zs.c revision 1.6 1 /* $NetBSD: zs.c,v 1.6 1995/05/28 19:50:26 leo Exp $ */
2
3 /*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 * must display the following acknowledgement:
28 * This product includes software developed by the University of
29 * California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include <sys/param.h>
57 #include <sys/proc.h>
58 #include <sys/device.h>
59 #include <sys/conf.h>
60 #include <sys/file.h>
61 #include <sys/ioctl.h>
62 #include <sys/tty.h>
63 #include <sys/time.h>
64 #include <sys/kernel.h>
65 #include <sys/syslog.h>
66
67 #include <machine/cpu.h>
68 #include <machine/iomap.h>
69 #include <machine/scu.h>
70 #include <machine/mfp.h>
71
72 #include <dev/ic/z8530.h>
73 #include <atari/dev/zsvar.h>
74 #include "zs.h"
75 #if NZS > 1
76 #error "This driver supports only 1 85C30!"
77 #endif
78
79 #if NZS > 0
80
81 #define PCLK (8000000) /* PCLK pin input clock rate */
82
83 #define splzs spl5
84
85 /*
86 * Software state per found chip.
87 */
88 struct zs_softc {
89 struct device zi_dev; /* base device */
90 volatile struct zsdevice *zi_zs; /* chip registers */
91 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
92 };
93
94 /*
95 * Define the registers for a closed port
96 */
97 static u_char zs_init_regs[16] = {
98 /* 0 */ 0,
99 /* 1 */ 0,
100 /* 2 */ 0x60,
101 /* 3 */ 0,
102 /* 4 */ 0,
103 /* 5 */ 0,
104 /* 6 */ 0,
105 /* 7 */ 0,
106 /* 8 */ 0,
107 /* 9 */ ZSWR9_VECTOR_INCL_STAT,
108 /* 10 */ ZSWR10_NRZ,
109 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
110 /* 12 */ 0,
111 /* 13 */ 0,
112 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
113 /* 15 */ 0
114 };
115
116 /*
117 * Define the machine dependant clock frequencies
118 * If BRgen feeds sender/receiver we always use a
119 * divisor 16, therefor the division by 16 can as
120 * well be done here.
121 */
122 static u_long zs_freqs_tt[] = {
123 /*
124 * Atari TT, RTxCB is generated by TT-MFP timer C,
125 * which is set to 307.2KHz during initialisation
126 * and never changed afterwards.
127 */
128 PCLK/16, /* BRgen, PCLK, divisor 16 */
129 229500, /* BRgen, RTxCA, divisor 16 */
130 3672000, /* RTxCA, from PCLK4 */
131 0, /* TRxCA, external */
132
133 PCLK/16, /* BRgen, PCLK, divisor 16 */
134 19200, /* BRgen, RTxCB, divisor 16 */
135 307200, /* RTxCB, from TT-MFP TCO */
136 2457600 /* TRxCB, from BCLK */
137 };
138 static u_long zs_freqs_falcon[] = {
139 /*
140 * Atari Falcon, XXX no specs available, this might be wrong
141 */
142 PCLK/16, /* BRgen, PCLK, divisor 16 */
143 229500, /* BRgen, RTxCA, divisor 16 */
144 3672000, /* RTxCA, ??? */
145 0, /* TRxCA, external */
146
147 PCLK/16, /* BRgen, PCLK, divisor 16 */
148 229500, /* BRgen, RTxCB, divisor 16 */
149 3672000, /* RTxCB, ??? */
150 2457600 /* TRxCB, ??? */
151 };
152 static u_long zs_freqs_generic[] = {
153 /*
154 * other machines, assume only PCLK is available
155 */
156 PCLK/16, /* BRgen, PCLK, divisor 16 */
157 0, /* BRgen, RTxCA, divisor 16 */
158 0, /* RTxCA, unknown */
159 0, /* TRxCA, unknown */
160
161 PCLK/16, /* BRgen, PCLK, divisor 16 */
162 0, /* BRgen, RTxCB, divisor 16 */
163 0, /* RTxCB, unknown */
164 0 /* TRxCB, unknown */
165 };
166 static u_long *zs_frequencies;
167
168 /* Definition of the driver for autoconfig. */
169 static int zsmatch __P((struct device *, struct cfdata *, void *));
170 static void zsattach __P((struct device *, struct device *, void *));
171 struct cfdriver zscd = {
172 NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
173 sizeof(struct zs_softc), NULL, 0 };
174
175 /* Interrupt handlers. */
176 int zshard __P((long));
177 static int zssoft __P((long));
178 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
179 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
180 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
181
182 static struct zs_chanstate *zslist;
183
184 /* Routines called from other code. */
185 static void zsstart __P((struct tty *));
186 void zsstop __P((struct tty *, int));
187 static int zsparam __P((struct tty *, struct termios *));
188 static int zsbaudrate __P((int, int, int *, int *, int *, int *));
189
190 /* Routines purely local to this driver. */
191 static void zs_reset __P((volatile struct zschan *, int, int));
192 static int zs_modem __P((struct zs_chanstate *, int, int));
193 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
194
195 static int zsshortcuts; /* number of "shortcut" software interrupts */
196
197 static int
198 zsmatch(pdp, cfp, auxp)
199 struct device *pdp;
200 struct cfdata *cfp;
201 void *auxp;
202 {
203 if(strcmp("zs", auxp) || cfp->cf_unit != 0)
204 return(0);
205 return(1);
206 }
207
208 /*
209 * Attach a found zs.
210 */
211 static void
212 zsattach(parent, dev, aux)
213 struct device *parent;
214 struct device *dev;
215 void *aux;
216 {
217 register struct zs_softc *zi;
218 register struct zs_chanstate *cs;
219 register volatile struct zsdevice *addr;
220 register struct tty *tp;
221 char tmp;
222
223 addr = (struct zsdevice *)AD_SCC;
224 zi = (struct zs_softc *)dev;
225 zi->zi_zs = addr;
226 cs = zi->zi_cs;
227
228 /*
229 * Get the command register into a known state.
230 */
231 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
232 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
233 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
234 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
235
236 /*
237 * Do a hardware reset.
238 */
239 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
240 delay(50000); /*enough ? */
241 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
242
243 /*
244 * Initialize both channels
245 */
246 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
247 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
248
249 if(machineid & ATARI_TT) {
250 /*
251 * ininitialise TT-MFP timer C: 307200Hz
252 * timer C and D share one control register:
253 * bits 0-2 control timer D
254 * bits 4-6 control timer C
255 */
256 int cr = MFP2->mf_tcdcr & 7;
257 MFP2->mf_tcdcr = cr; /* stop timer C */
258 MFP2->mf_tcdr = 1; /* counter 1 */
259 cr |= T_Q004 << 4; /* divisor 4 */
260 MFP2->mf_tcdcr = cr; /* start timer C */
261 /*
262 * enable scc related interrupts
263 */
264 SCU->sys_mask |= SCU_SCC;
265
266 zs_frequencies = zs_freqs_tt;
267 } else if (machineid & ATARI_FALCON) {
268 zs_frequencies = zs_freqs_falcon;
269 } else {
270 zs_frequencies = zs_freqs_generic;
271 }
272
273 /* link into interrupt list with order (A,B) (B=A+1) */
274 cs[0].cs_next = &cs[1];
275 cs[1].cs_next = zslist;
276 zslist = cs;
277
278 cs->cs_unit = 0;
279 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
280 cs++;
281 cs->cs_unit = 1;
282 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
283
284 printf(": serial2 on channel a and modem2 on channel b\n");
285 }
286
287 /*
288 * Open a zs serial port.
289 */
290 int
291 zsopen(dev, flags, mode, p)
292 dev_t dev;
293 int flags;
294 int mode;
295 struct proc *p;
296 {
297 register struct tty *tp;
298 register struct zs_chanstate *cs;
299 struct zs_softc *zi;
300 int unit = ZS_UNIT(dev);
301 int zs = unit >> 1;
302 int error, s;
303
304 if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
305 return (ENXIO);
306 cs = &zi->zi_cs[unit & 1];
307 tp = cs->cs_ttyp;
308 if(tp == NULL) {
309 cs->cs_ttyp = tp = ttymalloc();
310 tp->t_dev = dev;
311 tp->t_oproc = zsstart;
312 tp->t_param = zsparam;
313 }
314
315 s = spltty();
316 if((tp->t_state & TS_ISOPEN) == 0) {
317 ttychars(tp);
318 if(tp->t_ispeed == 0) {
319 tp->t_iflag = TTYDEF_IFLAG;
320 tp->t_oflag = TTYDEF_OFLAG;
321 tp->t_cflag = TTYDEF_CFLAG;
322 tp->t_lflag = TTYDEF_LFLAG;
323 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
324 }
325 (void)zsparam(tp, &tp->t_termios);
326 ttsetwater(tp);
327 }
328 else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
329 splx(s);
330 return (EBUSY);
331 }
332 error = 0;
333 for(;;) {
334 /* loop, turning on the device, until carrier present */
335 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
336 if(cs->cs_softcar)
337 tp->t_state |= TS_CARR_ON;
338 if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
339 tp->t_state & TS_CARR_ON)
340 break;
341 tp->t_state |= TS_WOPEN;
342 if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
343 ttopen, 0)) {
344 if(!(tp->t_state & TS_ISOPEN)) {
345 zs_modem(cs, 0, DMSET);
346 tp->t_state &= ~TS_WOPEN;
347 ttwakeup(tp);
348 }
349 splx(s);
350 return error;
351 }
352 }
353 splx(s);
354 if(error == 0)
355 error = linesw[tp->t_line].l_open(dev, tp);
356 if(error)
357 zs_modem(cs, 0, DMSET);
358 return(error);
359 }
360
361 /*
362 * Close a zs serial port.
363 */
364 int
365 zsclose(dev, flags, mode, p)
366 dev_t dev;
367 int flags;
368 int mode;
369 struct proc *p;
370 {
371 register struct zs_chanstate *cs;
372 register struct tty *tp;
373 struct zs_softc *zi;
374 int unit = ZS_UNIT(dev);
375 int s;
376
377 zi = zscd.cd_devs[unit >> 1];
378 cs = &zi->zi_cs[unit & 1];
379 tp = cs->cs_ttyp;
380 linesw[tp->t_line].l_close(tp, flags);
381 if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
382 (tp->t_state & TS_ISOPEN) == 0) {
383 zs_modem(cs, 0, DMSET);
384 /* hold low for 1 second */
385 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
386 }
387 if(cs->cs_creg[5] & ZSWR5_BREAK) {
388 s = splzs();
389 cs->cs_preg[5] &= ~ZSWR5_BREAK;
390 cs->cs_creg[5] &= ~ZSWR5_BREAK;
391 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
392 splx(s);
393 }
394 ttyclose(tp);
395
396 /*
397 * Drop all lines and cancel interrupts
398 */
399 zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
400 return (0);
401 }
402
403 /*
404 * Read/write zs serial port.
405 */
406 int
407 zsread(dev, uio, flags)
408 dev_t dev;
409 struct uio *uio;
410 int flags;
411 {
412 register struct zs_chanstate *cs;
413 register struct zs_softc *zi;
414 register struct tty *tp;
415 int unit;
416
417 unit = ZS_UNIT(dev);
418 zi = zscd.cd_devs[unit >> 1];
419 cs = &zi->zi_cs[unit & 1];
420 tp = cs->cs_ttyp;
421
422 return(linesw[tp->t_line].l_read(tp, uio, flags));
423 }
424
425 int
426 zswrite(dev, uio, flags)
427 dev_t dev;
428 struct uio *uio;
429 int flags;
430 {
431 register struct zs_chanstate *cs;
432 register struct zs_softc *zi;
433 register struct tty *tp;
434 int unit;
435
436 unit = ZS_UNIT(dev);
437 zi = zscd.cd_devs[unit >> 1];
438 cs = &zi->zi_cs[unit & 1];
439 tp = cs->cs_ttyp;
440
441 return(linesw[tp->t_line].l_write(tp, uio, flags));
442 }
443
444 struct tty *
445 zstty(dev)
446 dev_t dev;
447 {
448 register struct zs_chanstate *cs;
449 register struct zs_softc *zi;
450 int unit;
451
452 unit = ZS_UNIT(dev);
453 zi = zscd.cd_devs[unit >> 1];
454 cs = &zi->zi_cs[unit & 1];
455 return(cs->cs_ttyp);
456 }
457
458 /*
459 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
460 * channels are kept in (A,B) pairs.
461 *
462 * Do just a little, then get out; set a software interrupt if more
463 * work is needed.
464 *
465 * We deliberately ignore the vectoring Zilog gives us, and match up
466 * only the number of `reset interrupt under service' operations, not
467 * the order.
468 */
469 int
470 zshard(sr)
471 long sr;
472 {
473 register struct zs_chanstate *a;
474 #define b (a + 1)
475 register volatile struct zschan *zc;
476 register int rr3, intflags = 0, v, i;
477
478 for(a = zslist; a != NULL; a = b->cs_next) {
479 rr3 = ZS_READ(a->cs_zc, 3);
480 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
481 intflags |= 2;
482 zc = a->cs_zc;
483 i = a->cs_rbput;
484 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
485 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
486 intflags |= 1;
487 }
488 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
489 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
490 intflags |= 1;
491 }
492 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
493 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
494 intflags |= 1;
495 }
496 a->cs_rbput = i;
497 }
498 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
499 intflags |= 2;
500 zc = b->cs_zc;
501 i = b->cs_rbput;
502 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
503 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
504 intflags |= 1;
505 }
506 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
507 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
508 intflags |= 1;
509 }
510 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
511 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
512 intflags |= 1;
513 }
514 b->cs_rbput = i;
515 }
516 }
517 #undef b
518
519 if(intflags & 1) {
520 if(BASEPRI(sr)) {
521 spl1();
522 zsshortcuts++;
523 return(zssoft(sr));
524 }
525 else add_sicallback(zssoft, 0, 0);
526 }
527 return(intflags & 2);
528 }
529
530 static int
531 zsrint(cs, zc)
532 register struct zs_chanstate *cs;
533 register volatile struct zschan *zc;
534 {
535 register int c = zc->zc_data;
536
537 /* compose receive character and status */
538 c <<= 8;
539 c |= ZS_READ(zc, 1);
540
541 /* clear receive error & interrupt condition */
542 zc->zc_csr = ZSWR0_RESET_ERRORS;
543 zc->zc_csr = ZSWR0_CLR_INTR;
544
545 return(ZRING_MAKE(ZRING_RINT, c));
546 }
547
548 static int
549 zsxint(cs, zc)
550 register struct zs_chanstate *cs;
551 register volatile struct zschan *zc;
552 {
553 register int i = cs->cs_tbc;
554
555 if(i == 0) {
556 zc->zc_csr = ZSWR0_RESET_TXINT;
557 zc->zc_csr = ZSWR0_CLR_INTR;
558 return(ZRING_MAKE(ZRING_XINT, 0));
559 }
560 cs->cs_tbc = i - 1;
561 zc->zc_data = *cs->cs_tba++;
562 zc->zc_csr = ZSWR0_CLR_INTR;
563 return (0);
564 }
565
566 static int
567 zssint(cs, zc)
568 register struct zs_chanstate *cs;
569 register volatile struct zschan *zc;
570 {
571 register int rr0;
572
573 rr0 = zc->zc_csr;
574 zc->zc_csr = ZSWR0_RESET_STATUS;
575 zc->zc_csr = ZSWR0_CLR_INTR;
576 /*
577 * The chip's hardware flow control is, as noted in zsreg.h,
578 * busted---if the DCD line goes low the chip shuts off the
579 * receiver (!). If we want hardware CTS flow control but do
580 * not have it, and carrier is now on, turn HFC on; if we have
581 * HFC now but carrier has gone low, turn it off.
582 */
583 if(rr0 & ZSRR0_DCD) {
584 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
585 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
586 cs->cs_creg[3] |= ZSWR3_HFC;
587 ZS_WRITE(zc, 3, cs->cs_creg[3]);
588 }
589 }
590 else {
591 if (cs->cs_creg[3] & ZSWR3_HFC) {
592 cs->cs_creg[3] &= ~ZSWR3_HFC;
593 ZS_WRITE(zc, 3, cs->cs_creg[3]);
594 }
595 }
596 return(ZRING_MAKE(ZRING_SINT, rr0));
597 }
598
599 /*
600 * Print out a ring or fifo overrun error message.
601 */
602 static void
603 zsoverrun(unit, ptime, what)
604 int unit;
605 long *ptime;
606 char *what;
607 {
608
609 if(*ptime != time.tv_sec) {
610 *ptime = time.tv_sec;
611 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
612 (unit & 1) + 'a', what);
613 }
614 }
615
616 /*
617 * ZS software interrupt. Scan all channels for deferred interrupts.
618 */
619 int
620 zssoft(sr)
621 long sr;
622 {
623 register struct zs_chanstate *cs;
624 register volatile struct zschan *zc;
625 register struct linesw *line;
626 register struct tty *tp;
627 register int get, n, c, cc, unit, s;
628 int retval = 0;
629
630 s = spltty();
631 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
632 get = cs->cs_rbget;
633 again:
634 n = cs->cs_rbput; /* atomic */
635 if(get == n) /* nothing more on this line */
636 continue;
637 retval = 1;
638 unit = cs->cs_unit; /* set up to handle interrupts */
639 zc = cs->cs_zc;
640 tp = cs->cs_ttyp;
641 line = &linesw[tp->t_line];
642 /*
643 * Compute the number of interrupts in the receive ring.
644 * If the count is overlarge, we lost some events, and
645 * must advance to the first valid one. It may get
646 * overwritten if more data are arriving, but this is
647 * too expensive to check and gains nothing (we already
648 * lost out; all we can do at this point is trade one
649 * kind of loss for another).
650 */
651 n -= get;
652 if(n > ZLRB_RING_SIZE) {
653 zsoverrun(unit, &cs->cs_rotime, "ring");
654 get += n - ZLRB_RING_SIZE;
655 n = ZLRB_RING_SIZE;
656 }
657 while(--n >= 0) {
658 /* race to keep ahead of incoming interrupts */
659 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
660 switch (ZRING_TYPE(c)) {
661
662 case ZRING_RINT:
663 c = ZRING_VALUE(c);
664 if(c & ZSRR1_DO)
665 zsoverrun(unit, &cs->cs_fotime, "fifo");
666 cc = c >> 8;
667 if(c & ZSRR1_FE)
668 cc |= TTY_FE;
669 if(c & ZSRR1_PE)
670 cc |= TTY_PE;
671 line->l_rint(cc, tp);
672 break;
673
674 case ZRING_XINT:
675 /*
676 * Transmit done: change registers and resume,
677 * or clear BUSY.
678 */
679 if(cs->cs_heldchange) {
680 int sps;
681
682 sps = splzs();
683 c = zc->zc_csr;
684 if((c & ZSRR0_DCD) == 0)
685 cs->cs_preg[3] &= ~ZSWR3_HFC;
686 bcopy((caddr_t)cs->cs_preg,
687 (caddr_t)cs->cs_creg, 16);
688 zs_loadchannelregs(zc, cs->cs_creg);
689 splx(sps);
690 cs->cs_heldchange = 0;
691 if(cs->cs_heldtbc
692 && (tp->t_state & TS_TTSTOP) == 0) {
693 cs->cs_tbc = cs->cs_heldtbc - 1;
694 zc->zc_data = *cs->cs_tba++;
695 goto again;
696 }
697 }
698 tp->t_state &= ~TS_BUSY;
699 if(tp->t_state & TS_FLUSH)
700 tp->t_state &= ~TS_FLUSH;
701 else ndflush(&tp->t_outq,cs->cs_tba
702 - (caddr_t)tp->t_outq.c_cf);
703 line->l_start(tp);
704 break;
705
706 case ZRING_SINT:
707 /*
708 * Status line change. HFC bit is run in
709 * hardware interrupt, to avoid locking
710 * at splzs here.
711 */
712 c = ZRING_VALUE(c);
713 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
714 cc = (c & ZSRR0_DCD) != 0;
715 if(line->l_modem(tp, cc) == 0)
716 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
717 cc ? DMBIS : DMBIC);
718 }
719 cs->cs_rr0 = c;
720 break;
721
722 default:
723 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
724 unit >> 1, (unit & 1) + 'a', c);
725 break;
726 }
727 }
728 cs->cs_rbget = get;
729 goto again;
730 }
731 splx(s);
732 return (retval);
733 }
734
735 int
736 zsioctl(dev, cmd, data, flag, p)
737 dev_t dev;
738 u_long cmd;
739 caddr_t data;
740 int flag;
741 struct proc *p;
742 {
743 int unit = ZS_UNIT(dev);
744 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
745 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
746 register int error, s;
747 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
748
749 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
750 if(error >= 0)
751 return(error);
752 error = ttioctl(tp, cmd, data, flag, p);
753 if(error >= 0)
754 return (error);
755
756 switch (cmd) {
757 case TIOCSBRK:
758 s = splzs();
759 cs->cs_preg[5] |= ZSWR5_BREAK;
760 cs->cs_creg[5] |= ZSWR5_BREAK;
761 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
762 splx(s);
763 break;
764 case TIOCCBRK:
765 s = splzs();
766 cs->cs_preg[5] &= ~ZSWR5_BREAK;
767 cs->cs_creg[5] &= ~ZSWR5_BREAK;
768 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
769 splx(s);
770 break;
771 case TIOCGFLAGS: {
772 int bits = 0;
773
774 if(cs->cs_softcar)
775 bits |= TIOCFLAG_SOFTCAR;
776 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
777 bits |= TIOCFLAG_CLOCAL;
778 if(cs->cs_creg[3] & ZSWR3_HFC)
779 bits |= TIOCFLAG_CRTSCTS;
780 *(int *)data = bits;
781 break;
782 }
783 case TIOCSFLAGS: {
784 int userbits, driverbits = 0;
785
786 error = suser(p->p_ucred, &p->p_acflag);
787 if(error != 0)
788 return (EPERM);
789
790 userbits = *(int *)data;
791
792 /*
793 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
794 # defaulting to software flow control.
795 */
796 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
797 return(EINVAL);
798 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
799 return(ENXIO);
800
801 s = splzs();
802 if((userbits & TIOCFLAG_SOFTCAR)) {
803 cs->cs_softcar = 1; /* turn on softcar */
804 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
805 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
806 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
807 }
808 else if(userbits & TIOCFLAG_CLOCAL) {
809 cs->cs_softcar = 0; /* turn off softcar */
810 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
811 cs->cs_creg[15] |= ZSWR15_DCD_IE;
812 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
813 tp->t_termios.c_cflag |= CLOCAL;
814 }
815 if(userbits & TIOCFLAG_CRTSCTS) {
816 cs->cs_preg[15] |= ZSWR15_CTS_IE;
817 cs->cs_creg[15] |= ZSWR15_CTS_IE;
818 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
819 cs->cs_preg[3] |= ZSWR3_HFC;
820 cs->cs_creg[3] |= ZSWR3_HFC;
821 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
822 tp->t_termios.c_cflag |= CRTSCTS;
823 }
824 else {
825 /* no mdmbuf, so we must want software flow control */
826 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
827 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
828 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
829 cs->cs_preg[3] &= ~ZSWR3_HFC;
830 cs->cs_creg[3] &= ~ZSWR3_HFC;
831 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
832 tp->t_termios.c_cflag &= ~CRTSCTS;
833 }
834 splx(s);
835 break;
836 }
837 case TIOCSDTR:
838 zs_modem(cs, ZSWR5_DTR, DMBIS);
839 break;
840 case TIOCCDTR:
841 zs_modem(cs, ZSWR5_DTR, DMBIC);
842 break;
843 case TIOCMGET:
844 zs_modem(cs, 0, DMGET);
845 break;
846 case TIOCMSET:
847 case TIOCMBIS:
848 case TIOCMBIC:
849 default:
850 return (ENOTTY);
851 }
852 return (0);
853 }
854
855 /*
856 * Start or restart transmission.
857 */
858 static void
859 zsstart(tp)
860 register struct tty *tp;
861 {
862 register struct zs_chanstate *cs;
863 register int s, nch;
864 int unit = ZS_UNIT(tp->t_dev);
865 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
866
867 cs = &zi->zi_cs[unit & 1];
868 s = spltty();
869
870 /*
871 * If currently active or delaying, no need to do anything.
872 */
873 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
874 goto out;
875
876 /*
877 * If there are sleepers, and output has drained below low
878 * water mark, awaken.
879 */
880 if(tp->t_outq.c_cc <= tp->t_lowat) {
881 if(tp->t_state & TS_ASLEEP) {
882 tp->t_state &= ~TS_ASLEEP;
883 wakeup((caddr_t)&tp->t_outq);
884 }
885 selwakeup(&tp->t_wsel);
886 }
887
888 nch = ndqb(&tp->t_outq, 0); /* XXX */
889 if(nch) {
890 register char *p = tp->t_outq.c_cf;
891
892 /* mark busy, enable tx done interrupts, & send first byte */
893 tp->t_state |= TS_BUSY;
894 (void) splzs();
895 cs->cs_preg[1] |= ZSWR1_TIE;
896 cs->cs_creg[1] |= ZSWR1_TIE;
897 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
898 cs->cs_zc->zc_data = *p;
899 cs->cs_tba = p + 1;
900 cs->cs_tbc = nch - 1;
901 } else {
902 /*
903 * Nothing to send, turn off transmit done interrupts.
904 * This is useful if something is doing polled output.
905 */
906 (void) splzs();
907 cs->cs_preg[1] &= ~ZSWR1_TIE;
908 cs->cs_creg[1] &= ~ZSWR1_TIE;
909 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
910 }
911 out:
912 splx(s);
913 }
914
915 /*
916 * Stop output, e.g., for ^S or output flush.
917 */
918 void
919 zsstop(tp, flag)
920 register struct tty *tp;
921 int flag;
922 {
923 register struct zs_chanstate *cs;
924 register int s, unit = ZS_UNIT(tp->t_dev);
925 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
926
927 cs = &zi->zi_cs[unit & 1];
928 s = splzs();
929 if(tp->t_state & TS_BUSY) {
930 /*
931 * Device is transmitting; must stop it.
932 */
933 cs->cs_tbc = 0;
934 if ((tp->t_state & TS_TTSTOP) == 0)
935 tp->t_state |= TS_FLUSH;
936 }
937 splx(s);
938 }
939
940 /*
941 * Set ZS tty parameters from termios.
942 *
943 * This routine makes use of the fact that only registers
944 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
945 */
946 static int
947 zsparam(tp, t)
948 register struct tty *tp;
949 register struct termios *t;
950 {
951 int unit = ZS_UNIT(tp->t_dev);
952 struct zs_softc *zi = zscd.cd_devs[unit >> 1];
953 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
954 int cdiv, clkm, brgm, tcon;
955 register int tmp, tmp5, cflag, s;
956
957 tmp = t->c_ospeed;
958 tmp5 = t->c_ispeed;
959 if(tmp < 0 || (tmp5 && tmp5 != tmp))
960 return(EINVAL);
961 if(tmp == 0) {
962 /* stty 0 => drop DTR and RTS */
963 zs_modem(cs, 0, DMSET);
964 return(0);
965 }
966 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
967 if (tmp < 0)
968 return(EINVAL);
969 tp->t_ispeed = tp->t_ospeed = tmp;
970
971 cflag = tp->t_cflag = t->c_cflag;
972 if (cflag & CSTOPB)
973 cdiv |= ZSWR4_TWOSB;
974 else
975 cdiv |= ZSWR4_ONESB;
976 if (!(cflag & PARODD))
977 cdiv |= ZSWR4_EVENP;
978 if (cflag & PARENB)
979 cdiv |= ZSWR4_PARENB;
980
981 switch(cflag & CSIZE) {
982 case CS5:
983 tmp = ZSWR3_RX_5;
984 tmp5 = ZSWR5_TX_5;
985 break;
986 case CS6:
987 tmp = ZSWR3_RX_6;
988 tmp5 = ZSWR5_TX_6;
989 break;
990 case CS7:
991 tmp = ZSWR3_RX_7;
992 tmp5 = ZSWR5_TX_7;
993 break;
994 case CS8:
995 default:
996 tmp = ZSWR3_RX_8;
997 tmp5 = ZSWR5_TX_8;
998 break;
999 }
1000 tmp |= ZSWR3_RX_ENABLE;
1001 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1002
1003 /*
1004 * Block interrupts so that state will not
1005 * be altered until we are done setting it up.
1006 */
1007 s = splzs();
1008 cs->cs_preg[4] = cdiv;
1009 cs->cs_preg[11] = clkm;
1010 cs->cs_preg[12] = tcon;
1011 cs->cs_preg[13] = tcon >> 8;
1012 cs->cs_preg[14] = brgm;
1013 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1014 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1015 cs->cs_preg[10] = ZSWR10_NRZ;
1016 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1017
1018 /*
1019 * Output hardware flow control on the chip is horrendous: if
1020 * carrier detect drops, the receiver is disabled. Hence we
1021 * can only do this when the carrier is on.
1022 */
1023 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1024 tmp |= ZSWR3_HFC;
1025 cs->cs_preg[3] = tmp;
1026 cs->cs_preg[5] = tmp5;
1027
1028 /*
1029 * If nothing is being transmitted, set up new current values,
1030 * else mark them as pending.
1031 */
1032 if(cs->cs_heldchange == 0) {
1033 if (cs->cs_ttyp->t_state & TS_BUSY) {
1034 cs->cs_heldtbc = cs->cs_tbc;
1035 cs->cs_tbc = 0;
1036 cs->cs_heldchange = 1;
1037 } else {
1038 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1039 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1040 }
1041 }
1042 splx(s);
1043 return (0);
1044 }
1045
1046 /*
1047 * search for the best matching baudrate
1048 */
1049 static int
1050 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1051 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1052 {
1053 int bestdiff, bestbps, source;
1054
1055 unit = (unit & 1) << 2;
1056 for (source = 0; source < 4; ++source) {
1057 long freq = zs_frequencies[unit + source];
1058 int diff, bps, div, clkm, brgm, tcon;
1059 switch (source) {
1060 case 0: /* BRgen, PCLK */
1061 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1062 break;
1063 case 1: /* BRgen, RTxC */
1064 brgm = ZSWR14_BAUD_ENA;
1065 break;
1066 case 2: /* RTxC */
1067 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1068 break;
1069 case 3: /* TRxC */
1070 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1071 break;
1072 }
1073 switch (source) {
1074 case 0:
1075 case 1:
1076 div = ZSWR4_CLK_X16;
1077 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1078 tcon = BPS_TO_TCONST(freq, wanted);
1079 if (tcon < 0)
1080 tcon = 0;
1081 bps = TCONST_TO_BPS(freq, tcon);
1082 break;
1083 case 2:
1084 case 3:
1085 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1086 int b2 = freq / 32, d2 = abs(b2 - wanted);
1087 int b3 = freq / 64, d3 = abs(b3 - wanted);
1088
1089 if (d1 < d2 && d1 < d3) {
1090 div = ZSWR4_CLK_X16;
1091 bps = b1;
1092 } else if (d2 < d3 && d2 < d1) {
1093 div = ZSWR4_CLK_X32;
1094 bps = b2;
1095 } else {
1096 div = ZSWR4_CLK_X64;
1097 bps = b3;
1098 }
1099 brgm = tcon = 0;
1100 break;
1101 }
1102 }
1103 diff = abs(bps - wanted);
1104 if (!source || diff < bestdiff) {
1105 *divisor = div;
1106 *clockmode = clkm;
1107 *brgenmode = brgm;
1108 *timeconst = tcon;
1109 bestbps = bps;
1110 bestdiff = diff;
1111 if (diff == 0)
1112 break;
1113 }
1114 }
1115 /* Allow deviations upto 5% */
1116 if (20 * bestdiff > wanted)
1117 return -1;
1118 return bestbps;
1119 }
1120
1121 /*
1122 * Raise or lower modem control (DTR/RTS) signals. If a character is
1123 * in transmission, the change is deferred.
1124 */
1125 static int
1126 zs_modem(cs, bits, how)
1127 struct zs_chanstate *cs;
1128 int bits, how;
1129 {
1130 int s, mbits;
1131
1132 bits &= ZSWR5_DTR | ZSWR5_RTS;
1133
1134 s = splzs();
1135 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1136
1137 switch(how) {
1138 case DMSET:
1139 mbits = bits;
1140 break;
1141 case DMBIS:
1142 mbits |= bits;
1143 break;
1144 case DMBIC:
1145 mbits &= ~bits;
1146 break;
1147 case DMGET:
1148 splx(s);
1149 return(mbits);
1150 }
1151
1152 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1153 if(cs->cs_heldchange == 0) {
1154 if(cs->cs_ttyp->t_state & TS_BUSY) {
1155 cs->cs_heldtbc = cs->cs_tbc;
1156 cs->cs_tbc = 0;
1157 cs->cs_heldchange = 1;
1158 }
1159 else {
1160 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1161 }
1162 }
1163 splx(s);
1164 return(0);
1165 }
1166
1167 /*
1168 * Write the given register set to the given zs channel in the proper order.
1169 * The channel must not be transmitting at the time. The receiver will
1170 * be disabled for the time it takes to write all the registers.
1171 */
1172 static void
1173 zs_loadchannelregs(zc, reg)
1174 volatile struct zschan *zc;
1175 u_char *reg;
1176 {
1177 int i;
1178
1179 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1180 i = zc->zc_data; /* drain fifo */
1181 i = zc->zc_data;
1182 i = zc->zc_data;
1183 ZS_WRITE(zc, 4, reg[4]);
1184 ZS_WRITE(zc, 10, reg[10]);
1185 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1186 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1187 ZS_WRITE(zc, 1, reg[1]);
1188 ZS_WRITE(zc, 9, reg[9]);
1189 ZS_WRITE(zc, 11, reg[11]);
1190 ZS_WRITE(zc, 12, reg[12]);
1191 ZS_WRITE(zc, 13, reg[13]);
1192 ZS_WRITE(zc, 14, reg[14]);
1193 ZS_WRITE(zc, 15, reg[15]);
1194 ZS_WRITE(zc, 3, reg[3]);
1195 ZS_WRITE(zc, 5, reg[5]);
1196 }
1197 #endif /* NZS > 1 */
1198