
    417 		 * immediately after setting CLOCAL, which applications do not
    418 		 * expect.  We always assert DTR while the device is open
    419 		 * unless explicitly requested to deassert it.
    420 		 */
    421 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    422 		/* May never get a status intr. if DCD already on. -gwr */
    423 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
    424 			tp->t_state |= TS_CARR_ON;
    425 		if(cs->cs_softcar)
    426 			tp->t_state |= TS_CARR_ON;
    427 	}
    428 
    429 	splx(s);
    430 
    431 	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
    432 	if (error)
    433 		goto bad;
    434 
    435 	error = tp->t_linesw->l_open(dev, tp);
    436 	if(error)
    437 		goto bad;
    438 	return (0);
    439 
    440 bad:
    441 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    442 		/*
    443 		 * We failed to open the device, and nobody else had it opened.
    444 		 * Clean up the state as appropriate.
    445 		 */
    446 		zs_shutdown(cs);
    447 	}
    448 	return(error);
    449 }
    450 
    451 /*
    452  * Close a zs serial port.
    453  */
    454 int
    455 zsclose(dev_t dev, int flags, int mode, struct lwp *l)
    456 {
    457 	register struct zs_chanstate	*cs;
    458 	register struct tty		*tp;
    459 		 struct zs_softc	*zi;
    460 		 int			unit = ZS_UNIT(dev);
    461 
    462 	zi = device_lookup_private(&zs_cd, unit >> 1);
    463 	cs = &zi->zi_cs[unit & 1];
    464 	tp = cs->cs_ttyp;
    465 
    466 	tp->t_linesw->l_close(tp, flags);
    467 	ttyclose(tp);
    468 
    469 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
    470 		/*
    471 		 * Although we got a last close, the device may still be in
    472 		 * use; e.g. if this was the dialout node, and there are still
    473 		 * processes waiting for carrier on the non-dialout node.
    474 		 */
    475 		zs_shutdown(cs);
    476 	}
    477 	return (0);
    478 }
    479 
    480 /*
    481  * Read/write zs serial port.
    482  */
    483 int
    484 zsread(dev_t dev, struct uio *uio, int flags)
    485 {
    486 	register struct zs_chanstate	*cs;
    487 	register struct zs_softc	*zi;
    488 	register struct tty		*tp;
    489 		 int			unit;
    490 
    491 	unit = ZS_UNIT(dev);
    492 	zi   = device_lookup_private(&zs_cd, unit >> 1);
    493 	cs   = &zi->zi_cs[unit & 1];
    494 	tp   = cs->cs_ttyp;
    495 
    496 	return(tp->t_linesw->l_read(tp, uio, flags));
    497 }
    498 
    499 int
    500 zswrite(dev_t dev, struct uio *uio, int flags)
    501 {
    502 	register struct zs_chanstate	*cs;
    503 	register struct zs_softc	*zi;
    504 	register struct tty		*tp;
    505 		 int			unit;
    506 
    507 	unit = ZS_UNIT(dev);
    508 	zi   = device_lookup_private(&zs_cd, unit >> 1);
    509 	cs   = &zi->zi_cs[unit & 1];
    510 	tp   = cs->cs_ttyp;
    511 
    512 	return(tp->t_linesw->l_write(tp, uio, flags));
    513 }
    514 
    515 int
    516 zspoll(dev_t dev, int events, struct lwp *l)
    517 {
    518 	register struct zs_chanstate	*cs;
    519 	register struct zs_softc	*zi;
    520 	register struct tty		*tp;
    521 		 int			unit;
    522 
    523 	unit = ZS_UNIT(dev);
    524 	zi   = device_lookup_private(&zs_cd, unit >> 1);
    525 	cs   = &zi->zi_cs[unit & 1];
    526 	tp   = cs->cs_ttyp;
    527 
    528 	return ((*tp->t_linesw->l_poll)(tp, events, l));
    529 }
    530 
    531 struct tty *
    532 zstty(dev_t dev)
    533 {
    534 	register struct zs_chanstate	*cs;
    535 	register struct zs_softc	*zi;
    536 		 int			unit;
    537 
    538 	unit = ZS_UNIT(dev);
    539 	zi   = device_lookup_private(&zs_cd, unit >> 1);
    540 	cs   = &zi->zi_cs[unit & 1];
    541 	return(cs->cs_ttyp);
    542 }
    543 
    544 /*
    545  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    546  * channels are kept in (A,B) pairs.
    547  *
    548  * Do just a little, then get out; set a software interrupt if more
    549  * work is needed.
    550  *
    551  * We deliberately ignore the vectoring Zilog gives us, and match up
    552  * only the number of `reset interrupt under service' operations, not
    553  * the order.
    554  */
    555 
    556 int
    557 zshard(long sr)
    558 {
    559 	register struct zs_chanstate	*a;
    560 #define	b (a + 1)
    561 	register volatile struct zschan *zc;
    562 	register int			rr3, intflags = 0, v, i;
    563 
    564 	do {
    565 	    intflags &= ~4;
    566 	    for(a = zslist; a != NULL; a = b->cs_next) {
    567 		rr3 = ZS_READ(a->cs_zc, 3);
    568 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    569 			intflags |= 4|2;
    570 			zc = a->cs_zc;
    571 			i  = a->cs_rbput;
    572 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    573 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    574 				intflags |= 1;
    575 			}
    576 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    577 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    578 				intflags |= 1;
    579 			}
    580 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    581 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    582 				intflags |= 1;
    583 			}
    584 			a->cs_rbput = i;
    585 		}
    586 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    587 			intflags |= 4|2;
    588 			zc = b->cs_zc;
    589 			i  = b->cs_rbput;
    590 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    591 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    592 				intflags |= 1;
    593 			}
    594 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    595 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    596 				intflags |= 1;
    597 			}
    598 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    599 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    600 				intflags |= 1;
    601 			}
    602 			b->cs_rbput = i;
    603 		}
    604 	    }
    605 	} while(intflags & 4);
    606 #undef b
    607 
    608 	if(intflags & 1)
    609 		softint_schedule(zs_softint_cookie);
    610 
    611 	return(intflags & 2);
    612 }
    613 
    614 static int
    615 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
    616 {
    617 	register int c;
    618 
    619 	/*
    620 	 * First read the status, because read of the received char
    621 	 * destroy the status of this char.
    622 	 */
    623 	c = ZS_READ(zc, 1);
    624 	c |= (zc->zc_data << 8);
    625 
    626 	/* clear receive error & interrupt condition */
    627 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    628 	zc->zc_csr = ZSWR0_CLR_INTR;
    629 
    630 	return(ZRING_MAKE(ZRING_RINT, c));
    631 }
    632 
    633 static int
    634 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
    635 {
    636 	register int i = cs->cs_tbc;
    637 
    638 	if(i == 0) {
    639 		zc->zc_csr = ZSWR0_RESET_TXINT;
    640 		zc->zc_csr = ZSWR0_CLR_INTR;
    641 		return(ZRING_MAKE(ZRING_XINT, 0));
    642 	}
    643 	cs->cs_tbc = i - 1;
    644 	zc->zc_data = *cs->cs_tba++;
    645 	zc->zc_csr = ZSWR0_CLR_INTR;
    646 	return (0);
    647 }
    648 
    649 static int
    650 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
    651 {
    652 	register int rr0;
    653 
    654 	rr0 = zc->zc_csr;
    655 	zc->zc_csr = ZSWR0_RESET_STATUS;
    656 	zc->zc_csr = ZSWR0_CLR_INTR;
    657 	/*
    658 	 * The chip's hardware flow control is, as noted in zsreg.h,
    659 	 * busted---if the DCD line goes low the chip shuts off the
    660 	 * receiver (!).  If we want hardware CTS flow control but do
    661 	 * not have it, and carrier is now on, turn HFC on; if we have
    662 	 * HFC now but carrier has gone low, turn it off.
    663 	 */
    664 	if(rr0 & ZSRR0_DCD) {
    665 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    666 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    667 			cs->cs_creg[3] |= ZSWR3_HFC;
    668 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    669 		}
    670 	}
    671 	else {
    672 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    673 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    674 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    675 		}
    676 	}
    677 	return(ZRING_MAKE(ZRING_SINT, rr0));
    678 }
    679 
    680 /*
    681  * Print out a ring or fifo overrun error message.
    682  */
    683 static void
    684 zsoverrun(int unit, long *ptime, const char *what)
    685 {
    686 	time_t cur_sec = time_second;
    687 
    688 	if(*ptime != cur_sec) {
    689 		*ptime = cur_sec;
    690 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    691 		    (unit & 1) + 'a', what);
    692 	}
    693 }
    694 
    695 /*
    696  * ZS software interrupt.  Scan all channels for deferred interrupts.
    697  */
    698 int
    699 zssoft(long sr)
    700 {
    701     register struct zs_chanstate	*cs;
    702     register volatile struct zschan	*zc;
    703     register struct linesw		*line;
    704     register struct tty			*tp;
    705     register int			get, n, c, cc, unit, s;
    706  	     int			retval = 0;
    707 
    708     s = spltty();
    709     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    710 	get = cs->cs_rbget;
    711 again:
    712 	n = cs->cs_rbput;	/* atomic			*/
    713 	if(get == n)		/* nothing more on this line	*/
    714 		continue;
    715 	retval = 1;
    716 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    717 	zc     = cs->cs_zc;
    718 	tp     = cs->cs_ttyp;
    719 	line   = tp->t_linesw;
    720 	/*
    721 	 * Compute the number of interrupts in the receive ring.
    722 	 * If the count is overlarge, we lost some events, and
    723 	 * must advance to the first valid one.  It may get
    724 	 * overwritten if more data are arriving, but this is
    725 	 * too expensive to check and gains nothing (we already
    726 	 * lost out; all we can do at this point is trade one
    727 	 * kind of loss for another).
    728 	 */
    729 	n -= get;
    730 	if(n > ZLRB_RING_SIZE) {
    731 		zsoverrun(unit, &cs->cs_rotime, "ring");
    732 		get += n - ZLRB_RING_SIZE;
    733 		n    = ZLRB_RING_SIZE;
    734 	}
    735 	while(--n >= 0) {
    736 		/* race to keep ahead of incoming interrupts */
    737 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    738 		switch (ZRING_TYPE(c)) {
    739 
    740 		case ZRING_RINT:
    741 			c = ZRING_VALUE(c);
    742 			if(c & ZSRR1_DO)
    743 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    744 			cc = c >> 8;
    745 			if(c & ZSRR1_FE)
    746 				cc |= TTY_FE;
    747 			if(c & ZSRR1_PE)
    748 				cc |= TTY_PE;
    749 			line->l_rint(cc, tp);
    750 			break;
    751 
    752 		case ZRING_XINT:
    753 			/*
    754 			 * Transmit done: change registers and resume,
    755 			 * or clear BUSY.
    756 			 */
    757 			if(cs->cs_heldchange) {
    758 				int sps;
    759 
    760 				sps = splzs();
    761 				c = zc->zc_csr;
    762 				if((c & ZSRR0_DCD) == 0)
    763 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    764 				memcpy((void *)cs->cs_creg,
    765 				    (void *)cs->cs_preg, 16);
    766 				zs_loadchannelregs(zc, cs->cs_creg);
    767 				splx(sps);
    768 				cs->cs_heldchange = 0;
    769 				if(cs->cs_heldtbc
    770 					&& (tp->t_state & TS_TTSTOP) == 0) {
    771 					cs->cs_tbc = cs->cs_heldtbc - 1;
    772 					zc->zc_data = *cs->cs_tba++;
    773 					goto again;
    774 				}
    775 			}
    776 			tp->t_state &= ~TS_BUSY;
    777 			if(tp->t_state & TS_FLUSH)
    778 				tp->t_state &= ~TS_FLUSH;
    779 			else ndflush(&tp->t_outq,cs->cs_tba
    780 						- tp->t_outq.c_cf);
    781 			line->l_start(tp);
    782 			break;
    783 
    784 		case ZRING_SINT:
    785 			/*
    786 			 * Status line change.  HFC bit is run in
    787 			 * hardware interrupt, to avoid locking
    788 			 * at splzs here.
    789 			 */
    790 			c = ZRING_VALUE(c);
    791 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    792 				cc = (c & ZSRR0_DCD) != 0;
    793 				if(line->l_modem(tp, cc) == 0)
    794 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    795 							cc ? DMBIS : DMBIC);
    796 			}
    797 			cs->cs_rr0 = c;
    798 			break;
    799 
    800 		default:
    801 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    802 			    unit >> 1, (unit & 1) + 'a', c);
    803 			break;
    804 		}
    805 	}
    806 	cs->cs_rbget = get;
    807 	goto again;
    808     }
    809     splx(s);
    810     return (retval);
    811 }
    812 
    813 int
    814 zsioctl(dev_t dev, u_long cmd, void * data, int flag, struct lwp *l)
    815 {
    816 		 int			unit = ZS_UNIT(dev);
    817 		 struct zs_softc	*zi = device_lookup_private(&zs_cd, unit >> 1);
    818 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    819 	register int			error, s;
    820 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    821 
    822 	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
    823 	if(error != EPASSTHROUGH)
    824 		return(error);
    825 
    826 	error = ttioctl(tp, cmd, data, flag, l);
    827 	if(error !=EPASSTHROUGH)
    828 		return (error);
    829 
    830 	switch (cmd) {
    831 	case TIOCSBRK:
    832 		s = splzs();
    833 		cs->cs_preg[5] |= ZSWR5_BREAK;
    834 		cs->cs_creg[5] |= ZSWR5_BREAK;
    835 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    836 		splx(s);
    837 		break;
    838 	case TIOCCBRK:
    839 		s = splzs();
    840 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    841 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    842 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    843 		splx(s);
    844 		break;
    845 	case TIOCGFLAGS: {
    846 		int bits = 0;
    847 
    848 		if(cs->cs_softcar)
    849 			bits |= TIOCFLAG_SOFTCAR;
    850 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    851 			bits |= TIOCFLAG_CLOCAL;
    852 		if(cs->cs_creg[3] & ZSWR3_HFC)
    853 			bits |= TIOCFLAG_CRTSCTS;
    854 		*(int *)data = bits;
    855 		break;
    856 	}
    857 	case TIOCSFLAGS: {
    858 		int userbits = 0;
    859 
    860 		error = kauth_authorize_device_tty(l->l_cred,
    861 		    KAUTH_DEVICE_TTY_PRIVSET, tp);
    862 		if(error != 0)
    863 			return (EPERM);
    864 
    865 		userbits = *(int *)data;
    866 
    867 		/*
    868 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    869 		 # defaulting to software flow control.
    870 		 */
    871 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    872 			return(EINVAL);
    873 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    874 			return(ENODEV);
    875 
    876 		s = splzs();
    877 		if((userbits & TIOCFLAG_SOFTCAR)) {
    878 			cs->cs_softcar = 1;	/* turn on softcar */
    879 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    880 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    881 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    882 		}
    883 		else if(userbits & TIOCFLAG_CLOCAL) {
    884 			cs->cs_softcar = 0; 	/* turn off softcar */
    885 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    886 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    887 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    888 			tp->t_termios.c_cflag |= CLOCAL;
    889 		}
    890 		if(userbits & TIOCFLAG_CRTSCTS) {
    891 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    892 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    893 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    894 			cs->cs_preg[3] |= ZSWR3_HFC;
    895 			cs->cs_creg[3] |= ZSWR3_HFC;
    896 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    897 			tp->t_termios.c_cflag |= CRTSCTS;
    898 		}
    899 		else {
    900 			/* no mdmbuf, so we must want software flow control */
    901 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    902 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    903 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    904 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    905 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    906 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    907 			tp->t_termios.c_cflag &= ~CRTSCTS;
    908 		}
    909 		splx(s);
    910 		break;
    911 	}
    912 	case TIOCSDTR:
    913 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    914 		break;
    915 	case TIOCCDTR:
    916 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    917 		break;
    918 	case TIOCMGET:
    919 		zs_modem(cs, 0, DMGET);
    920 		break;
    921 	case TIOCMSET:
    922 	case TIOCMBIS:
    923 	case TIOCMBIC:
    924 	default:
    925 		return (EPASSTHROUGH);
    926 	}
    927 	return (0);
    928 }
    929 
    930 /*
    931  * Start or restart transmission.
    932  */
    933 static void
    934 zsstart(register struct tty *tp)
    935 {
    936 	register struct zs_chanstate	*cs;
    937 	register int			s, nch;
    938 		 int			unit = ZS_UNIT(tp->t_dev);
    939 		 struct zs_softc	*zi = device_lookup_private(&zs_cd, unit >> 1);
    940 
    941 	cs = &zi->zi_cs[unit & 1];
    942 	s  = spltty();
    943 
    944 	/*
    945 	 * If currently active or delaying, no need to do anything.
    946 	 */
    947 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    948 		goto out;
    949 
    950 	/*
    951 	 * If there are sleepers, and output has drained below low
    952 	 * water mark, awaken.
    953 	 */
    954 	ttypull(tp);
    955 
    956 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    957 	if(nch) {
    958 		register char *p = tp->t_outq.c_cf;
    959 
    960 		/* mark busy, enable tx done interrupts, & send first byte */
    961 		tp->t_state |= TS_BUSY;
    962 		(void) splzs();
    963 		cs->cs_preg[1] |= ZSWR1_TIE;
    964 		cs->cs_creg[1] |= ZSWR1_TIE;
    965 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    966 		cs->cs_zc->zc_data = *p;
    967 		cs->cs_tba = p + 1;
    968 		cs->cs_tbc = nch - 1;
    969 	} else {
    970 		/*
    971 		 * Nothing to send, turn off transmit done interrupts.
    972 		 * This is useful if something is doing polled output.
    973 		 */
    974 		(void) splzs();
    975 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    976 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    977 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    978 	}
    979 out:
    980 	splx(s);
    981 }
    982 
    983 /*
    984  * Stop output, e.g., for ^S or output flush.
    985  */
    986 void
    987 zsstop(register struct tty *tp, int flag)
    988 {
    989 	register struct zs_chanstate	*cs;
    990 	register int			s, unit = ZS_UNIT(tp->t_dev);
    991 		 struct zs_softc	*zi = device_lookup_private(&zs_cd, unit >> 1);
    992 
    993 	cs = &zi->zi_cs[unit & 1];
    994 	s  = splzs();
    995 	if(tp->t_state & TS_BUSY) {
    996 		/*
    997 		 * Device is transmitting; must stop it.
    998 		 */
    999 		cs->cs_tbc = 0;
   1000 		if ((tp->t_state & TS_TTSTOP) == 0)
   1001 			tp->t_state |= TS_FLUSH;
   1002 	}
   1003 	splx(s);
   1004 }
   1005 
   1006 static void
   1007 zs_shutdown(struct zs_chanstate *cs)
   1008 {
   1009 	struct tty	*tp = cs->cs_ttyp;
   1010 	int		s;
   1011 
   1012 	s = splzs();
   1013 
   1014 	/*
   1015 	 * Hang up if necessary.  Wait a bit, so the other side has time to
   1016 	 * notice even if we immediately open the port again.
   1017 	 */
   1018 	if(tp->t_cflag & HUPCL) {
   1019 		zs_modem(cs, 0, DMSET);
   1020 		(void)tsleep((void *)cs, TTIPRI, ttclos, hz);
   1021 	}
   1022 
   1023 	/* Clear any break condition set with TIOCSBRK. */
   1024 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
   1025 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
   1026 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
   1027 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1028 	}
   1029 
   1030 	/*
   1031 	 * Drop all lines and cancel interrupts
   1032 	 */
   1033 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
   1034 	splx(s);
   1035 }
   1036 
   1037 /*
   1038  * Set ZS tty parameters from termios.
   1039  *
   1040  * This routine makes use of the fact that only registers
   1041  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
   1042  */
   1043 static int
   1044 zsparam(register struct tty *tp, register struct termios *t)
   1045 {
   1046 		 int			unit = ZS_UNIT(tp->t_dev);
   1047 		 struct zs_softc	*zi = device_lookup_private(&zs_cd, unit >> 1);
   1048 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
   1049 		 int			cdiv = 0,	/* XXX gcc4 -Wuninitialized */
   1050 					clkm = 0,	/* XXX gcc4 -Wuninitialized */
   1051 					brgm = 0,	/* XXX gcc4 -Wuninitialized */
   1052 					tcon = 0;	/* XXX gcc4 -Wuninitialized */
   1053 	register int			tmp, tmp5, cflag, s;
   1054 
   1055 	tmp  = t->c_ospeed;
   1056 	tmp5 = t->c_ispeed;
   1057 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
   1058 		return(EINVAL);
   1059 	if(tmp == 0) {
   1060 		/* stty 0 => drop DTR and RTS */
   1061 		zs_modem(cs, 0, DMSET);
   1062 		return(0);
   1063 	}
   1064 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
   1065 	if (tmp < 0)
   1066 		return(EINVAL);
   1067 	tp->t_ispeed = tp->t_ospeed = tmp;
   1068 
   1069 	cflag = tp->t_cflag = t->c_cflag;
   1070 	if (cflag & CSTOPB)
   1071 		cdiv |= ZSWR4_TWOSB;
   1072 	else
   1073 		cdiv |= ZSWR4_ONESB;
   1074 	if (!(cflag & PARODD))
   1075 		cdiv |= ZSWR4_EVENP;
   1076 	if (cflag & PARENB)
   1077 		cdiv |= ZSWR4_PARENB;
   1078 
   1079 	switch(cflag & CSIZE) {
   1080 	case CS5:
   1081 		tmp  = ZSWR3_RX_5;
   1082 		tmp5 = ZSWR5_TX_5;
   1083 		break;
   1084 	case CS6:
   1085 		tmp  = ZSWR3_RX_6;
   1086 		tmp5 = ZSWR5_TX_6;
   1087 		break;
   1088 	case CS7:
   1089 		tmp  = ZSWR3_RX_7;
   1090 		tmp5 = ZSWR5_TX_7;
   1091 		break;
   1092 	case CS8:
   1093 	default:
   1094 		tmp  = ZSWR3_RX_8;
   1095 		tmp5 = ZSWR5_TX_8;
   1096 		break;
   1097 	}
   1098 	tmp  |= ZSWR3_RX_ENABLE;
   1099 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1100 
   1101 	/*
   1102 	 * Block interrupts so that state will not
   1103 	 * be altered until we are done setting it up.
   1104 	 */
   1105 	s = splzs();
   1106 	cs->cs_preg[4]  = cdiv;
   1107 	cs->cs_preg[11] = clkm;
   1108 	cs->cs_preg[12] = tcon;
   1109 	cs->cs_preg[13] = tcon >> 8;
   1110 	cs->cs_preg[14] = brgm;
   1111 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1112 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1113 	cs->cs_preg[10] = ZSWR10_NRZ;
   1114 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1115 
   1116 	/*
   1117 	 * Output hardware flow control on the chip is horrendous: if
   1118 	 * carrier detect drops, the receiver is disabled.  Hence we
   1119 	 * can only do this when the carrier is on.
   1120 	 */
   1121 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1122 		tmp |= ZSWR3_HFC;
   1123 	cs->cs_preg[3] = tmp;
   1124 	cs->cs_preg[5] = tmp5;
   1125 
   1126 	/*
   1127 	 * If nothing is being transmitted, set up new current values,
   1128 	 * else mark them as pending.
   1129 	 */
   1130 	if(cs->cs_heldchange == 0) {
   1131 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1132 			cs->cs_heldtbc = cs->cs_tbc;
   1133 			cs->cs_tbc = 0;
   1134 			cs->cs_heldchange = 1;
   1135 		} else {
   1136 			memcpy((void *)cs->cs_creg, (void *)cs->cs_preg, 16);
   1137 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1138 		}
   1139 	}
   1140 	splx(s);
   1141 	return (0);
   1142 }
   1143 
   1144 /*
   1145  * search for the best matching baudrate
   1146  */
   1147 static int
   1148 zsbaudrate(int unit, int wanted, int *divisor, int *clockmode, int *brgenmode, int *timeconst)
   1149 {
   1150 	int	bestdiff, bestbps, source;
   1151 
   1152 	bestdiff = bestbps = 0;
   1153 	unit = (unit & 1) << 2;
   1154 	for (source = 0; source < 4; ++source) {
   1155 		long	freq = zs_frequencies[unit + source];
   1156 		int	diff, bps, div, clkm, brgm, tcon;
   1157 
   1158 		bps = div = clkm = brgm = tcon = 0;
   1159 		switch (source) {
   1160 			case 0:	/* BRgen, PCLK */
   1161 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1162 				break;
   1163 			case 1:	/* BRgen, RTxC */
   1164 				brgm = ZSWR14_BAUD_ENA;
   1165 				break;
   1166 			case 2: /* RTxC */
   1167 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1168 				break;
   1169 			case 3: /* TRxC */
   1170 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1171 				break;
   1172 		}
   1173 		switch (source) {
   1174 			case 0:
   1175 			case 1:
   1176 				div  = ZSWR4_CLK_X16;
   1177 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1178 				tcon = BPS_TO_TCONST(freq, wanted);
   1179 				if (tcon < 0)
   1180 					tcon = 0;
   1181 				bps  = TCONST_TO_BPS(freq, tcon);
   1182 				break;
   1183 			case 2:
   1184 			case 3:
   1185 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1186 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1187 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1188 
   1189 				if (d1 < d2 && d1 < d3) {
   1190 					div = ZSWR4_CLK_X16;
   1191 					bps = b1;
   1192 				} else if (d2 < d3 && d2 < d1) {
   1193 					div = ZSWR4_CLK_X32;
   1194 					bps = b2;
   1195 				} else {
   1196 					div = ZSWR4_CLK_X64;
   1197 					bps = b3;
   1198 				}
   1199 				brgm = tcon = 0;
   1200 				break;
   1201 			}
   1202 		}
   1203 		diff = abs(bps - wanted);
   1204 		if (!source || diff < bestdiff) {
   1205 			*divisor   = div;
   1206 			*clockmode = clkm;
   1207 			*brgenmode = brgm;
   1208 			*timeconst = tcon;
   1209 			bestbps    = bps;
   1210 			bestdiff   = diff;
   1211 			if (diff == 0)
   1212 				break;
   1213 		}
   1214 	}
   1215 	/* Allow deviations upto 5% */
   1216 	if (20 * bestdiff > wanted)
   1217 		return -1;
   1218 	return bestbps;
   1219 }
   1220 
   1221 /*
   1222  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1223  * in transmission, the change is deferred.
   1224  */
   1225 static int
   1226 zs_modem(struct zs_chanstate *cs, int bits, int how)
   1227 {
   1228 	int s, mbits;
   1229 
   1230 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1231 
   1232 	s = splzs();
   1233 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1234 
   1235 	switch(how) {
   1236 		case DMSET:
   1237 				mbits  = bits;
   1238 				break;
   1239 		case DMBIS:
   1240 				mbits |= bits;
   1241 				break;
   1242 		case DMBIC:
   1243 				mbits &= ~bits;
   1244 				break;
   1245 		case DMGET:
   1246 				splx(s);
   1247 				return(mbits);
   1248 	}
   1249 
   1250 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1251 	if(cs->cs_heldchange == 0) {
   1252 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1253 			cs->cs_heldtbc = cs->cs_tbc;
   1254 			cs->cs_tbc = 0;
   1255 			cs->cs_heldchange = 1;
   1256 		}
   1257 		else {
   1258 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1259 		}
   1260 	}
   1261 	splx(s);
   1262 	return(0);
   1263 }
   1264 
   1265 /*
   1266  * Write the given register set to the given zs channel in the proper order.
   1267  * The channel must not be transmitting at the time.  The receiver will
   1268  * be disabled for the time it takes to write all the registers.
   1269  */
   1270 static void
   1271 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
   1272 {
   1273 	int i;
   1274 
   1275 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1276 	i = zc->zc_data;		/* drain fifo */
   1277 	i = zc->zc_data;
   1278 	i = zc->zc_data;
   1279 	ZS_WRITE(zc,  4, reg[4]);
   1280 	ZS_WRITE(zc, 10, reg[10]);
   1281 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1282 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1283 	ZS_WRITE(zc,  1, reg[1]);
   1284 	ZS_WRITE(zc,  9, reg[9]);
   1285 	ZS_WRITE(zc, 11, reg[11]);
   1286 	ZS_WRITE(zc, 12, reg[12]);
   1287 	ZS_WRITE(zc, 13, reg[13]);
   1288 	ZS_WRITE(zc, 14, reg[14]);
   1289 	ZS_WRITE(zc, 15, reg[15]);
   1290 	ZS_WRITE(zc,  3, reg[3]);
   1291 	ZS_WRITE(zc,  5, reg[5]);
   1292 }
   1293 #endif /* NZS > 1 */
   1294