zs.c revision 1.58 1 /* $NetBSD: zs.c,v 1.58 2009/01/28 19:55:51 tjam Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 */
43
44 /*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
61 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73 /*
74 * Zilog Z8530 (ZSCC) driver.
75 *
76 * Runs two tty ports (modem2 and serial2) on zs0.
77 *
78 * This driver knows far too much about chip to usage mappings.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.58 2009/01/28 19:55:51 tjam Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/proc.h>
87 #include <sys/device.h>
88 #include <sys/conf.h>
89 #include <sys/file.h>
90 #include <sys/ioctl.h>
91 #include <sys/malloc.h>
92 #include <sys/tty.h>
93 #include <sys/time.h>
94 #include <sys/kernel.h>
95 #include <sys/syslog.h>
96 #include <sys/kauth.h>
97
98 #include <machine/cpu.h>
99 #include <machine/iomap.h>
100 #include <machine/scu.h>
101 #include <machine/mfp.h>
102 #include <atari/dev/ym2149reg.h>
103
104 #include <dev/ic/z8530reg.h>
105 #include <atari/dev/zsvar.h>
106 #include "zs.h"
107 #if NZS > 1
108 #error "This driver supports only 1 85C30!"
109 #endif
110
111 #if NZS > 0
112
113 #define PCLK (8053976) /* PCLK pin input clock rate */
114 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
115
116 #define splzs spl5
117
118 /*
119 * Software state per found chip.
120 */
121 struct zs_softc {
122 struct device zi_dev; /* base device */
123 volatile struct zsdevice *zi_zs; /* chip registers */
124 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
125 };
126
127 static void *zs_softint_cookie; /* for callback */
128 /*
129 * Define the registers for a closed port
130 */
131 static u_char zs_init_regs[16] = {
132 /* 0 */ 0,
133 /* 1 */ 0,
134 /* 2 */ 0x60,
135 /* 3 */ 0,
136 /* 4 */ 0,
137 /* 5 */ 0,
138 /* 6 */ 0,
139 /* 7 */ 0,
140 /* 8 */ 0,
141 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
142 /* 10 */ ZSWR10_NRZ,
143 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
144 /* 12 */ 0,
145 /* 13 */ 0,
146 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
147 /* 15 */ 0
148 };
149
150 /*
151 * Define the machine dependant clock frequencies
152 * If BRgen feeds sender/receiver we always use a
153 * divisor 16, therefor the division by 16 can as
154 * well be done here.
155 */
156 static u_long zs_freqs_tt[] = {
157 /*
158 * Atari TT, RTxCB is generated by TT-MFP timer C,
159 * which is set to 307.2 kHz during initialisation
160 * and never changed afterwards.
161 */
162 PCLK/16, /* BRgen, PCLK, divisor 16 */
163 229500, /* BRgen, RTxCA, divisor 16 */
164 3672000, /* RTxCA, from PCLK4 */
165 0, /* TRxCA, external */
166
167 PCLK/16, /* BRgen, PCLK, divisor 16 */
168 19200, /* BRgen, RTxCB, divisor 16 */
169 307200, /* RTxCB, from TT-MFP TCO */
170 2457600 /* TRxCB, from BCLK */
171 };
172
173 static u_long zs_freqs_falcon[] = {
174 /*
175 * Atari Falcon, XXX no specs available, this might be wrong
176 */
177 PCLK/16, /* BRgen, PCLK, divisor 16 */
178 229500, /* BRgen, RTxCA, divisor 16 */
179 3672000, /* RTxCA, ??? */
180 0, /* TRxCA, external */
181
182 PCLK/16, /* BRgen, PCLK, divisor 16 */
183 229500, /* BRgen, RTxCB, divisor 16 */
184 3672000, /* RTxCB, ??? */
185 2457600 /* TRxCB, ??? */
186 };
187
188 static u_long zs_freqs_hades[] = {
189 /*
190 * XXX: Channel-A unchecked!!!!!
191 */
192 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
193 229500, /* BRgen, RTxCA, divisor 16 */
194 3672000, /* RTxCA, from PCLK4 */
195 0, /* TRxCA, external */
196
197 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
198 235550, /* BRgen, RTxCB, divisor 16 */
199 3768800, /* RTxCB, 3.7688MHz */
200 3768800 /* TRxCB, 3.7688MHz */
201 };
202
203 static u_long zs_freqs_generic[] = {
204 /*
205 * other machines, assume only PCLK is available
206 */
207 PCLK/16, /* BRgen, PCLK, divisor 16 */
208 0, /* BRgen, RTxCA, divisor 16 */
209 0, /* RTxCA, unknown */
210 0, /* TRxCA, unknown */
211
212 PCLK/16, /* BRgen, PCLK, divisor 16 */
213 0, /* BRgen, RTxCB, divisor 16 */
214 0, /* RTxCB, unknown */
215 0 /* TRxCB, unknown */
216 };
217 static u_long *zs_frequencies;
218
219 /* Definition of the driver for autoconfig. */
220 static int zsmatch __P((struct device *, struct cfdata *, void *));
221 static void zsattach __P((struct device *, struct device *, void *));
222
223 CFATTACH_DECL(zs, sizeof(struct zs_softc),
224 zsmatch, zsattach, NULL, NULL);
225
226 extern struct cfdriver zs_cd;
227
228 /* {b,c}devsw[] function prototypes */
229 dev_type_open(zsopen);
230 dev_type_close(zsclose);
231 dev_type_read(zsread);
232 dev_type_write(zswrite);
233 dev_type_ioctl(zsioctl);
234 dev_type_stop(zsstop);
235 dev_type_tty(zstty);
236 dev_type_poll(zspoll);
237
238 const struct cdevsw zs_cdevsw = {
239 zsopen, zsclose, zsread, zswrite, zsioctl,
240 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
241 };
242
243 /* Interrupt handlers. */
244 int zshard __P((long));
245 static int zssoft __P((long));
246 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
247 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
248 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
249
250 static struct zs_chanstate *zslist;
251
252 /* Routines called from other code. */
253 static void zsstart __P((struct tty *));
254
255 /* Routines purely local to this driver. */
256 static void zsoverrun __P((int, long *, const char *));
257 static int zsparam __P((struct tty *, struct termios *));
258 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
259 static int zs_modem __P((struct zs_chanstate *, int, int));
260 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
261 static void zs_shutdown __P((struct zs_chanstate *));
262
263 static int
264 zsmatch(pdp, cfp, auxp)
265 struct device *pdp;
266 struct cfdata *cfp;
267 void *auxp;
268 {
269 static int zs_matched = 0;
270
271 if(strcmp("zs", auxp) || zs_matched)
272 return(0);
273 zs_matched = 1;
274 return(1);
275 }
276
277 /*
278 * Attach a found zs.
279 */
280 static void
281 zsattach(parent, dev, aux)
282 struct device *parent;
283 struct device *dev;
284 void *aux;
285 {
286 register struct zs_softc *zi;
287 register struct zs_chanstate *cs;
288 register volatile struct zsdevice *addr;
289 char tmp;
290
291 addr = (struct zsdevice *)AD_SCC;
292 zi = (struct zs_softc *)dev;
293 zi->zi_zs = addr;
294 cs = zi->zi_cs;
295
296 /*
297 * Get the command register into a known state.
298 */
299 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
300 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
301 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
302 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
303
304 /*
305 * Do a hardware reset.
306 */
307 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
308 delay(50000); /*enough ? */
309 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
310
311 /*
312 * Initialize both channels
313 */
314 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
315 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
316
317 if(machineid & ATARI_TT) {
318 /*
319 * ininitialise TT-MFP timer C: 307200Hz
320 * timer C and D share one control register:
321 * bits 0-2 control timer D
322 * bits 4-6 control timer C
323 */
324 int cr = MFP2->mf_tcdcr & 7;
325 MFP2->mf_tcdcr = cr; /* stop timer C */
326 MFP2->mf_tcdr = 1; /* counter 1 */
327 cr |= T_Q004 << 4; /* divisor 4 */
328 MFP2->mf_tcdcr = cr; /* start timer C */
329 /*
330 * enable scc related interrupts
331 */
332 SCU->vme_mask |= SCU_SCC;
333
334 zs_frequencies = zs_freqs_tt;
335 } else if (machineid & ATARI_FALCON) {
336 zs_frequencies = zs_freqs_falcon;
337 } else if (machineid & ATARI_HADES) {
338 zs_frequencies = zs_freqs_hades;
339 } else {
340 zs_frequencies = zs_freqs_generic;
341 }
342
343 /* link into interrupt list with order (A,B) (B=A+1) */
344 cs[0].cs_next = &cs[1];
345 cs[1].cs_next = zslist;
346 zslist = cs;
347
348 cs->cs_unit = 0;
349 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
350 cs++;
351 cs->cs_unit = 1;
352 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
353
354 zs_softint_cookie = softint_establish(SOFTINT_SERIAL,
355 (void (*)(void *))zssoft, 0);
356
357 printf(": serial2 on channel a and modem2 on channel b\n");
358 }
359
360 /*
361 * Open a zs serial port.
362 */
363 int
364 zsopen(dev, flags, mode, l)
365 dev_t dev;
366 int flags;
367 int mode;
368 struct lwp *l;
369 {
370 register struct tty *tp;
371 register struct zs_chanstate *cs;
372 struct zs_softc *zi;
373 int unit = ZS_UNIT(dev);
374 int zs = unit >> 1;
375 int error, s;
376
377 zi = device_lookup_private(&zs_cd, zs);
378 if (zi == NULL)
379 return (ENXIO);
380 cs = &zi->zi_cs[unit & 1];
381
382 /*
383 * When port A (ser02) is selected on the TT, make sure
384 * the port is enabled.
385 */
386 if((machineid & ATARI_TT) && !(unit & 1))
387 ym2149_ser2(1);
388
389 if (cs->cs_rbuf == NULL) {
390 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
391 M_WAITOK);
392 }
393
394 tp = cs->cs_ttyp;
395 if(tp == NULL) {
396 cs->cs_ttyp = tp = ttymalloc();
397 tty_attach(tp);
398 tp->t_dev = dev;
399 tp->t_oproc = zsstart;
400 tp->t_param = zsparam;
401 }
402
403 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
404 return (EBUSY);
405
406 s = spltty();
407
408 /*
409 * Do the following iff this is a first open.
410 */
411 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
412 if(tp->t_ispeed == 0) {
413 tp->t_iflag = TTYDEF_IFLAG;
414 tp->t_oflag = TTYDEF_OFLAG;
415 tp->t_cflag = TTYDEF_CFLAG;
416 tp->t_lflag = TTYDEF_LFLAG;
417 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
418 }
419 ttychars(tp);
420 ttsetwater(tp);
421
422 (void)zsparam(tp, &tp->t_termios);
423
424 /*
425 * Turn on DTR. We must always do this, even if carrier is not
426 * present, because otherwise we'd have to use TIOCSDTR
427 * immediately after setting CLOCAL, which applications do not
428 * expect. We always assert DTR while the device is open
429 * unless explicitly requested to deassert it.
430 */
431 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
432 /* May never get a status intr. if DCD already on. -gwr */
433 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
434 tp->t_state |= TS_CARR_ON;
435 if(cs->cs_softcar)
436 tp->t_state |= TS_CARR_ON;
437 }
438
439 splx(s);
440
441 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
442 if (error)
443 goto bad;
444
445 error = tp->t_linesw->l_open(dev, tp);
446 if(error)
447 goto bad;
448 return (0);
449
450 bad:
451 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
452 /*
453 * We failed to open the device, and nobody else had it opened.
454 * Clean up the state as appropriate.
455 */
456 zs_shutdown(cs);
457 }
458 return(error);
459 }
460
461 /*
462 * Close a zs serial port.
463 */
464 int
465 zsclose(dev, flags, mode, l)
466 dev_t dev;
467 int flags;
468 int mode;
469 struct lwp *l;
470 {
471 register struct zs_chanstate *cs;
472 register struct tty *tp;
473 struct zs_softc *zi;
474 int unit = ZS_UNIT(dev);
475
476 zi = device_lookup_private(&zs_cd, unit >> 1);
477 cs = &zi->zi_cs[unit & 1];
478 tp = cs->cs_ttyp;
479
480 tp->t_linesw->l_close(tp, flags);
481 ttyclose(tp);
482
483 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
484 /*
485 * Although we got a last close, the device may still be in
486 * use; e.g. if this was the dialout node, and there are still
487 * processes waiting for carrier on the non-dialout node.
488 */
489 zs_shutdown(cs);
490 }
491 return (0);
492 }
493
494 /*
495 * Read/write zs serial port.
496 */
497 int
498 zsread(dev, uio, flags)
499 dev_t dev;
500 struct uio *uio;
501 int flags;
502 {
503 register struct zs_chanstate *cs;
504 register struct zs_softc *zi;
505 register struct tty *tp;
506 int unit;
507
508 unit = ZS_UNIT(dev);
509 zi = device_lookup_private(&zs_cd, unit >> 1);
510 cs = &zi->zi_cs[unit & 1];
511 tp = cs->cs_ttyp;
512
513 return(tp->t_linesw->l_read(tp, uio, flags));
514 }
515
516 int
517 zswrite(dev, uio, flags)
518 dev_t dev;
519 struct uio *uio;
520 int flags;
521 {
522 register struct zs_chanstate *cs;
523 register struct zs_softc *zi;
524 register struct tty *tp;
525 int unit;
526
527 unit = ZS_UNIT(dev);
528 zi = device_lookup_private(&zs_cd, unit >> 1);
529 cs = &zi->zi_cs[unit & 1];
530 tp = cs->cs_ttyp;
531
532 return(tp->t_linesw->l_write(tp, uio, flags));
533 }
534
535 int
536 zspoll(dev, events, l)
537 dev_t dev;
538 int events;
539 struct lwp *l;
540 {
541 register struct zs_chanstate *cs;
542 register struct zs_softc *zi;
543 register struct tty *tp;
544 int unit;
545
546 unit = ZS_UNIT(dev);
547 zi = device_lookup_private(&zs_cd, unit >> 1);
548 cs = &zi->zi_cs[unit & 1];
549 tp = cs->cs_ttyp;
550
551 return ((*tp->t_linesw->l_poll)(tp, events, l));
552 }
553
554 struct tty *
555 zstty(dev)
556 dev_t dev;
557 {
558 register struct zs_chanstate *cs;
559 register struct zs_softc *zi;
560 int unit;
561
562 unit = ZS_UNIT(dev);
563 zi = device_lookup_private(&zs_cd, unit >> 1);
564 cs = &zi->zi_cs[unit & 1];
565 return(cs->cs_ttyp);
566 }
567
568 /*
569 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
570 * channels are kept in (A,B) pairs.
571 *
572 * Do just a little, then get out; set a software interrupt if more
573 * work is needed.
574 *
575 * We deliberately ignore the vectoring Zilog gives us, and match up
576 * only the number of `reset interrupt under service' operations, not
577 * the order.
578 */
579
580 int
581 zshard(sr)
582 long sr;
583 {
584 register struct zs_chanstate *a;
585 #define b (a + 1)
586 register volatile struct zschan *zc;
587 register int rr3, intflags = 0, v, i;
588
589 do {
590 intflags &= ~4;
591 for(a = zslist; a != NULL; a = b->cs_next) {
592 rr3 = ZS_READ(a->cs_zc, 3);
593 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
594 intflags |= 4|2;
595 zc = a->cs_zc;
596 i = a->cs_rbput;
597 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
598 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
599 intflags |= 1;
600 }
601 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
602 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
603 intflags |= 1;
604 }
605 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
606 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
607 intflags |= 1;
608 }
609 a->cs_rbput = i;
610 }
611 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
612 intflags |= 4|2;
613 zc = b->cs_zc;
614 i = b->cs_rbput;
615 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
616 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
617 intflags |= 1;
618 }
619 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
620 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
621 intflags |= 1;
622 }
623 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
624 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
625 intflags |= 1;
626 }
627 b->cs_rbput = i;
628 }
629 }
630 } while(intflags & 4);
631 #undef b
632
633 if(intflags & 1)
634 softint_schedule(zs_softint_cookie);
635
636 return(intflags & 2);
637 }
638
639 static int
640 zsrint(cs, zc)
641 register struct zs_chanstate *cs;
642 register volatile struct zschan *zc;
643 {
644 register int c;
645
646 /*
647 * First read the status, because read of the received char
648 * destroy the status of this char.
649 */
650 c = ZS_READ(zc, 1);
651 c |= (zc->zc_data << 8);
652
653 /* clear receive error & interrupt condition */
654 zc->zc_csr = ZSWR0_RESET_ERRORS;
655 zc->zc_csr = ZSWR0_CLR_INTR;
656
657 return(ZRING_MAKE(ZRING_RINT, c));
658 }
659
660 static int
661 zsxint(cs, zc)
662 register struct zs_chanstate *cs;
663 register volatile struct zschan *zc;
664 {
665 register int i = cs->cs_tbc;
666
667 if(i == 0) {
668 zc->zc_csr = ZSWR0_RESET_TXINT;
669 zc->zc_csr = ZSWR0_CLR_INTR;
670 return(ZRING_MAKE(ZRING_XINT, 0));
671 }
672 cs->cs_tbc = i - 1;
673 zc->zc_data = *cs->cs_tba++;
674 zc->zc_csr = ZSWR0_CLR_INTR;
675 return (0);
676 }
677
678 static int
679 zssint(cs, zc)
680 register struct zs_chanstate *cs;
681 register volatile struct zschan *zc;
682 {
683 register int rr0;
684
685 rr0 = zc->zc_csr;
686 zc->zc_csr = ZSWR0_RESET_STATUS;
687 zc->zc_csr = ZSWR0_CLR_INTR;
688 /*
689 * The chip's hardware flow control is, as noted in zsreg.h,
690 * busted---if the DCD line goes low the chip shuts off the
691 * receiver (!). If we want hardware CTS flow control but do
692 * not have it, and carrier is now on, turn HFC on; if we have
693 * HFC now but carrier has gone low, turn it off.
694 */
695 if(rr0 & ZSRR0_DCD) {
696 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
697 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
698 cs->cs_creg[3] |= ZSWR3_HFC;
699 ZS_WRITE(zc, 3, cs->cs_creg[3]);
700 }
701 }
702 else {
703 if (cs->cs_creg[3] & ZSWR3_HFC) {
704 cs->cs_creg[3] &= ~ZSWR3_HFC;
705 ZS_WRITE(zc, 3, cs->cs_creg[3]);
706 }
707 }
708 return(ZRING_MAKE(ZRING_SINT, rr0));
709 }
710
711 /*
712 * Print out a ring or fifo overrun error message.
713 */
714 static void
715 zsoverrun(unit, ptime, what)
716 int unit;
717 long *ptime;
718 const char *what;
719 {
720 time_t cur_sec = time_second;
721
722 if(*ptime != cur_sec) {
723 *ptime = cur_sec;
724 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
725 (unit & 1) + 'a', what);
726 }
727 }
728
729 /*
730 * ZS software interrupt. Scan all channels for deferred interrupts.
731 */
732 int
733 zssoft(sr)
734 long sr;
735 {
736 register struct zs_chanstate *cs;
737 register volatile struct zschan *zc;
738 register struct linesw *line;
739 register struct tty *tp;
740 register int get, n, c, cc, unit, s;
741 int retval = 0;
742
743 s = spltty();
744 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
745 get = cs->cs_rbget;
746 again:
747 n = cs->cs_rbput; /* atomic */
748 if(get == n) /* nothing more on this line */
749 continue;
750 retval = 1;
751 unit = cs->cs_unit; /* set up to handle interrupts */
752 zc = cs->cs_zc;
753 tp = cs->cs_ttyp;
754 line = tp->t_linesw;
755 /*
756 * Compute the number of interrupts in the receive ring.
757 * If the count is overlarge, we lost some events, and
758 * must advance to the first valid one. It may get
759 * overwritten if more data are arriving, but this is
760 * too expensive to check and gains nothing (we already
761 * lost out; all we can do at this point is trade one
762 * kind of loss for another).
763 */
764 n -= get;
765 if(n > ZLRB_RING_SIZE) {
766 zsoverrun(unit, &cs->cs_rotime, "ring");
767 get += n - ZLRB_RING_SIZE;
768 n = ZLRB_RING_SIZE;
769 }
770 while(--n >= 0) {
771 /* race to keep ahead of incoming interrupts */
772 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
773 switch (ZRING_TYPE(c)) {
774
775 case ZRING_RINT:
776 c = ZRING_VALUE(c);
777 if(c & ZSRR1_DO)
778 zsoverrun(unit, &cs->cs_fotime, "fifo");
779 cc = c >> 8;
780 if(c & ZSRR1_FE)
781 cc |= TTY_FE;
782 if(c & ZSRR1_PE)
783 cc |= TTY_PE;
784 line->l_rint(cc, tp);
785 break;
786
787 case ZRING_XINT:
788 /*
789 * Transmit done: change registers and resume,
790 * or clear BUSY.
791 */
792 if(cs->cs_heldchange) {
793 int sps;
794
795 sps = splzs();
796 c = zc->zc_csr;
797 if((c & ZSRR0_DCD) == 0)
798 cs->cs_preg[3] &= ~ZSWR3_HFC;
799 bcopy((void *)cs->cs_preg,
800 (void *)cs->cs_creg, 16);
801 zs_loadchannelregs(zc, cs->cs_creg);
802 splx(sps);
803 cs->cs_heldchange = 0;
804 if(cs->cs_heldtbc
805 && (tp->t_state & TS_TTSTOP) == 0) {
806 cs->cs_tbc = cs->cs_heldtbc - 1;
807 zc->zc_data = *cs->cs_tba++;
808 goto again;
809 }
810 }
811 tp->t_state &= ~TS_BUSY;
812 if(tp->t_state & TS_FLUSH)
813 tp->t_state &= ~TS_FLUSH;
814 else ndflush(&tp->t_outq,cs->cs_tba
815 - tp->t_outq.c_cf);
816 line->l_start(tp);
817 break;
818
819 case ZRING_SINT:
820 /*
821 * Status line change. HFC bit is run in
822 * hardware interrupt, to avoid locking
823 * at splzs here.
824 */
825 c = ZRING_VALUE(c);
826 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
827 cc = (c & ZSRR0_DCD) != 0;
828 if(line->l_modem(tp, cc) == 0)
829 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
830 cc ? DMBIS : DMBIC);
831 }
832 cs->cs_rr0 = c;
833 break;
834
835 default:
836 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
837 unit >> 1, (unit & 1) + 'a', c);
838 break;
839 }
840 }
841 cs->cs_rbget = get;
842 goto again;
843 }
844 splx(s);
845 return (retval);
846 }
847
848 int
849 zsioctl(dev, cmd, data, flag, l)
850 dev_t dev;
851 u_long cmd;
852 void * data;
853 int flag;
854 struct lwp *l;
855 {
856 int unit = ZS_UNIT(dev);
857 struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
858 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
859 register int error, s;
860 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
861
862 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
863 if(error != EPASSTHROUGH)
864 return(error);
865
866 error = ttioctl(tp, cmd, data, flag, l);
867 if(error !=EPASSTHROUGH)
868 return (error);
869
870 switch (cmd) {
871 case TIOCSBRK:
872 s = splzs();
873 cs->cs_preg[5] |= ZSWR5_BREAK;
874 cs->cs_creg[5] |= ZSWR5_BREAK;
875 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
876 splx(s);
877 break;
878 case TIOCCBRK:
879 s = splzs();
880 cs->cs_preg[5] &= ~ZSWR5_BREAK;
881 cs->cs_creg[5] &= ~ZSWR5_BREAK;
882 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
883 splx(s);
884 break;
885 case TIOCGFLAGS: {
886 int bits = 0;
887
888 if(cs->cs_softcar)
889 bits |= TIOCFLAG_SOFTCAR;
890 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
891 bits |= TIOCFLAG_CLOCAL;
892 if(cs->cs_creg[3] & ZSWR3_HFC)
893 bits |= TIOCFLAG_CRTSCTS;
894 *(int *)data = bits;
895 break;
896 }
897 case TIOCSFLAGS: {
898 int userbits = 0;
899
900 error = kauth_authorize_device_tty(l->l_cred,
901 KAUTH_DEVICE_TTY_PRIVSET, tp);
902 if(error != 0)
903 return (EPERM);
904
905 userbits = *(int *)data;
906
907 /*
908 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
909 # defaulting to software flow control.
910 */
911 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
912 return(EINVAL);
913 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
914 return(ENODEV);
915
916 s = splzs();
917 if((userbits & TIOCFLAG_SOFTCAR)) {
918 cs->cs_softcar = 1; /* turn on softcar */
919 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
920 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
921 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
922 }
923 else if(userbits & TIOCFLAG_CLOCAL) {
924 cs->cs_softcar = 0; /* turn off softcar */
925 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
926 cs->cs_creg[15] |= ZSWR15_DCD_IE;
927 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
928 tp->t_termios.c_cflag |= CLOCAL;
929 }
930 if(userbits & TIOCFLAG_CRTSCTS) {
931 cs->cs_preg[15] |= ZSWR15_CTS_IE;
932 cs->cs_creg[15] |= ZSWR15_CTS_IE;
933 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
934 cs->cs_preg[3] |= ZSWR3_HFC;
935 cs->cs_creg[3] |= ZSWR3_HFC;
936 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
937 tp->t_termios.c_cflag |= CRTSCTS;
938 }
939 else {
940 /* no mdmbuf, so we must want software flow control */
941 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
942 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
943 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
944 cs->cs_preg[3] &= ~ZSWR3_HFC;
945 cs->cs_creg[3] &= ~ZSWR3_HFC;
946 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
947 tp->t_termios.c_cflag &= ~CRTSCTS;
948 }
949 splx(s);
950 break;
951 }
952 case TIOCSDTR:
953 zs_modem(cs, ZSWR5_DTR, DMBIS);
954 break;
955 case TIOCCDTR:
956 zs_modem(cs, ZSWR5_DTR, DMBIC);
957 break;
958 case TIOCMGET:
959 zs_modem(cs, 0, DMGET);
960 break;
961 case TIOCMSET:
962 case TIOCMBIS:
963 case TIOCMBIC:
964 default:
965 return (EPASSTHROUGH);
966 }
967 return (0);
968 }
969
970 /*
971 * Start or restart transmission.
972 */
973 static void
974 zsstart(tp)
975 register struct tty *tp;
976 {
977 register struct zs_chanstate *cs;
978 register int s, nch;
979 int unit = ZS_UNIT(tp->t_dev);
980 struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
981
982 cs = &zi->zi_cs[unit & 1];
983 s = spltty();
984
985 /*
986 * If currently active or delaying, no need to do anything.
987 */
988 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
989 goto out;
990
991 /*
992 * If there are sleepers, and output has drained below low
993 * water mark, awaken.
994 */
995 ttypull(tp);
996
997 nch = ndqb(&tp->t_outq, 0); /* XXX */
998 if(nch) {
999 register char *p = tp->t_outq.c_cf;
1000
1001 /* mark busy, enable tx done interrupts, & send first byte */
1002 tp->t_state |= TS_BUSY;
1003 (void) splzs();
1004 cs->cs_preg[1] |= ZSWR1_TIE;
1005 cs->cs_creg[1] |= ZSWR1_TIE;
1006 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1007 cs->cs_zc->zc_data = *p;
1008 cs->cs_tba = p + 1;
1009 cs->cs_tbc = nch - 1;
1010 } else {
1011 /*
1012 * Nothing to send, turn off transmit done interrupts.
1013 * This is useful if something is doing polled output.
1014 */
1015 (void) splzs();
1016 cs->cs_preg[1] &= ~ZSWR1_TIE;
1017 cs->cs_creg[1] &= ~ZSWR1_TIE;
1018 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1019 }
1020 out:
1021 splx(s);
1022 }
1023
1024 /*
1025 * Stop output, e.g., for ^S or output flush.
1026 */
1027 void
1028 zsstop(tp, flag)
1029 register struct tty *tp;
1030 int flag;
1031 {
1032 register struct zs_chanstate *cs;
1033 register int s, unit = ZS_UNIT(tp->t_dev);
1034 struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
1035
1036 cs = &zi->zi_cs[unit & 1];
1037 s = splzs();
1038 if(tp->t_state & TS_BUSY) {
1039 /*
1040 * Device is transmitting; must stop it.
1041 */
1042 cs->cs_tbc = 0;
1043 if ((tp->t_state & TS_TTSTOP) == 0)
1044 tp->t_state |= TS_FLUSH;
1045 }
1046 splx(s);
1047 }
1048
1049 static void
1050 zs_shutdown(cs)
1051 struct zs_chanstate *cs;
1052 {
1053 struct tty *tp = cs->cs_ttyp;
1054 int s;
1055
1056 s = splzs();
1057
1058 /*
1059 * Hang up if necessary. Wait a bit, so the other side has time to
1060 * notice even if we immediately open the port again.
1061 */
1062 if(tp->t_cflag & HUPCL) {
1063 zs_modem(cs, 0, DMSET);
1064 (void)tsleep((void *)cs, TTIPRI, ttclos, hz);
1065 }
1066
1067 /* Clear any break condition set with TIOCSBRK. */
1068 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1069 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1070 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1071 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1072 }
1073
1074 /*
1075 * Drop all lines and cancel interrupts
1076 */
1077 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1078 splx(s);
1079 }
1080
1081 /*
1082 * Set ZS tty parameters from termios.
1083 *
1084 * This routine makes use of the fact that only registers
1085 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1086 */
1087 static int
1088 zsparam(tp, t)
1089 register struct tty *tp;
1090 register struct termios *t;
1091 {
1092 int unit = ZS_UNIT(tp->t_dev);
1093 struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
1094 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1095 int cdiv = 0, /* XXX gcc4 -Wuninitialized */
1096 clkm = 0, /* XXX gcc4 -Wuninitialized */
1097 brgm = 0, /* XXX gcc4 -Wuninitialized */
1098 tcon = 0; /* XXX gcc4 -Wuninitialized */
1099 register int tmp, tmp5, cflag, s;
1100
1101 tmp = t->c_ospeed;
1102 tmp5 = t->c_ispeed;
1103 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1104 return(EINVAL);
1105 if(tmp == 0) {
1106 /* stty 0 => drop DTR and RTS */
1107 zs_modem(cs, 0, DMSET);
1108 return(0);
1109 }
1110 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1111 if (tmp < 0)
1112 return(EINVAL);
1113 tp->t_ispeed = tp->t_ospeed = tmp;
1114
1115 cflag = tp->t_cflag = t->c_cflag;
1116 if (cflag & CSTOPB)
1117 cdiv |= ZSWR4_TWOSB;
1118 else
1119 cdiv |= ZSWR4_ONESB;
1120 if (!(cflag & PARODD))
1121 cdiv |= ZSWR4_EVENP;
1122 if (cflag & PARENB)
1123 cdiv |= ZSWR4_PARENB;
1124
1125 switch(cflag & CSIZE) {
1126 case CS5:
1127 tmp = ZSWR3_RX_5;
1128 tmp5 = ZSWR5_TX_5;
1129 break;
1130 case CS6:
1131 tmp = ZSWR3_RX_6;
1132 tmp5 = ZSWR5_TX_6;
1133 break;
1134 case CS7:
1135 tmp = ZSWR3_RX_7;
1136 tmp5 = ZSWR5_TX_7;
1137 break;
1138 case CS8:
1139 default:
1140 tmp = ZSWR3_RX_8;
1141 tmp5 = ZSWR5_TX_8;
1142 break;
1143 }
1144 tmp |= ZSWR3_RX_ENABLE;
1145 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1146
1147 /*
1148 * Block interrupts so that state will not
1149 * be altered until we are done setting it up.
1150 */
1151 s = splzs();
1152 cs->cs_preg[4] = cdiv;
1153 cs->cs_preg[11] = clkm;
1154 cs->cs_preg[12] = tcon;
1155 cs->cs_preg[13] = tcon >> 8;
1156 cs->cs_preg[14] = brgm;
1157 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1158 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1159 cs->cs_preg[10] = ZSWR10_NRZ;
1160 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1161
1162 /*
1163 * Output hardware flow control on the chip is horrendous: if
1164 * carrier detect drops, the receiver is disabled. Hence we
1165 * can only do this when the carrier is on.
1166 */
1167 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1168 tmp |= ZSWR3_HFC;
1169 cs->cs_preg[3] = tmp;
1170 cs->cs_preg[5] = tmp5;
1171
1172 /*
1173 * If nothing is being transmitted, set up new current values,
1174 * else mark them as pending.
1175 */
1176 if(cs->cs_heldchange == 0) {
1177 if (cs->cs_ttyp->t_state & TS_BUSY) {
1178 cs->cs_heldtbc = cs->cs_tbc;
1179 cs->cs_tbc = 0;
1180 cs->cs_heldchange = 1;
1181 } else {
1182 bcopy((void *)cs->cs_preg, (void *)cs->cs_creg, 16);
1183 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1184 }
1185 }
1186 splx(s);
1187 return (0);
1188 }
1189
1190 /*
1191 * search for the best matching baudrate
1192 */
1193 static int
1194 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1195 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1196 {
1197 int bestdiff, bestbps, source;
1198
1199 bestdiff = bestbps = 0;
1200 unit = (unit & 1) << 2;
1201 for (source = 0; source < 4; ++source) {
1202 long freq = zs_frequencies[unit + source];
1203 int diff, bps, div, clkm, brgm, tcon;
1204
1205 bps = div = clkm = brgm = tcon = 0;
1206 switch (source) {
1207 case 0: /* BRgen, PCLK */
1208 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1209 break;
1210 case 1: /* BRgen, RTxC */
1211 brgm = ZSWR14_BAUD_ENA;
1212 break;
1213 case 2: /* RTxC */
1214 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1215 break;
1216 case 3: /* TRxC */
1217 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1218 break;
1219 }
1220 switch (source) {
1221 case 0:
1222 case 1:
1223 div = ZSWR4_CLK_X16;
1224 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1225 tcon = BPS_TO_TCONST(freq, wanted);
1226 if (tcon < 0)
1227 tcon = 0;
1228 bps = TCONST_TO_BPS(freq, tcon);
1229 break;
1230 case 2:
1231 case 3:
1232 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1233 int b2 = freq / 32, d2 = abs(b2 - wanted);
1234 int b3 = freq / 64, d3 = abs(b3 - wanted);
1235
1236 if (d1 < d2 && d1 < d3) {
1237 div = ZSWR4_CLK_X16;
1238 bps = b1;
1239 } else if (d2 < d3 && d2 < d1) {
1240 div = ZSWR4_CLK_X32;
1241 bps = b2;
1242 } else {
1243 div = ZSWR4_CLK_X64;
1244 bps = b3;
1245 }
1246 brgm = tcon = 0;
1247 break;
1248 }
1249 }
1250 diff = abs(bps - wanted);
1251 if (!source || diff < bestdiff) {
1252 *divisor = div;
1253 *clockmode = clkm;
1254 *brgenmode = brgm;
1255 *timeconst = tcon;
1256 bestbps = bps;
1257 bestdiff = diff;
1258 if (diff == 0)
1259 break;
1260 }
1261 }
1262 /* Allow deviations upto 5% */
1263 if (20 * bestdiff > wanted)
1264 return -1;
1265 return bestbps;
1266 }
1267
1268 /*
1269 * Raise or lower modem control (DTR/RTS) signals. If a character is
1270 * in transmission, the change is deferred.
1271 */
1272 static int
1273 zs_modem(cs, bits, how)
1274 struct zs_chanstate *cs;
1275 int bits, how;
1276 {
1277 int s, mbits;
1278
1279 bits &= ZSWR5_DTR | ZSWR5_RTS;
1280
1281 s = splzs();
1282 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1283
1284 switch(how) {
1285 case DMSET:
1286 mbits = bits;
1287 break;
1288 case DMBIS:
1289 mbits |= bits;
1290 break;
1291 case DMBIC:
1292 mbits &= ~bits;
1293 break;
1294 case DMGET:
1295 splx(s);
1296 return(mbits);
1297 }
1298
1299 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1300 if(cs->cs_heldchange == 0) {
1301 if(cs->cs_ttyp->t_state & TS_BUSY) {
1302 cs->cs_heldtbc = cs->cs_tbc;
1303 cs->cs_tbc = 0;
1304 cs->cs_heldchange = 1;
1305 }
1306 else {
1307 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1308 }
1309 }
1310 splx(s);
1311 return(0);
1312 }
1313
1314 /*
1315 * Write the given register set to the given zs channel in the proper order.
1316 * The channel must not be transmitting at the time. The receiver will
1317 * be disabled for the time it takes to write all the registers.
1318 */
1319 static void
1320 zs_loadchannelregs(zc, reg)
1321 volatile struct zschan *zc;
1322 u_char *reg;
1323 {
1324 int i;
1325
1326 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1327 i = zc->zc_data; /* drain fifo */
1328 i = zc->zc_data;
1329 i = zc->zc_data;
1330 ZS_WRITE(zc, 4, reg[4]);
1331 ZS_WRITE(zc, 10, reg[10]);
1332 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1333 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1334 ZS_WRITE(zc, 1, reg[1]);
1335 ZS_WRITE(zc, 9, reg[9]);
1336 ZS_WRITE(zc, 11, reg[11]);
1337 ZS_WRITE(zc, 12, reg[12]);
1338 ZS_WRITE(zc, 13, reg[13]);
1339 ZS_WRITE(zc, 14, reg[14]);
1340 ZS_WRITE(zc, 15, reg[15]);
1341 ZS_WRITE(zc, 3, reg[3]);
1342 ZS_WRITE(zc, 5, reg[5]);
1343 }
1344 #endif /* NZS > 1 */
1345