zs.c revision 1.57 1 /* $NetBSD: zs.c,v 1.57 2008/06/11 14:35:53 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 */
43
44 /*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
61 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73 /*
74 * Zilog Z8530 (ZSCC) driver.
75 *
76 * Runs two tty ports (modem2 and serial2) on zs0.
77 *
78 * This driver knows far too much about chip to usage mappings.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.57 2008/06/11 14:35:53 tsutsui Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/proc.h>
87 #include <sys/device.h>
88 #include <sys/conf.h>
89 #include <sys/file.h>
90 #include <sys/ioctl.h>
91 #include <sys/malloc.h>
92 #include <sys/tty.h>
93 #include <sys/time.h>
94 #include <sys/kernel.h>
95 #include <sys/syslog.h>
96 #include <sys/kauth.h>
97
98 #include <machine/cpu.h>
99 #include <machine/iomap.h>
100 #include <machine/scu.h>
101 #include <machine/mfp.h>
102 #include <atari/dev/ym2149reg.h>
103
104 #include <dev/ic/z8530reg.h>
105 #include <atari/dev/zsvar.h>
106 #include "zs.h"
107 #if NZS > 1
108 #error "This driver supports only 1 85C30!"
109 #endif
110
111 #if NZS > 0
112
113 #define PCLK (8053976) /* PCLK pin input clock rate */
114 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
115
116 #define splzs spl5
117
118 /*
119 * Software state per found chip.
120 */
121 struct zs_softc {
122 struct device zi_dev; /* base device */
123 volatile struct zsdevice *zi_zs; /* chip registers */
124 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
125 };
126
127 static u_char cb_scheduled = 0; /* Already asked for callback? */
128 /*
129 * Define the registers for a closed port
130 */
131 static u_char zs_init_regs[16] = {
132 /* 0 */ 0,
133 /* 1 */ 0,
134 /* 2 */ 0x60,
135 /* 3 */ 0,
136 /* 4 */ 0,
137 /* 5 */ 0,
138 /* 6 */ 0,
139 /* 7 */ 0,
140 /* 8 */ 0,
141 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
142 /* 10 */ ZSWR10_NRZ,
143 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
144 /* 12 */ 0,
145 /* 13 */ 0,
146 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
147 /* 15 */ 0
148 };
149
150 /*
151 * Define the machine dependant clock frequencies
152 * If BRgen feeds sender/receiver we always use a
153 * divisor 16, therefor the division by 16 can as
154 * well be done here.
155 */
156 static u_long zs_freqs_tt[] = {
157 /*
158 * Atari TT, RTxCB is generated by TT-MFP timer C,
159 * which is set to 307.2 kHz during initialisation
160 * and never changed afterwards.
161 */
162 PCLK/16, /* BRgen, PCLK, divisor 16 */
163 229500, /* BRgen, RTxCA, divisor 16 */
164 3672000, /* RTxCA, from PCLK4 */
165 0, /* TRxCA, external */
166
167 PCLK/16, /* BRgen, PCLK, divisor 16 */
168 19200, /* BRgen, RTxCB, divisor 16 */
169 307200, /* RTxCB, from TT-MFP TCO */
170 2457600 /* TRxCB, from BCLK */
171 };
172
173 static u_long zs_freqs_falcon[] = {
174 /*
175 * Atari Falcon, XXX no specs available, this might be wrong
176 */
177 PCLK/16, /* BRgen, PCLK, divisor 16 */
178 229500, /* BRgen, RTxCA, divisor 16 */
179 3672000, /* RTxCA, ??? */
180 0, /* TRxCA, external */
181
182 PCLK/16, /* BRgen, PCLK, divisor 16 */
183 229500, /* BRgen, RTxCB, divisor 16 */
184 3672000, /* RTxCB, ??? */
185 2457600 /* TRxCB, ??? */
186 };
187
188 static u_long zs_freqs_hades[] = {
189 /*
190 * XXX: Channel-A unchecked!!!!!
191 */
192 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
193 229500, /* BRgen, RTxCA, divisor 16 */
194 3672000, /* RTxCA, from PCLK4 */
195 0, /* TRxCA, external */
196
197 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
198 235550, /* BRgen, RTxCB, divisor 16 */
199 3768800, /* RTxCB, 3.7688MHz */
200 3768800 /* TRxCB, 3.7688MHz */
201 };
202
203 static u_long zs_freqs_generic[] = {
204 /*
205 * other machines, assume only PCLK is available
206 */
207 PCLK/16, /* BRgen, PCLK, divisor 16 */
208 0, /* BRgen, RTxCA, divisor 16 */
209 0, /* RTxCA, unknown */
210 0, /* TRxCA, unknown */
211
212 PCLK/16, /* BRgen, PCLK, divisor 16 */
213 0, /* BRgen, RTxCB, divisor 16 */
214 0, /* RTxCB, unknown */
215 0 /* TRxCB, unknown */
216 };
217 static u_long *zs_frequencies;
218
219 /* Definition of the driver for autoconfig. */
220 static int zsmatch __P((struct device *, struct cfdata *, void *));
221 static void zsattach __P((struct device *, struct device *, void *));
222
223 CFATTACH_DECL(zs, sizeof(struct zs_softc),
224 zsmatch, zsattach, NULL, NULL);
225
226 extern struct cfdriver zs_cd;
227
228 /* {b,c}devsw[] function prototypes */
229 dev_type_open(zsopen);
230 dev_type_close(zsclose);
231 dev_type_read(zsread);
232 dev_type_write(zswrite);
233 dev_type_ioctl(zsioctl);
234 dev_type_stop(zsstop);
235 dev_type_tty(zstty);
236 dev_type_poll(zspoll);
237
238 const struct cdevsw zs_cdevsw = {
239 zsopen, zsclose, zsread, zswrite, zsioctl,
240 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
241 };
242
243 /* Interrupt handlers. */
244 int zshard __P((long));
245 static int zssoft __P((long));
246 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
247 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
248 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
249
250 static struct zs_chanstate *zslist;
251
252 /* Routines called from other code. */
253 static void zsstart __P((struct tty *));
254
255 /* Routines purely local to this driver. */
256 static void zsoverrun __P((int, long *, const char *));
257 static int zsparam __P((struct tty *, struct termios *));
258 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
259 static int zs_modem __P((struct zs_chanstate *, int, int));
260 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
261 static void zs_shutdown __P((struct zs_chanstate *));
262
263 static int zsshortcuts; /* number of "shortcut" software interrupts */
264
265 static int
266 zsmatch(pdp, cfp, auxp)
267 struct device *pdp;
268 struct cfdata *cfp;
269 void *auxp;
270 {
271 static int zs_matched = 0;
272
273 if(strcmp("zs", auxp) || zs_matched)
274 return(0);
275 zs_matched = 1;
276 return(1);
277 }
278
279 /*
280 * Attach a found zs.
281 */
282 static void
283 zsattach(parent, dev, aux)
284 struct device *parent;
285 struct device *dev;
286 void *aux;
287 {
288 register struct zs_softc *zi;
289 register struct zs_chanstate *cs;
290 register volatile struct zsdevice *addr;
291 char tmp;
292
293 addr = (struct zsdevice *)AD_SCC;
294 zi = (struct zs_softc *)dev;
295 zi->zi_zs = addr;
296 cs = zi->zi_cs;
297
298 /*
299 * Get the command register into a known state.
300 */
301 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
302 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
303 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
304 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
305
306 /*
307 * Do a hardware reset.
308 */
309 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
310 delay(50000); /*enough ? */
311 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
312
313 /*
314 * Initialize both channels
315 */
316 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
317 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
318
319 if(machineid & ATARI_TT) {
320 /*
321 * ininitialise TT-MFP timer C: 307200Hz
322 * timer C and D share one control register:
323 * bits 0-2 control timer D
324 * bits 4-6 control timer C
325 */
326 int cr = MFP2->mf_tcdcr & 7;
327 MFP2->mf_tcdcr = cr; /* stop timer C */
328 MFP2->mf_tcdr = 1; /* counter 1 */
329 cr |= T_Q004 << 4; /* divisor 4 */
330 MFP2->mf_tcdcr = cr; /* start timer C */
331 /*
332 * enable scc related interrupts
333 */
334 SCU->vme_mask |= SCU_SCC;
335
336 zs_frequencies = zs_freqs_tt;
337 } else if (machineid & ATARI_FALCON) {
338 zs_frequencies = zs_freqs_falcon;
339 } else if (machineid & ATARI_HADES) {
340 zs_frequencies = zs_freqs_hades;
341 } else {
342 zs_frequencies = zs_freqs_generic;
343 }
344
345 /* link into interrupt list with order (A,B) (B=A+1) */
346 cs[0].cs_next = &cs[1];
347 cs[1].cs_next = zslist;
348 zslist = cs;
349
350 cs->cs_unit = 0;
351 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
352 cs++;
353 cs->cs_unit = 1;
354 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
355
356 printf(": serial2 on channel a and modem2 on channel b\n");
357 }
358
359 /*
360 * Open a zs serial port.
361 */
362 int
363 zsopen(dev, flags, mode, l)
364 dev_t dev;
365 int flags;
366 int mode;
367 struct lwp *l;
368 {
369 register struct tty *tp;
370 register struct zs_chanstate *cs;
371 struct zs_softc *zi;
372 int unit = ZS_UNIT(dev);
373 int zs = unit >> 1;
374 int error, s;
375
376 zi = device_lookup_private(&zs_cd, zs);
377 if (zi == NULL)
378 return (ENXIO);
379 cs = &zi->zi_cs[unit & 1];
380
381 /*
382 * When port A (ser02) is selected on the TT, make sure
383 * the port is enabled.
384 */
385 if((machineid & ATARI_TT) && !(unit & 1))
386 ym2149_ser2(1);
387
388 if (cs->cs_rbuf == NULL) {
389 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
390 M_WAITOK);
391 }
392
393 tp = cs->cs_ttyp;
394 if(tp == NULL) {
395 cs->cs_ttyp = tp = ttymalloc();
396 tty_attach(tp);
397 tp->t_dev = dev;
398 tp->t_oproc = zsstart;
399 tp->t_param = zsparam;
400 }
401
402 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
403 return (EBUSY);
404
405 s = spltty();
406
407 /*
408 * Do the following iff this is a first open.
409 */
410 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
411 if(tp->t_ispeed == 0) {
412 tp->t_iflag = TTYDEF_IFLAG;
413 tp->t_oflag = TTYDEF_OFLAG;
414 tp->t_cflag = TTYDEF_CFLAG;
415 tp->t_lflag = TTYDEF_LFLAG;
416 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
417 }
418 ttychars(tp);
419 ttsetwater(tp);
420
421 (void)zsparam(tp, &tp->t_termios);
422
423 /*
424 * Turn on DTR. We must always do this, even if carrier is not
425 * present, because otherwise we'd have to use TIOCSDTR
426 * immediately after setting CLOCAL, which applications do not
427 * expect. We always assert DTR while the device is open
428 * unless explicitly requested to deassert it.
429 */
430 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
431 /* May never get a status intr. if DCD already on. -gwr */
432 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
433 tp->t_state |= TS_CARR_ON;
434 if(cs->cs_softcar)
435 tp->t_state |= TS_CARR_ON;
436 }
437
438 splx(s);
439
440 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
441 if (error)
442 goto bad;
443
444 error = tp->t_linesw->l_open(dev, tp);
445 if(error)
446 goto bad;
447 return (0);
448
449 bad:
450 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
451 /*
452 * We failed to open the device, and nobody else had it opened.
453 * Clean up the state as appropriate.
454 */
455 zs_shutdown(cs);
456 }
457 return(error);
458 }
459
460 /*
461 * Close a zs serial port.
462 */
463 int
464 zsclose(dev, flags, mode, l)
465 dev_t dev;
466 int flags;
467 int mode;
468 struct lwp *l;
469 {
470 register struct zs_chanstate *cs;
471 register struct tty *tp;
472 struct zs_softc *zi;
473 int unit = ZS_UNIT(dev);
474
475 zi = device_lookup_private(&zs_cd, unit >> 1);
476 cs = &zi->zi_cs[unit & 1];
477 tp = cs->cs_ttyp;
478
479 tp->t_linesw->l_close(tp, flags);
480 ttyclose(tp);
481
482 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
483 /*
484 * Although we got a last close, the device may still be in
485 * use; e.g. if this was the dialout node, and there are still
486 * processes waiting for carrier on the non-dialout node.
487 */
488 zs_shutdown(cs);
489 }
490 return (0);
491 }
492
493 /*
494 * Read/write zs serial port.
495 */
496 int
497 zsread(dev, uio, flags)
498 dev_t dev;
499 struct uio *uio;
500 int flags;
501 {
502 register struct zs_chanstate *cs;
503 register struct zs_softc *zi;
504 register struct tty *tp;
505 int unit;
506
507 unit = ZS_UNIT(dev);
508 zi = device_lookup_private(&zs_cd, unit >> 1);
509 cs = &zi->zi_cs[unit & 1];
510 tp = cs->cs_ttyp;
511
512 return(tp->t_linesw->l_read(tp, uio, flags));
513 }
514
515 int
516 zswrite(dev, uio, flags)
517 dev_t dev;
518 struct uio *uio;
519 int flags;
520 {
521 register struct zs_chanstate *cs;
522 register struct zs_softc *zi;
523 register struct tty *tp;
524 int unit;
525
526 unit = ZS_UNIT(dev);
527 zi = device_lookup_private(&zs_cd, unit >> 1);
528 cs = &zi->zi_cs[unit & 1];
529 tp = cs->cs_ttyp;
530
531 return(tp->t_linesw->l_write(tp, uio, flags));
532 }
533
534 int
535 zspoll(dev, events, l)
536 dev_t dev;
537 int events;
538 struct lwp *l;
539 {
540 register struct zs_chanstate *cs;
541 register struct zs_softc *zi;
542 register struct tty *tp;
543 int unit;
544
545 unit = ZS_UNIT(dev);
546 zi = device_lookup_private(&zs_cd, unit >> 1);
547 cs = &zi->zi_cs[unit & 1];
548 tp = cs->cs_ttyp;
549
550 return ((*tp->t_linesw->l_poll)(tp, events, l));
551 }
552
553 struct tty *
554 zstty(dev)
555 dev_t dev;
556 {
557 register struct zs_chanstate *cs;
558 register struct zs_softc *zi;
559 int unit;
560
561 unit = ZS_UNIT(dev);
562 zi = device_lookup_private(&zs_cd, unit >> 1);
563 cs = &zi->zi_cs[unit & 1];
564 return(cs->cs_ttyp);
565 }
566
567 /*
568 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
569 * channels are kept in (A,B) pairs.
570 *
571 * Do just a little, then get out; set a software interrupt if more
572 * work is needed.
573 *
574 * We deliberately ignore the vectoring Zilog gives us, and match up
575 * only the number of `reset interrupt under service' operations, not
576 * the order.
577 */
578
579 int
580 zshard(sr)
581 long sr;
582 {
583 register struct zs_chanstate *a;
584 #define b (a + 1)
585 register volatile struct zschan *zc;
586 register int rr3, intflags = 0, v, i;
587
588 do {
589 intflags &= ~4;
590 for(a = zslist; a != NULL; a = b->cs_next) {
591 rr3 = ZS_READ(a->cs_zc, 3);
592 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
593 intflags |= 4|2;
594 zc = a->cs_zc;
595 i = a->cs_rbput;
596 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
597 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
598 intflags |= 1;
599 }
600 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
601 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
602 intflags |= 1;
603 }
604 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
605 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
606 intflags |= 1;
607 }
608 a->cs_rbput = i;
609 }
610 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
611 intflags |= 4|2;
612 zc = b->cs_zc;
613 i = b->cs_rbput;
614 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
615 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
616 intflags |= 1;
617 }
618 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
619 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
620 intflags |= 1;
621 }
622 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
623 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
624 intflags |= 1;
625 }
626 b->cs_rbput = i;
627 }
628 }
629 } while(intflags & 4);
630 #undef b
631
632 if(intflags & 1) {
633 if(BASEPRI(sr)) {
634 spl1();
635 zsshortcuts++;
636 return(zssoft(sr));
637 }
638 else if(!cb_scheduled) {
639 cb_scheduled++;
640 add_sicallback((si_farg)zssoft, 0, 0);
641 }
642 }
643 return(intflags & 2);
644 }
645
646 static int
647 zsrint(cs, zc)
648 register struct zs_chanstate *cs;
649 register volatile struct zschan *zc;
650 {
651 register int c;
652
653 /*
654 * First read the status, because read of the received char
655 * destroy the status of this char.
656 */
657 c = ZS_READ(zc, 1);
658 c |= (zc->zc_data << 8);
659
660 /* clear receive error & interrupt condition */
661 zc->zc_csr = ZSWR0_RESET_ERRORS;
662 zc->zc_csr = ZSWR0_CLR_INTR;
663
664 return(ZRING_MAKE(ZRING_RINT, c));
665 }
666
667 static int
668 zsxint(cs, zc)
669 register struct zs_chanstate *cs;
670 register volatile struct zschan *zc;
671 {
672 register int i = cs->cs_tbc;
673
674 if(i == 0) {
675 zc->zc_csr = ZSWR0_RESET_TXINT;
676 zc->zc_csr = ZSWR0_CLR_INTR;
677 return(ZRING_MAKE(ZRING_XINT, 0));
678 }
679 cs->cs_tbc = i - 1;
680 zc->zc_data = *cs->cs_tba++;
681 zc->zc_csr = ZSWR0_CLR_INTR;
682 return (0);
683 }
684
685 static int
686 zssint(cs, zc)
687 register struct zs_chanstate *cs;
688 register volatile struct zschan *zc;
689 {
690 register int rr0;
691
692 rr0 = zc->zc_csr;
693 zc->zc_csr = ZSWR0_RESET_STATUS;
694 zc->zc_csr = ZSWR0_CLR_INTR;
695 /*
696 * The chip's hardware flow control is, as noted in zsreg.h,
697 * busted---if the DCD line goes low the chip shuts off the
698 * receiver (!). If we want hardware CTS flow control but do
699 * not have it, and carrier is now on, turn HFC on; if we have
700 * HFC now but carrier has gone low, turn it off.
701 */
702 if(rr0 & ZSRR0_DCD) {
703 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
704 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
705 cs->cs_creg[3] |= ZSWR3_HFC;
706 ZS_WRITE(zc, 3, cs->cs_creg[3]);
707 }
708 }
709 else {
710 if (cs->cs_creg[3] & ZSWR3_HFC) {
711 cs->cs_creg[3] &= ~ZSWR3_HFC;
712 ZS_WRITE(zc, 3, cs->cs_creg[3]);
713 }
714 }
715 return(ZRING_MAKE(ZRING_SINT, rr0));
716 }
717
718 /*
719 * Print out a ring or fifo overrun error message.
720 */
721 static void
722 zsoverrun(unit, ptime, what)
723 int unit;
724 long *ptime;
725 const char *what;
726 {
727 time_t cur_sec = time_second;
728
729 if(*ptime != cur_sec) {
730 *ptime = cur_sec;
731 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
732 (unit & 1) + 'a', what);
733 }
734 }
735
736 /*
737 * ZS software interrupt. Scan all channels for deferred interrupts.
738 */
739 int
740 zssoft(sr)
741 long sr;
742 {
743 register struct zs_chanstate *cs;
744 register volatile struct zschan *zc;
745 register struct linesw *line;
746 register struct tty *tp;
747 register int get, n, c, cc, unit, s;
748 int retval = 0;
749
750 cb_scheduled = 0;
751 s = spltty();
752 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
753 get = cs->cs_rbget;
754 again:
755 n = cs->cs_rbput; /* atomic */
756 if(get == n) /* nothing more on this line */
757 continue;
758 retval = 1;
759 unit = cs->cs_unit; /* set up to handle interrupts */
760 zc = cs->cs_zc;
761 tp = cs->cs_ttyp;
762 line = tp->t_linesw;
763 /*
764 * Compute the number of interrupts in the receive ring.
765 * If the count is overlarge, we lost some events, and
766 * must advance to the first valid one. It may get
767 * overwritten if more data are arriving, but this is
768 * too expensive to check and gains nothing (we already
769 * lost out; all we can do at this point is trade one
770 * kind of loss for another).
771 */
772 n -= get;
773 if(n > ZLRB_RING_SIZE) {
774 zsoverrun(unit, &cs->cs_rotime, "ring");
775 get += n - ZLRB_RING_SIZE;
776 n = ZLRB_RING_SIZE;
777 }
778 while(--n >= 0) {
779 /* race to keep ahead of incoming interrupts */
780 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
781 switch (ZRING_TYPE(c)) {
782
783 case ZRING_RINT:
784 c = ZRING_VALUE(c);
785 if(c & ZSRR1_DO)
786 zsoverrun(unit, &cs->cs_fotime, "fifo");
787 cc = c >> 8;
788 if(c & ZSRR1_FE)
789 cc |= TTY_FE;
790 if(c & ZSRR1_PE)
791 cc |= TTY_PE;
792 line->l_rint(cc, tp);
793 break;
794
795 case ZRING_XINT:
796 /*
797 * Transmit done: change registers and resume,
798 * or clear BUSY.
799 */
800 if(cs->cs_heldchange) {
801 int sps;
802
803 sps = splzs();
804 c = zc->zc_csr;
805 if((c & ZSRR0_DCD) == 0)
806 cs->cs_preg[3] &= ~ZSWR3_HFC;
807 bcopy((void *)cs->cs_preg,
808 (void *)cs->cs_creg, 16);
809 zs_loadchannelregs(zc, cs->cs_creg);
810 splx(sps);
811 cs->cs_heldchange = 0;
812 if(cs->cs_heldtbc
813 && (tp->t_state & TS_TTSTOP) == 0) {
814 cs->cs_tbc = cs->cs_heldtbc - 1;
815 zc->zc_data = *cs->cs_tba++;
816 goto again;
817 }
818 }
819 tp->t_state &= ~TS_BUSY;
820 if(tp->t_state & TS_FLUSH)
821 tp->t_state &= ~TS_FLUSH;
822 else ndflush(&tp->t_outq,cs->cs_tba
823 - tp->t_outq.c_cf);
824 line->l_start(tp);
825 break;
826
827 case ZRING_SINT:
828 /*
829 * Status line change. HFC bit is run in
830 * hardware interrupt, to avoid locking
831 * at splzs here.
832 */
833 c = ZRING_VALUE(c);
834 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
835 cc = (c & ZSRR0_DCD) != 0;
836 if(line->l_modem(tp, cc) == 0)
837 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
838 cc ? DMBIS : DMBIC);
839 }
840 cs->cs_rr0 = c;
841 break;
842
843 default:
844 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
845 unit >> 1, (unit & 1) + 'a', c);
846 break;
847 }
848 }
849 cs->cs_rbget = get;
850 goto again;
851 }
852 splx(s);
853 return (retval);
854 }
855
856 int
857 zsioctl(dev, cmd, data, flag, l)
858 dev_t dev;
859 u_long cmd;
860 void * data;
861 int flag;
862 struct lwp *l;
863 {
864 int unit = ZS_UNIT(dev);
865 struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
866 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
867 register int error, s;
868 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
869
870 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
871 if(error != EPASSTHROUGH)
872 return(error);
873
874 error = ttioctl(tp, cmd, data, flag, l);
875 if(error !=EPASSTHROUGH)
876 return (error);
877
878 switch (cmd) {
879 case TIOCSBRK:
880 s = splzs();
881 cs->cs_preg[5] |= ZSWR5_BREAK;
882 cs->cs_creg[5] |= ZSWR5_BREAK;
883 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
884 splx(s);
885 break;
886 case TIOCCBRK:
887 s = splzs();
888 cs->cs_preg[5] &= ~ZSWR5_BREAK;
889 cs->cs_creg[5] &= ~ZSWR5_BREAK;
890 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
891 splx(s);
892 break;
893 case TIOCGFLAGS: {
894 int bits = 0;
895
896 if(cs->cs_softcar)
897 bits |= TIOCFLAG_SOFTCAR;
898 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
899 bits |= TIOCFLAG_CLOCAL;
900 if(cs->cs_creg[3] & ZSWR3_HFC)
901 bits |= TIOCFLAG_CRTSCTS;
902 *(int *)data = bits;
903 break;
904 }
905 case TIOCSFLAGS: {
906 int userbits = 0;
907
908 error = kauth_authorize_device_tty(l->l_cred,
909 KAUTH_DEVICE_TTY_PRIVSET, tp);
910 if(error != 0)
911 return (EPERM);
912
913 userbits = *(int *)data;
914
915 /*
916 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
917 # defaulting to software flow control.
918 */
919 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
920 return(EINVAL);
921 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
922 return(ENODEV);
923
924 s = splzs();
925 if((userbits & TIOCFLAG_SOFTCAR)) {
926 cs->cs_softcar = 1; /* turn on softcar */
927 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
928 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
929 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
930 }
931 else if(userbits & TIOCFLAG_CLOCAL) {
932 cs->cs_softcar = 0; /* turn off softcar */
933 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
934 cs->cs_creg[15] |= ZSWR15_DCD_IE;
935 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
936 tp->t_termios.c_cflag |= CLOCAL;
937 }
938 if(userbits & TIOCFLAG_CRTSCTS) {
939 cs->cs_preg[15] |= ZSWR15_CTS_IE;
940 cs->cs_creg[15] |= ZSWR15_CTS_IE;
941 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
942 cs->cs_preg[3] |= ZSWR3_HFC;
943 cs->cs_creg[3] |= ZSWR3_HFC;
944 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
945 tp->t_termios.c_cflag |= CRTSCTS;
946 }
947 else {
948 /* no mdmbuf, so we must want software flow control */
949 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
950 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
951 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
952 cs->cs_preg[3] &= ~ZSWR3_HFC;
953 cs->cs_creg[3] &= ~ZSWR3_HFC;
954 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
955 tp->t_termios.c_cflag &= ~CRTSCTS;
956 }
957 splx(s);
958 break;
959 }
960 case TIOCSDTR:
961 zs_modem(cs, ZSWR5_DTR, DMBIS);
962 break;
963 case TIOCCDTR:
964 zs_modem(cs, ZSWR5_DTR, DMBIC);
965 break;
966 case TIOCMGET:
967 zs_modem(cs, 0, DMGET);
968 break;
969 case TIOCMSET:
970 case TIOCMBIS:
971 case TIOCMBIC:
972 default:
973 return (EPASSTHROUGH);
974 }
975 return (0);
976 }
977
978 /*
979 * Start or restart transmission.
980 */
981 static void
982 zsstart(tp)
983 register struct tty *tp;
984 {
985 register struct zs_chanstate *cs;
986 register int s, nch;
987 int unit = ZS_UNIT(tp->t_dev);
988 struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
989
990 cs = &zi->zi_cs[unit & 1];
991 s = spltty();
992
993 /*
994 * If currently active or delaying, no need to do anything.
995 */
996 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
997 goto out;
998
999 /*
1000 * If there are sleepers, and output has drained below low
1001 * water mark, awaken.
1002 */
1003 ttypull(tp);
1004
1005 nch = ndqb(&tp->t_outq, 0); /* XXX */
1006 if(nch) {
1007 register char *p = tp->t_outq.c_cf;
1008
1009 /* mark busy, enable tx done interrupts, & send first byte */
1010 tp->t_state |= TS_BUSY;
1011 (void) splzs();
1012 cs->cs_preg[1] |= ZSWR1_TIE;
1013 cs->cs_creg[1] |= ZSWR1_TIE;
1014 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1015 cs->cs_zc->zc_data = *p;
1016 cs->cs_tba = p + 1;
1017 cs->cs_tbc = nch - 1;
1018 } else {
1019 /*
1020 * Nothing to send, turn off transmit done interrupts.
1021 * This is useful if something is doing polled output.
1022 */
1023 (void) splzs();
1024 cs->cs_preg[1] &= ~ZSWR1_TIE;
1025 cs->cs_creg[1] &= ~ZSWR1_TIE;
1026 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1027 }
1028 out:
1029 splx(s);
1030 }
1031
1032 /*
1033 * Stop output, e.g., for ^S or output flush.
1034 */
1035 void
1036 zsstop(tp, flag)
1037 register struct tty *tp;
1038 int flag;
1039 {
1040 register struct zs_chanstate *cs;
1041 register int s, unit = ZS_UNIT(tp->t_dev);
1042 struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
1043
1044 cs = &zi->zi_cs[unit & 1];
1045 s = splzs();
1046 if(tp->t_state & TS_BUSY) {
1047 /*
1048 * Device is transmitting; must stop it.
1049 */
1050 cs->cs_tbc = 0;
1051 if ((tp->t_state & TS_TTSTOP) == 0)
1052 tp->t_state |= TS_FLUSH;
1053 }
1054 splx(s);
1055 }
1056
1057 static void
1058 zs_shutdown(cs)
1059 struct zs_chanstate *cs;
1060 {
1061 struct tty *tp = cs->cs_ttyp;
1062 int s;
1063
1064 s = splzs();
1065
1066 /*
1067 * Hang up if necessary. Wait a bit, so the other side has time to
1068 * notice even if we immediately open the port again.
1069 */
1070 if(tp->t_cflag & HUPCL) {
1071 zs_modem(cs, 0, DMSET);
1072 (void)tsleep((void *)cs, TTIPRI, ttclos, hz);
1073 }
1074
1075 /* Clear any break condition set with TIOCSBRK. */
1076 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1077 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1078 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1079 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1080 }
1081
1082 /*
1083 * Drop all lines and cancel interrupts
1084 */
1085 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1086 splx(s);
1087 }
1088
1089 /*
1090 * Set ZS tty parameters from termios.
1091 *
1092 * This routine makes use of the fact that only registers
1093 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1094 */
1095 static int
1096 zsparam(tp, t)
1097 register struct tty *tp;
1098 register struct termios *t;
1099 {
1100 int unit = ZS_UNIT(tp->t_dev);
1101 struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
1102 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1103 int cdiv = 0, /* XXX gcc4 -Wuninitialized */
1104 clkm = 0, /* XXX gcc4 -Wuninitialized */
1105 brgm = 0, /* XXX gcc4 -Wuninitialized */
1106 tcon = 0; /* XXX gcc4 -Wuninitialized */
1107 register int tmp, tmp5, cflag, s;
1108
1109 tmp = t->c_ospeed;
1110 tmp5 = t->c_ispeed;
1111 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1112 return(EINVAL);
1113 if(tmp == 0) {
1114 /* stty 0 => drop DTR and RTS */
1115 zs_modem(cs, 0, DMSET);
1116 return(0);
1117 }
1118 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1119 if (tmp < 0)
1120 return(EINVAL);
1121 tp->t_ispeed = tp->t_ospeed = tmp;
1122
1123 cflag = tp->t_cflag = t->c_cflag;
1124 if (cflag & CSTOPB)
1125 cdiv |= ZSWR4_TWOSB;
1126 else
1127 cdiv |= ZSWR4_ONESB;
1128 if (!(cflag & PARODD))
1129 cdiv |= ZSWR4_EVENP;
1130 if (cflag & PARENB)
1131 cdiv |= ZSWR4_PARENB;
1132
1133 switch(cflag & CSIZE) {
1134 case CS5:
1135 tmp = ZSWR3_RX_5;
1136 tmp5 = ZSWR5_TX_5;
1137 break;
1138 case CS6:
1139 tmp = ZSWR3_RX_6;
1140 tmp5 = ZSWR5_TX_6;
1141 break;
1142 case CS7:
1143 tmp = ZSWR3_RX_7;
1144 tmp5 = ZSWR5_TX_7;
1145 break;
1146 case CS8:
1147 default:
1148 tmp = ZSWR3_RX_8;
1149 tmp5 = ZSWR5_TX_8;
1150 break;
1151 }
1152 tmp |= ZSWR3_RX_ENABLE;
1153 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1154
1155 /*
1156 * Block interrupts so that state will not
1157 * be altered until we are done setting it up.
1158 */
1159 s = splzs();
1160 cs->cs_preg[4] = cdiv;
1161 cs->cs_preg[11] = clkm;
1162 cs->cs_preg[12] = tcon;
1163 cs->cs_preg[13] = tcon >> 8;
1164 cs->cs_preg[14] = brgm;
1165 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1166 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1167 cs->cs_preg[10] = ZSWR10_NRZ;
1168 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1169
1170 /*
1171 * Output hardware flow control on the chip is horrendous: if
1172 * carrier detect drops, the receiver is disabled. Hence we
1173 * can only do this when the carrier is on.
1174 */
1175 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1176 tmp |= ZSWR3_HFC;
1177 cs->cs_preg[3] = tmp;
1178 cs->cs_preg[5] = tmp5;
1179
1180 /*
1181 * If nothing is being transmitted, set up new current values,
1182 * else mark them as pending.
1183 */
1184 if(cs->cs_heldchange == 0) {
1185 if (cs->cs_ttyp->t_state & TS_BUSY) {
1186 cs->cs_heldtbc = cs->cs_tbc;
1187 cs->cs_tbc = 0;
1188 cs->cs_heldchange = 1;
1189 } else {
1190 bcopy((void *)cs->cs_preg, (void *)cs->cs_creg, 16);
1191 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1192 }
1193 }
1194 splx(s);
1195 return (0);
1196 }
1197
1198 /*
1199 * search for the best matching baudrate
1200 */
1201 static int
1202 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1203 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1204 {
1205 int bestdiff, bestbps, source;
1206
1207 bestdiff = bestbps = 0;
1208 unit = (unit & 1) << 2;
1209 for (source = 0; source < 4; ++source) {
1210 long freq = zs_frequencies[unit + source];
1211 int diff, bps, div, clkm, brgm, tcon;
1212
1213 bps = div = clkm = brgm = tcon = 0;
1214 switch (source) {
1215 case 0: /* BRgen, PCLK */
1216 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1217 break;
1218 case 1: /* BRgen, RTxC */
1219 brgm = ZSWR14_BAUD_ENA;
1220 break;
1221 case 2: /* RTxC */
1222 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1223 break;
1224 case 3: /* TRxC */
1225 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1226 break;
1227 }
1228 switch (source) {
1229 case 0:
1230 case 1:
1231 div = ZSWR4_CLK_X16;
1232 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1233 tcon = BPS_TO_TCONST(freq, wanted);
1234 if (tcon < 0)
1235 tcon = 0;
1236 bps = TCONST_TO_BPS(freq, tcon);
1237 break;
1238 case 2:
1239 case 3:
1240 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1241 int b2 = freq / 32, d2 = abs(b2 - wanted);
1242 int b3 = freq / 64, d3 = abs(b3 - wanted);
1243
1244 if (d1 < d2 && d1 < d3) {
1245 div = ZSWR4_CLK_X16;
1246 bps = b1;
1247 } else if (d2 < d3 && d2 < d1) {
1248 div = ZSWR4_CLK_X32;
1249 bps = b2;
1250 } else {
1251 div = ZSWR4_CLK_X64;
1252 bps = b3;
1253 }
1254 brgm = tcon = 0;
1255 break;
1256 }
1257 }
1258 diff = abs(bps - wanted);
1259 if (!source || diff < bestdiff) {
1260 *divisor = div;
1261 *clockmode = clkm;
1262 *brgenmode = brgm;
1263 *timeconst = tcon;
1264 bestbps = bps;
1265 bestdiff = diff;
1266 if (diff == 0)
1267 break;
1268 }
1269 }
1270 /* Allow deviations upto 5% */
1271 if (20 * bestdiff > wanted)
1272 return -1;
1273 return bestbps;
1274 }
1275
1276 /*
1277 * Raise or lower modem control (DTR/RTS) signals. If a character is
1278 * in transmission, the change is deferred.
1279 */
1280 static int
1281 zs_modem(cs, bits, how)
1282 struct zs_chanstate *cs;
1283 int bits, how;
1284 {
1285 int s, mbits;
1286
1287 bits &= ZSWR5_DTR | ZSWR5_RTS;
1288
1289 s = splzs();
1290 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1291
1292 switch(how) {
1293 case DMSET:
1294 mbits = bits;
1295 break;
1296 case DMBIS:
1297 mbits |= bits;
1298 break;
1299 case DMBIC:
1300 mbits &= ~bits;
1301 break;
1302 case DMGET:
1303 splx(s);
1304 return(mbits);
1305 }
1306
1307 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1308 if(cs->cs_heldchange == 0) {
1309 if(cs->cs_ttyp->t_state & TS_BUSY) {
1310 cs->cs_heldtbc = cs->cs_tbc;
1311 cs->cs_tbc = 0;
1312 cs->cs_heldchange = 1;
1313 }
1314 else {
1315 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1316 }
1317 }
1318 splx(s);
1319 return(0);
1320 }
1321
1322 /*
1323 * Write the given register set to the given zs channel in the proper order.
1324 * The channel must not be transmitting at the time. The receiver will
1325 * be disabled for the time it takes to write all the registers.
1326 */
1327 static void
1328 zs_loadchannelregs(zc, reg)
1329 volatile struct zschan *zc;
1330 u_char *reg;
1331 {
1332 int i;
1333
1334 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1335 i = zc->zc_data; /* drain fifo */
1336 i = zc->zc_data;
1337 i = zc->zc_data;
1338 ZS_WRITE(zc, 4, reg[4]);
1339 ZS_WRITE(zc, 10, reg[10]);
1340 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1341 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1342 ZS_WRITE(zc, 1, reg[1]);
1343 ZS_WRITE(zc, 9, reg[9]);
1344 ZS_WRITE(zc, 11, reg[11]);
1345 ZS_WRITE(zc, 12, reg[12]);
1346 ZS_WRITE(zc, 13, reg[13]);
1347 ZS_WRITE(zc, 14, reg[14]);
1348 ZS_WRITE(zc, 15, reg[15]);
1349 ZS_WRITE(zc, 3, reg[3]);
1350 ZS_WRITE(zc, 5, reg[5]);
1351 }
1352 #endif /* NZS > 1 */
1353