zs.c revision 1.55.6.1 1 /* $NetBSD: zs.c,v 1.55.6.1 2008/06/02 13:21:57 mjf Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 */
43
44 /*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
61 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73 /*
74 * Zilog Z8530 (ZSCC) driver.
75 *
76 * Runs two tty ports (modem2 and serial2) on zs0.
77 *
78 * This driver knows far too much about chip to usage mappings.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.55.6.1 2008/06/02 13:21:57 mjf Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/proc.h>
87 #include <sys/device.h>
88 #include <sys/conf.h>
89 #include <sys/file.h>
90 #include <sys/ioctl.h>
91 #include <sys/malloc.h>
92 #include <sys/tty.h>
93 #include <sys/time.h>
94 #include <sys/kernel.h>
95 #include <sys/syslog.h>
96 #include <sys/kauth.h>
97
98 #include <machine/cpu.h>
99 #include <machine/iomap.h>
100 #include <machine/scu.h>
101 #include <machine/mfp.h>
102 #include <atari/dev/ym2149reg.h>
103
104 #include <dev/ic/z8530reg.h>
105 #include <atari/dev/zsvar.h>
106 #include "zs.h"
107 #if NZS > 1
108 #error "This driver supports only 1 85C30!"
109 #endif
110
111 #if NZS > 0
112
113 #define PCLK (8053976) /* PCLK pin input clock rate */
114 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
115
116 #define splzs spl5
117
118 /*
119 * Software state per found chip.
120 */
121 struct zs_softc {
122 struct device zi_dev; /* base device */
123 volatile struct zsdevice *zi_zs; /* chip registers */
124 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
125 };
126
127 static u_char cb_scheduled = 0; /* Already asked for callback? */
128 /*
129 * Define the registers for a closed port
130 */
131 static u_char zs_init_regs[16] = {
132 /* 0 */ 0,
133 /* 1 */ 0,
134 /* 2 */ 0x60,
135 /* 3 */ 0,
136 /* 4 */ 0,
137 /* 5 */ 0,
138 /* 6 */ 0,
139 /* 7 */ 0,
140 /* 8 */ 0,
141 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
142 /* 10 */ ZSWR10_NRZ,
143 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
144 /* 12 */ 0,
145 /* 13 */ 0,
146 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
147 /* 15 */ 0
148 };
149
150 /*
151 * Define the machine dependant clock frequencies
152 * If BRgen feeds sender/receiver we always use a
153 * divisor 16, therefor the division by 16 can as
154 * well be done here.
155 */
156 static u_long zs_freqs_tt[] = {
157 /*
158 * Atari TT, RTxCB is generated by TT-MFP timer C,
159 * which is set to 307.2 kHz during initialisation
160 * and never changed afterwards.
161 */
162 PCLK/16, /* BRgen, PCLK, divisor 16 */
163 229500, /* BRgen, RTxCA, divisor 16 */
164 3672000, /* RTxCA, from PCLK4 */
165 0, /* TRxCA, external */
166
167 PCLK/16, /* BRgen, PCLK, divisor 16 */
168 19200, /* BRgen, RTxCB, divisor 16 */
169 307200, /* RTxCB, from TT-MFP TCO */
170 2457600 /* TRxCB, from BCLK */
171 };
172
173 static u_long zs_freqs_falcon[] = {
174 /*
175 * Atari Falcon, XXX no specs available, this might be wrong
176 */
177 PCLK/16, /* BRgen, PCLK, divisor 16 */
178 229500, /* BRgen, RTxCA, divisor 16 */
179 3672000, /* RTxCA, ??? */
180 0, /* TRxCA, external */
181
182 PCLK/16, /* BRgen, PCLK, divisor 16 */
183 229500, /* BRgen, RTxCB, divisor 16 */
184 3672000, /* RTxCB, ??? */
185 2457600 /* TRxCB, ??? */
186 };
187
188 static u_long zs_freqs_hades[] = {
189 /*
190 * XXX: Channel-A unchecked!!!!!
191 */
192 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
193 229500, /* BRgen, RTxCA, divisor 16 */
194 3672000, /* RTxCA, from PCLK4 */
195 0, /* TRxCA, external */
196
197 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
198 235550, /* BRgen, RTxCB, divisor 16 */
199 3768800, /* RTxCB, 3.7688MHz */
200 3768800 /* TRxCB, 3.7688MHz */
201 };
202
203 static u_long zs_freqs_generic[] = {
204 /*
205 * other machines, assume only PCLK is available
206 */
207 PCLK/16, /* BRgen, PCLK, divisor 16 */
208 0, /* BRgen, RTxCA, divisor 16 */
209 0, /* RTxCA, unknown */
210 0, /* TRxCA, unknown */
211
212 PCLK/16, /* BRgen, PCLK, divisor 16 */
213 0, /* BRgen, RTxCB, divisor 16 */
214 0, /* RTxCB, unknown */
215 0 /* TRxCB, unknown */
216 };
217 static u_long *zs_frequencies;
218
219 /* Definition of the driver for autoconfig. */
220 static int zsmatch __P((struct device *, struct cfdata *, void *));
221 static void zsattach __P((struct device *, struct device *, void *));
222
223 CFATTACH_DECL(zs, sizeof(struct zs_softc),
224 zsmatch, zsattach, NULL, NULL);
225
226 extern struct cfdriver zs_cd;
227
228 /* {b,c}devsw[] function prototypes */
229 dev_type_open(zsopen);
230 dev_type_close(zsclose);
231 dev_type_read(zsread);
232 dev_type_write(zswrite);
233 dev_type_ioctl(zsioctl);
234 dev_type_stop(zsstop);
235 dev_type_tty(zstty);
236 dev_type_poll(zspoll);
237
238 const struct cdevsw zs_cdevsw = {
239 zsopen, zsclose, zsread, zswrite, zsioctl,
240 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
241 };
242
243 /* Interrupt handlers. */
244 int zshard __P((long));
245 static int zssoft __P((long));
246 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
247 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
248 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
249
250 static struct zs_chanstate *zslist;
251
252 /* Routines called from other code. */
253 static void zsstart __P((struct tty *));
254
255 /* Routines purely local to this driver. */
256 static void zsoverrun __P((int, long *, const char *));
257 static int zsparam __P((struct tty *, struct termios *));
258 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
259 static int zs_modem __P((struct zs_chanstate *, int, int));
260 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
261 static void zs_shutdown __P((struct zs_chanstate *));
262
263 static int zsshortcuts; /* number of "shortcut" software interrupts */
264
265 static int
266 zsmatch(pdp, cfp, auxp)
267 struct device *pdp;
268 struct cfdata *cfp;
269 void *auxp;
270 {
271 static int zs_matched = 0;
272
273 if(strcmp("zs", auxp) || zs_matched)
274 return(0);
275 zs_matched = 1;
276 return(1);
277 }
278
279 /*
280 * Attach a found zs.
281 */
282 static void
283 zsattach(parent, dev, aux)
284 struct device *parent;
285 struct device *dev;
286 void *aux;
287 {
288 register struct zs_softc *zi;
289 register struct zs_chanstate *cs;
290 register volatile struct zsdevice *addr;
291 char tmp;
292
293 addr = (struct zsdevice *)AD_SCC;
294 zi = (struct zs_softc *)dev;
295 zi->zi_zs = addr;
296 cs = zi->zi_cs;
297
298 /*
299 * Get the command register into a known state.
300 */
301 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
302 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
303 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
304 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
305
306 /*
307 * Do a hardware reset.
308 */
309 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
310 delay(50000); /*enough ? */
311 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
312
313 /*
314 * Initialize both channels
315 */
316 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
317 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
318
319 if(machineid & ATARI_TT) {
320 /*
321 * ininitialise TT-MFP timer C: 307200Hz
322 * timer C and D share one control register:
323 * bits 0-2 control timer D
324 * bits 4-6 control timer C
325 */
326 int cr = MFP2->mf_tcdcr & 7;
327 MFP2->mf_tcdcr = cr; /* stop timer C */
328 MFP2->mf_tcdr = 1; /* counter 1 */
329 cr |= T_Q004 << 4; /* divisor 4 */
330 MFP2->mf_tcdcr = cr; /* start timer C */
331 /*
332 * enable scc related interrupts
333 */
334 SCU->vme_mask |= SCU_SCC;
335
336 zs_frequencies = zs_freqs_tt;
337 } else if (machineid & ATARI_FALCON) {
338 zs_frequencies = zs_freqs_falcon;
339 } else if (machineid & ATARI_HADES) {
340 zs_frequencies = zs_freqs_hades;
341 } else {
342 zs_frequencies = zs_freqs_generic;
343 }
344
345 /* link into interrupt list with order (A,B) (B=A+1) */
346 cs[0].cs_next = &cs[1];
347 cs[1].cs_next = zslist;
348 zslist = cs;
349
350 cs->cs_unit = 0;
351 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
352 cs++;
353 cs->cs_unit = 1;
354 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
355
356 printf(": serial2 on channel a and modem2 on channel b\n");
357 }
358
359 /*
360 * Open a zs serial port.
361 */
362 int
363 zsopen(dev, flags, mode, l)
364 dev_t dev;
365 int flags;
366 int mode;
367 struct lwp *l;
368 {
369 register struct tty *tp;
370 register struct zs_chanstate *cs;
371 struct zs_softc *zi;
372 int unit = ZS_UNIT(dev);
373 int zs = unit >> 1;
374 int error, s;
375
376 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
377 return (ENXIO);
378 cs = &zi->zi_cs[unit & 1];
379
380 /*
381 * When port A (ser02) is selected on the TT, make sure
382 * the port is enabled.
383 */
384 if((machineid & ATARI_TT) && !(unit & 1))
385 ym2149_ser2(1);
386
387 if (cs->cs_rbuf == NULL) {
388 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
389 M_WAITOK);
390 }
391
392 tp = cs->cs_ttyp;
393 if(tp == NULL) {
394 cs->cs_ttyp = tp = ttymalloc();
395 tty_attach(tp);
396 tp->t_dev = dev;
397 tp->t_oproc = zsstart;
398 tp->t_param = zsparam;
399 }
400
401 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
402 return (EBUSY);
403
404 s = spltty();
405
406 /*
407 * Do the following iff this is a first open.
408 */
409 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
410 if(tp->t_ispeed == 0) {
411 tp->t_iflag = TTYDEF_IFLAG;
412 tp->t_oflag = TTYDEF_OFLAG;
413 tp->t_cflag = TTYDEF_CFLAG;
414 tp->t_lflag = TTYDEF_LFLAG;
415 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
416 }
417 ttychars(tp);
418 ttsetwater(tp);
419
420 (void)zsparam(tp, &tp->t_termios);
421
422 /*
423 * Turn on DTR. We must always do this, even if carrier is not
424 * present, because otherwise we'd have to use TIOCSDTR
425 * immediately after setting CLOCAL, which applications do not
426 * expect. We always assert DTR while the device is open
427 * unless explicitly requested to deassert it.
428 */
429 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
430 /* May never get a status intr. if DCD already on. -gwr */
431 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
432 tp->t_state |= TS_CARR_ON;
433 if(cs->cs_softcar)
434 tp->t_state |= TS_CARR_ON;
435 }
436
437 splx(s);
438
439 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
440 if (error)
441 goto bad;
442
443 error = tp->t_linesw->l_open(dev, tp);
444 if(error)
445 goto bad;
446 return (0);
447
448 bad:
449 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
450 /*
451 * We failed to open the device, and nobody else had it opened.
452 * Clean up the state as appropriate.
453 */
454 zs_shutdown(cs);
455 }
456 return(error);
457 }
458
459 /*
460 * Close a zs serial port.
461 */
462 int
463 zsclose(dev, flags, mode, l)
464 dev_t dev;
465 int flags;
466 int mode;
467 struct lwp *l;
468 {
469 register struct zs_chanstate *cs;
470 register struct tty *tp;
471 struct zs_softc *zi;
472 int unit = ZS_UNIT(dev);
473
474 zi = zs_cd.cd_devs[unit >> 1];
475 cs = &zi->zi_cs[unit & 1];
476 tp = cs->cs_ttyp;
477
478 tp->t_linesw->l_close(tp, flags);
479 ttyclose(tp);
480
481 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
482 /*
483 * Although we got a last close, the device may still be in
484 * use; e.g. if this was the dialout node, and there are still
485 * processes waiting for carrier on the non-dialout node.
486 */
487 zs_shutdown(cs);
488 }
489 return (0);
490 }
491
492 /*
493 * Read/write zs serial port.
494 */
495 int
496 zsread(dev, uio, flags)
497 dev_t dev;
498 struct uio *uio;
499 int flags;
500 {
501 register struct zs_chanstate *cs;
502 register struct zs_softc *zi;
503 register struct tty *tp;
504 int unit;
505
506 unit = ZS_UNIT(dev);
507 zi = zs_cd.cd_devs[unit >> 1];
508 cs = &zi->zi_cs[unit & 1];
509 tp = cs->cs_ttyp;
510
511 return(tp->t_linesw->l_read(tp, uio, flags));
512 }
513
514 int
515 zswrite(dev, uio, flags)
516 dev_t dev;
517 struct uio *uio;
518 int flags;
519 {
520 register struct zs_chanstate *cs;
521 register struct zs_softc *zi;
522 register struct tty *tp;
523 int unit;
524
525 unit = ZS_UNIT(dev);
526 zi = zs_cd.cd_devs[unit >> 1];
527 cs = &zi->zi_cs[unit & 1];
528 tp = cs->cs_ttyp;
529
530 return(tp->t_linesw->l_write(tp, uio, flags));
531 }
532
533 int
534 zspoll(dev, events, l)
535 dev_t dev;
536 int events;
537 struct lwp *l;
538 {
539 register struct zs_chanstate *cs;
540 register struct zs_softc *zi;
541 register struct tty *tp;
542 int unit;
543
544 unit = ZS_UNIT(dev);
545 zi = zs_cd.cd_devs[unit >> 1];
546 cs = &zi->zi_cs[unit & 1];
547 tp = cs->cs_ttyp;
548
549 return ((*tp->t_linesw->l_poll)(tp, events, l));
550 }
551
552 struct tty *
553 zstty(dev)
554 dev_t dev;
555 {
556 register struct zs_chanstate *cs;
557 register struct zs_softc *zi;
558 int unit;
559
560 unit = ZS_UNIT(dev);
561 zi = zs_cd.cd_devs[unit >> 1];
562 cs = &zi->zi_cs[unit & 1];
563 return(cs->cs_ttyp);
564 }
565
566 /*
567 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
568 * channels are kept in (A,B) pairs.
569 *
570 * Do just a little, then get out; set a software interrupt if more
571 * work is needed.
572 *
573 * We deliberately ignore the vectoring Zilog gives us, and match up
574 * only the number of `reset interrupt under service' operations, not
575 * the order.
576 */
577
578 int
579 zshard(sr)
580 long sr;
581 {
582 register struct zs_chanstate *a;
583 #define b (a + 1)
584 register volatile struct zschan *zc;
585 register int rr3, intflags = 0, v, i;
586
587 do {
588 intflags &= ~4;
589 for(a = zslist; a != NULL; a = b->cs_next) {
590 rr3 = ZS_READ(a->cs_zc, 3);
591 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
592 intflags |= 4|2;
593 zc = a->cs_zc;
594 i = a->cs_rbput;
595 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
596 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
597 intflags |= 1;
598 }
599 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
600 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
601 intflags |= 1;
602 }
603 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
604 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
605 intflags |= 1;
606 }
607 a->cs_rbput = i;
608 }
609 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
610 intflags |= 4|2;
611 zc = b->cs_zc;
612 i = b->cs_rbput;
613 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
614 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
615 intflags |= 1;
616 }
617 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
618 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
619 intflags |= 1;
620 }
621 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
622 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
623 intflags |= 1;
624 }
625 b->cs_rbput = i;
626 }
627 }
628 } while(intflags & 4);
629 #undef b
630
631 if(intflags & 1) {
632 if(BASEPRI(sr)) {
633 spl1();
634 zsshortcuts++;
635 return(zssoft(sr));
636 }
637 else if(!cb_scheduled) {
638 cb_scheduled++;
639 add_sicallback((si_farg)zssoft, 0, 0);
640 }
641 }
642 return(intflags & 2);
643 }
644
645 static int
646 zsrint(cs, zc)
647 register struct zs_chanstate *cs;
648 register volatile struct zschan *zc;
649 {
650 register int c;
651
652 /*
653 * First read the status, because read of the received char
654 * destroy the status of this char.
655 */
656 c = ZS_READ(zc, 1);
657 c |= (zc->zc_data << 8);
658
659 /* clear receive error & interrupt condition */
660 zc->zc_csr = ZSWR0_RESET_ERRORS;
661 zc->zc_csr = ZSWR0_CLR_INTR;
662
663 return(ZRING_MAKE(ZRING_RINT, c));
664 }
665
666 static int
667 zsxint(cs, zc)
668 register struct zs_chanstate *cs;
669 register volatile struct zschan *zc;
670 {
671 register int i = cs->cs_tbc;
672
673 if(i == 0) {
674 zc->zc_csr = ZSWR0_RESET_TXINT;
675 zc->zc_csr = ZSWR0_CLR_INTR;
676 return(ZRING_MAKE(ZRING_XINT, 0));
677 }
678 cs->cs_tbc = i - 1;
679 zc->zc_data = *cs->cs_tba++;
680 zc->zc_csr = ZSWR0_CLR_INTR;
681 return (0);
682 }
683
684 static int
685 zssint(cs, zc)
686 register struct zs_chanstate *cs;
687 register volatile struct zschan *zc;
688 {
689 register int rr0;
690
691 rr0 = zc->zc_csr;
692 zc->zc_csr = ZSWR0_RESET_STATUS;
693 zc->zc_csr = ZSWR0_CLR_INTR;
694 /*
695 * The chip's hardware flow control is, as noted in zsreg.h,
696 * busted---if the DCD line goes low the chip shuts off the
697 * receiver (!). If we want hardware CTS flow control but do
698 * not have it, and carrier is now on, turn HFC on; if we have
699 * HFC now but carrier has gone low, turn it off.
700 */
701 if(rr0 & ZSRR0_DCD) {
702 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
703 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
704 cs->cs_creg[3] |= ZSWR3_HFC;
705 ZS_WRITE(zc, 3, cs->cs_creg[3]);
706 }
707 }
708 else {
709 if (cs->cs_creg[3] & ZSWR3_HFC) {
710 cs->cs_creg[3] &= ~ZSWR3_HFC;
711 ZS_WRITE(zc, 3, cs->cs_creg[3]);
712 }
713 }
714 return(ZRING_MAKE(ZRING_SINT, rr0));
715 }
716
717 /*
718 * Print out a ring or fifo overrun error message.
719 */
720 static void
721 zsoverrun(unit, ptime, what)
722 int unit;
723 long *ptime;
724 const char *what;
725 {
726 time_t cur_sec = time_second;
727
728 if(*ptime != cur_sec) {
729 *ptime = cur_sec;
730 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
731 (unit & 1) + 'a', what);
732 }
733 }
734
735 /*
736 * ZS software interrupt. Scan all channels for deferred interrupts.
737 */
738 int
739 zssoft(sr)
740 long sr;
741 {
742 register struct zs_chanstate *cs;
743 register volatile struct zschan *zc;
744 register struct linesw *line;
745 register struct tty *tp;
746 register int get, n, c, cc, unit, s;
747 int retval = 0;
748
749 cb_scheduled = 0;
750 s = spltty();
751 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
752 get = cs->cs_rbget;
753 again:
754 n = cs->cs_rbput; /* atomic */
755 if(get == n) /* nothing more on this line */
756 continue;
757 retval = 1;
758 unit = cs->cs_unit; /* set up to handle interrupts */
759 zc = cs->cs_zc;
760 tp = cs->cs_ttyp;
761 line = tp->t_linesw;
762 /*
763 * Compute the number of interrupts in the receive ring.
764 * If the count is overlarge, we lost some events, and
765 * must advance to the first valid one. It may get
766 * overwritten if more data are arriving, but this is
767 * too expensive to check and gains nothing (we already
768 * lost out; all we can do at this point is trade one
769 * kind of loss for another).
770 */
771 n -= get;
772 if(n > ZLRB_RING_SIZE) {
773 zsoverrun(unit, &cs->cs_rotime, "ring");
774 get += n - ZLRB_RING_SIZE;
775 n = ZLRB_RING_SIZE;
776 }
777 while(--n >= 0) {
778 /* race to keep ahead of incoming interrupts */
779 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
780 switch (ZRING_TYPE(c)) {
781
782 case ZRING_RINT:
783 c = ZRING_VALUE(c);
784 if(c & ZSRR1_DO)
785 zsoverrun(unit, &cs->cs_fotime, "fifo");
786 cc = c >> 8;
787 if(c & ZSRR1_FE)
788 cc |= TTY_FE;
789 if(c & ZSRR1_PE)
790 cc |= TTY_PE;
791 line->l_rint(cc, tp);
792 break;
793
794 case ZRING_XINT:
795 /*
796 * Transmit done: change registers and resume,
797 * or clear BUSY.
798 */
799 if(cs->cs_heldchange) {
800 int sps;
801
802 sps = splzs();
803 c = zc->zc_csr;
804 if((c & ZSRR0_DCD) == 0)
805 cs->cs_preg[3] &= ~ZSWR3_HFC;
806 bcopy((void *)cs->cs_preg,
807 (void *)cs->cs_creg, 16);
808 zs_loadchannelregs(zc, cs->cs_creg);
809 splx(sps);
810 cs->cs_heldchange = 0;
811 if(cs->cs_heldtbc
812 && (tp->t_state & TS_TTSTOP) == 0) {
813 cs->cs_tbc = cs->cs_heldtbc - 1;
814 zc->zc_data = *cs->cs_tba++;
815 goto again;
816 }
817 }
818 tp->t_state &= ~TS_BUSY;
819 if(tp->t_state & TS_FLUSH)
820 tp->t_state &= ~TS_FLUSH;
821 else ndflush(&tp->t_outq,cs->cs_tba
822 - tp->t_outq.c_cf);
823 line->l_start(tp);
824 break;
825
826 case ZRING_SINT:
827 /*
828 * Status line change. HFC bit is run in
829 * hardware interrupt, to avoid locking
830 * at splzs here.
831 */
832 c = ZRING_VALUE(c);
833 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
834 cc = (c & ZSRR0_DCD) != 0;
835 if(line->l_modem(tp, cc) == 0)
836 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
837 cc ? DMBIS : DMBIC);
838 }
839 cs->cs_rr0 = c;
840 break;
841
842 default:
843 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
844 unit >> 1, (unit & 1) + 'a', c);
845 break;
846 }
847 }
848 cs->cs_rbget = get;
849 goto again;
850 }
851 splx(s);
852 return (retval);
853 }
854
855 int
856 zsioctl(dev, cmd, data, flag, l)
857 dev_t dev;
858 u_long cmd;
859 void * data;
860 int flag;
861 struct lwp *l;
862 {
863 int unit = ZS_UNIT(dev);
864 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
865 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
866 register int error, s;
867 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
868
869 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
870 if(error != EPASSTHROUGH)
871 return(error);
872
873 error = ttioctl(tp, cmd, data, flag, l);
874 if(error !=EPASSTHROUGH)
875 return (error);
876
877 switch (cmd) {
878 case TIOCSBRK:
879 s = splzs();
880 cs->cs_preg[5] |= ZSWR5_BREAK;
881 cs->cs_creg[5] |= ZSWR5_BREAK;
882 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
883 splx(s);
884 break;
885 case TIOCCBRK:
886 s = splzs();
887 cs->cs_preg[5] &= ~ZSWR5_BREAK;
888 cs->cs_creg[5] &= ~ZSWR5_BREAK;
889 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
890 splx(s);
891 break;
892 case TIOCGFLAGS: {
893 int bits = 0;
894
895 if(cs->cs_softcar)
896 bits |= TIOCFLAG_SOFTCAR;
897 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
898 bits |= TIOCFLAG_CLOCAL;
899 if(cs->cs_creg[3] & ZSWR3_HFC)
900 bits |= TIOCFLAG_CRTSCTS;
901 *(int *)data = bits;
902 break;
903 }
904 case TIOCSFLAGS: {
905 int userbits = 0;
906
907 error = kauth_authorize_device_tty(l->l_cred,
908 KAUTH_DEVICE_TTY_PRIVSET, tp);
909 if(error != 0)
910 return (EPERM);
911
912 userbits = *(int *)data;
913
914 /*
915 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
916 # defaulting to software flow control.
917 */
918 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
919 return(EINVAL);
920 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
921 return(ENODEV);
922
923 s = splzs();
924 if((userbits & TIOCFLAG_SOFTCAR)) {
925 cs->cs_softcar = 1; /* turn on softcar */
926 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
927 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
928 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
929 }
930 else if(userbits & TIOCFLAG_CLOCAL) {
931 cs->cs_softcar = 0; /* turn off softcar */
932 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
933 cs->cs_creg[15] |= ZSWR15_DCD_IE;
934 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
935 tp->t_termios.c_cflag |= CLOCAL;
936 }
937 if(userbits & TIOCFLAG_CRTSCTS) {
938 cs->cs_preg[15] |= ZSWR15_CTS_IE;
939 cs->cs_creg[15] |= ZSWR15_CTS_IE;
940 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
941 cs->cs_preg[3] |= ZSWR3_HFC;
942 cs->cs_creg[3] |= ZSWR3_HFC;
943 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
944 tp->t_termios.c_cflag |= CRTSCTS;
945 }
946 else {
947 /* no mdmbuf, so we must want software flow control */
948 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
949 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
950 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
951 cs->cs_preg[3] &= ~ZSWR3_HFC;
952 cs->cs_creg[3] &= ~ZSWR3_HFC;
953 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
954 tp->t_termios.c_cflag &= ~CRTSCTS;
955 }
956 splx(s);
957 break;
958 }
959 case TIOCSDTR:
960 zs_modem(cs, ZSWR5_DTR, DMBIS);
961 break;
962 case TIOCCDTR:
963 zs_modem(cs, ZSWR5_DTR, DMBIC);
964 break;
965 case TIOCMGET:
966 zs_modem(cs, 0, DMGET);
967 break;
968 case TIOCMSET:
969 case TIOCMBIS:
970 case TIOCMBIC:
971 default:
972 return (EPASSTHROUGH);
973 }
974 return (0);
975 }
976
977 /*
978 * Start or restart transmission.
979 */
980 static void
981 zsstart(tp)
982 register struct tty *tp;
983 {
984 register struct zs_chanstate *cs;
985 register int s, nch;
986 int unit = ZS_UNIT(tp->t_dev);
987 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
988
989 cs = &zi->zi_cs[unit & 1];
990 s = spltty();
991
992 /*
993 * If currently active or delaying, no need to do anything.
994 */
995 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
996 goto out;
997
998 /*
999 * If there are sleepers, and output has drained below low
1000 * water mark, awaken.
1001 */
1002 ttypull(tp);
1003
1004 nch = ndqb(&tp->t_outq, 0); /* XXX */
1005 if(nch) {
1006 register char *p = tp->t_outq.c_cf;
1007
1008 /* mark busy, enable tx done interrupts, & send first byte */
1009 tp->t_state |= TS_BUSY;
1010 (void) splzs();
1011 cs->cs_preg[1] |= ZSWR1_TIE;
1012 cs->cs_creg[1] |= ZSWR1_TIE;
1013 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1014 cs->cs_zc->zc_data = *p;
1015 cs->cs_tba = p + 1;
1016 cs->cs_tbc = nch - 1;
1017 } else {
1018 /*
1019 * Nothing to send, turn off transmit done interrupts.
1020 * This is useful if something is doing polled output.
1021 */
1022 (void) splzs();
1023 cs->cs_preg[1] &= ~ZSWR1_TIE;
1024 cs->cs_creg[1] &= ~ZSWR1_TIE;
1025 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1026 }
1027 out:
1028 splx(s);
1029 }
1030
1031 /*
1032 * Stop output, e.g., for ^S or output flush.
1033 */
1034 void
1035 zsstop(tp, flag)
1036 register struct tty *tp;
1037 int flag;
1038 {
1039 register struct zs_chanstate *cs;
1040 register int s, unit = ZS_UNIT(tp->t_dev);
1041 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1042
1043 cs = &zi->zi_cs[unit & 1];
1044 s = splzs();
1045 if(tp->t_state & TS_BUSY) {
1046 /*
1047 * Device is transmitting; must stop it.
1048 */
1049 cs->cs_tbc = 0;
1050 if ((tp->t_state & TS_TTSTOP) == 0)
1051 tp->t_state |= TS_FLUSH;
1052 }
1053 splx(s);
1054 }
1055
1056 static void
1057 zs_shutdown(cs)
1058 struct zs_chanstate *cs;
1059 {
1060 struct tty *tp = cs->cs_ttyp;
1061 int s;
1062
1063 s = splzs();
1064
1065 /*
1066 * Hang up if necessary. Wait a bit, so the other side has time to
1067 * notice even if we immediately open the port again.
1068 */
1069 if(tp->t_cflag & HUPCL) {
1070 zs_modem(cs, 0, DMSET);
1071 (void)tsleep((void *)cs, TTIPRI, ttclos, hz);
1072 }
1073
1074 /* Clear any break condition set with TIOCSBRK. */
1075 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1076 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1077 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1078 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1079 }
1080
1081 /*
1082 * Drop all lines and cancel interrupts
1083 */
1084 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1085 splx(s);
1086 }
1087
1088 /*
1089 * Set ZS tty parameters from termios.
1090 *
1091 * This routine makes use of the fact that only registers
1092 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1093 */
1094 static int
1095 zsparam(tp, t)
1096 register struct tty *tp;
1097 register struct termios *t;
1098 {
1099 int unit = ZS_UNIT(tp->t_dev);
1100 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1101 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1102 int cdiv = 0, /* XXX gcc4 -Wuninitialized */
1103 clkm = 0, /* XXX gcc4 -Wuninitialized */
1104 brgm = 0, /* XXX gcc4 -Wuninitialized */
1105 tcon = 0; /* XXX gcc4 -Wuninitialized */
1106 register int tmp, tmp5, cflag, s;
1107
1108 tmp = t->c_ospeed;
1109 tmp5 = t->c_ispeed;
1110 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1111 return(EINVAL);
1112 if(tmp == 0) {
1113 /* stty 0 => drop DTR and RTS */
1114 zs_modem(cs, 0, DMSET);
1115 return(0);
1116 }
1117 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1118 if (tmp < 0)
1119 return(EINVAL);
1120 tp->t_ispeed = tp->t_ospeed = tmp;
1121
1122 cflag = tp->t_cflag = t->c_cflag;
1123 if (cflag & CSTOPB)
1124 cdiv |= ZSWR4_TWOSB;
1125 else
1126 cdiv |= ZSWR4_ONESB;
1127 if (!(cflag & PARODD))
1128 cdiv |= ZSWR4_EVENP;
1129 if (cflag & PARENB)
1130 cdiv |= ZSWR4_PARENB;
1131
1132 switch(cflag & CSIZE) {
1133 case CS5:
1134 tmp = ZSWR3_RX_5;
1135 tmp5 = ZSWR5_TX_5;
1136 break;
1137 case CS6:
1138 tmp = ZSWR3_RX_6;
1139 tmp5 = ZSWR5_TX_6;
1140 break;
1141 case CS7:
1142 tmp = ZSWR3_RX_7;
1143 tmp5 = ZSWR5_TX_7;
1144 break;
1145 case CS8:
1146 default:
1147 tmp = ZSWR3_RX_8;
1148 tmp5 = ZSWR5_TX_8;
1149 break;
1150 }
1151 tmp |= ZSWR3_RX_ENABLE;
1152 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1153
1154 /*
1155 * Block interrupts so that state will not
1156 * be altered until we are done setting it up.
1157 */
1158 s = splzs();
1159 cs->cs_preg[4] = cdiv;
1160 cs->cs_preg[11] = clkm;
1161 cs->cs_preg[12] = tcon;
1162 cs->cs_preg[13] = tcon >> 8;
1163 cs->cs_preg[14] = brgm;
1164 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1165 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1166 cs->cs_preg[10] = ZSWR10_NRZ;
1167 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1168
1169 /*
1170 * Output hardware flow control on the chip is horrendous: if
1171 * carrier detect drops, the receiver is disabled. Hence we
1172 * can only do this when the carrier is on.
1173 */
1174 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1175 tmp |= ZSWR3_HFC;
1176 cs->cs_preg[3] = tmp;
1177 cs->cs_preg[5] = tmp5;
1178
1179 /*
1180 * If nothing is being transmitted, set up new current values,
1181 * else mark them as pending.
1182 */
1183 if(cs->cs_heldchange == 0) {
1184 if (cs->cs_ttyp->t_state & TS_BUSY) {
1185 cs->cs_heldtbc = cs->cs_tbc;
1186 cs->cs_tbc = 0;
1187 cs->cs_heldchange = 1;
1188 } else {
1189 bcopy((void *)cs->cs_preg, (void *)cs->cs_creg, 16);
1190 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1191 }
1192 }
1193 splx(s);
1194 return (0);
1195 }
1196
1197 /*
1198 * search for the best matching baudrate
1199 */
1200 static int
1201 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1202 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1203 {
1204 int bestdiff, bestbps, source;
1205
1206 bestdiff = bestbps = 0;
1207 unit = (unit & 1) << 2;
1208 for (source = 0; source < 4; ++source) {
1209 long freq = zs_frequencies[unit + source];
1210 int diff, bps, div, clkm, brgm, tcon;
1211
1212 bps = div = clkm = brgm = tcon = 0;
1213 switch (source) {
1214 case 0: /* BRgen, PCLK */
1215 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1216 break;
1217 case 1: /* BRgen, RTxC */
1218 brgm = ZSWR14_BAUD_ENA;
1219 break;
1220 case 2: /* RTxC */
1221 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1222 break;
1223 case 3: /* TRxC */
1224 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1225 break;
1226 }
1227 switch (source) {
1228 case 0:
1229 case 1:
1230 div = ZSWR4_CLK_X16;
1231 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1232 tcon = BPS_TO_TCONST(freq, wanted);
1233 if (tcon < 0)
1234 tcon = 0;
1235 bps = TCONST_TO_BPS(freq, tcon);
1236 break;
1237 case 2:
1238 case 3:
1239 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1240 int b2 = freq / 32, d2 = abs(b2 - wanted);
1241 int b3 = freq / 64, d3 = abs(b3 - wanted);
1242
1243 if (d1 < d2 && d1 < d3) {
1244 div = ZSWR4_CLK_X16;
1245 bps = b1;
1246 } else if (d2 < d3 && d2 < d1) {
1247 div = ZSWR4_CLK_X32;
1248 bps = b2;
1249 } else {
1250 div = ZSWR4_CLK_X64;
1251 bps = b3;
1252 }
1253 brgm = tcon = 0;
1254 break;
1255 }
1256 }
1257 diff = abs(bps - wanted);
1258 if (!source || diff < bestdiff) {
1259 *divisor = div;
1260 *clockmode = clkm;
1261 *brgenmode = brgm;
1262 *timeconst = tcon;
1263 bestbps = bps;
1264 bestdiff = diff;
1265 if (diff == 0)
1266 break;
1267 }
1268 }
1269 /* Allow deviations upto 5% */
1270 if (20 * bestdiff > wanted)
1271 return -1;
1272 return bestbps;
1273 }
1274
1275 /*
1276 * Raise or lower modem control (DTR/RTS) signals. If a character is
1277 * in transmission, the change is deferred.
1278 */
1279 static int
1280 zs_modem(cs, bits, how)
1281 struct zs_chanstate *cs;
1282 int bits, how;
1283 {
1284 int s, mbits;
1285
1286 bits &= ZSWR5_DTR | ZSWR5_RTS;
1287
1288 s = splzs();
1289 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1290
1291 switch(how) {
1292 case DMSET:
1293 mbits = bits;
1294 break;
1295 case DMBIS:
1296 mbits |= bits;
1297 break;
1298 case DMBIC:
1299 mbits &= ~bits;
1300 break;
1301 case DMGET:
1302 splx(s);
1303 return(mbits);
1304 }
1305
1306 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1307 if(cs->cs_heldchange == 0) {
1308 if(cs->cs_ttyp->t_state & TS_BUSY) {
1309 cs->cs_heldtbc = cs->cs_tbc;
1310 cs->cs_tbc = 0;
1311 cs->cs_heldchange = 1;
1312 }
1313 else {
1314 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1315 }
1316 }
1317 splx(s);
1318 return(0);
1319 }
1320
1321 /*
1322 * Write the given register set to the given zs channel in the proper order.
1323 * The channel must not be transmitting at the time. The receiver will
1324 * be disabled for the time it takes to write all the registers.
1325 */
1326 static void
1327 zs_loadchannelregs(zc, reg)
1328 volatile struct zschan *zc;
1329 u_char *reg;
1330 {
1331 int i;
1332
1333 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1334 i = zc->zc_data; /* drain fifo */
1335 i = zc->zc_data;
1336 i = zc->zc_data;
1337 ZS_WRITE(zc, 4, reg[4]);
1338 ZS_WRITE(zc, 10, reg[10]);
1339 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1340 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1341 ZS_WRITE(zc, 1, reg[1]);
1342 ZS_WRITE(zc, 9, reg[9]);
1343 ZS_WRITE(zc, 11, reg[11]);
1344 ZS_WRITE(zc, 12, reg[12]);
1345 ZS_WRITE(zc, 13, reg[13]);
1346 ZS_WRITE(zc, 14, reg[14]);
1347 ZS_WRITE(zc, 15, reg[15]);
1348 ZS_WRITE(zc, 3, reg[3]);
1349 ZS_WRITE(zc, 5, reg[5]);
1350 }
1351 #endif /* NZS > 1 */
1352