zs.c revision 1.68 1 /* $NetBSD: zs.c,v 1.68 2010/04/09 12:38:48 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 */
43
44 /*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
61 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73 /*
74 * Zilog Z8530 (ZSCC) driver.
75 *
76 * Runs two tty ports (modem2 and serial2) on zs0.
77 *
78 * This driver knows far too much about chip to usage mappings.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.68 2010/04/09 12:38:48 tsutsui Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/proc.h>
87 #include <sys/device.h>
88 #include <sys/conf.h>
89 #include <sys/file.h>
90 #include <sys/ioctl.h>
91 #include <sys/malloc.h>
92 #include <sys/tty.h>
93 #include <sys/time.h>
94 #include <sys/kernel.h>
95 #include <sys/syslog.h>
96 #include <sys/kauth.h>
97
98 #include <machine/cpu.h>
99 #include <machine/iomap.h>
100 #include <machine/scu.h>
101 #include <machine/mfp.h>
102 #include <atari/dev/ym2149reg.h>
103
104 #include <dev/ic/z8530reg.h>
105 #include <atari/dev/zsvar.h>
106
107 #include "ioconf.h"
108
109 #include "zs.h"
110 #if NZS > 1
111 #error "This driver supports only 1 85C30!"
112 #endif
113
114 #if NZS > 0
115
116 #define PCLK (8053976) /* PCLK pin input clock rate */
117 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
118
119 #define splzs spl5
120
121 /*
122 * Software state per found chip.
123 */
124 struct zs_softc {
125 struct device sc_dev; /* base device */
126 struct zsdevice *sc_zs; /* chip registers */
127 struct zs_chanstate sc_cs[2]; /* chan A and B software state */
128 };
129
130 static void *zs_softint_cookie; /* for callback */
131 /*
132 * Define the registers for a closed port
133 */
134 static uint8_t zs_init_regs[16] = {
135 /* 0 */ 0,
136 /* 1 */ 0,
137 /* 2 */ 0x60,
138 /* 3 */ 0,
139 /* 4 */ 0,
140 /* 5 */ 0,
141 /* 6 */ 0,
142 /* 7 */ 0,
143 /* 8 */ 0,
144 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
145 /* 10 */ ZSWR10_NRZ,
146 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
147 /* 12 */ 0,
148 /* 13 */ 0,
149 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
150 /* 15 */ 0
151 };
152
153 /*
154 * Define the machine dependant clock frequencies
155 * If BRgen feeds sender/receiver we always use a
156 * divisor 16, therefor the division by 16 can as
157 * well be done here.
158 */
159 static u_long zs_freqs_tt[] = {
160 /*
161 * Atari TT, RTxCB is generated by TT-MFP timer C,
162 * which is set to 307.2 kHz during initialisation
163 * and never changed afterwards.
164 */
165 PCLK/16, /* BRgen, PCLK, divisor 16 */
166 229500, /* BRgen, RTxCA, divisor 16 */
167 3672000, /* RTxCA, from PCLK4 */
168 0, /* TRxCA, external */
169
170 PCLK/16, /* BRgen, PCLK, divisor 16 */
171 19200, /* BRgen, RTxCB, divisor 16 */
172 307200, /* RTxCB, from TT-MFP TCO */
173 2457600 /* TRxCB, from BCLK */
174 };
175
176 static u_long zs_freqs_falcon[] = {
177 /*
178 * Atari Falcon, XXX no specs available, this might be wrong
179 */
180 PCLK/16, /* BRgen, PCLK, divisor 16 */
181 229500, /* BRgen, RTxCA, divisor 16 */
182 3672000, /* RTxCA, ??? */
183 0, /* TRxCA, external */
184
185 PCLK/16, /* BRgen, PCLK, divisor 16 */
186 229500, /* BRgen, RTxCB, divisor 16 */
187 3672000, /* RTxCB, ??? */
188 2457600 /* TRxCB, ??? */
189 };
190
191 static u_long zs_freqs_hades[] = {
192 /*
193 * XXX: Channel-A unchecked!!!!!
194 */
195 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
196 229500, /* BRgen, RTxCA, divisor 16 */
197 3672000, /* RTxCA, from PCLK4 */
198 0, /* TRxCA, external */
199
200 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
201 235550, /* BRgen, RTxCB, divisor 16 */
202 3768800, /* RTxCB, 3.7688MHz */
203 3768800 /* TRxCB, 3.7688MHz */
204 };
205
206 static u_long zs_freqs_generic[] = {
207 /*
208 * other machines, assume only PCLK is available
209 */
210 PCLK/16, /* BRgen, PCLK, divisor 16 */
211 0, /* BRgen, RTxCA, divisor 16 */
212 0, /* RTxCA, unknown */
213 0, /* TRxCA, unknown */
214
215 PCLK/16, /* BRgen, PCLK, divisor 16 */
216 0, /* BRgen, RTxCB, divisor 16 */
217 0, /* RTxCB, unknown */
218 0 /* TRxCB, unknown */
219 };
220 static u_long *zs_frequencies;
221
222 /* Definition of the driver for autoconfig. */
223 static int zsmatch(struct device *, struct cfdata *, void *);
224 static void zsattach(struct device *, struct device *, void *);
225
226 CFATTACH_DECL(zs, sizeof(struct zs_softc),
227 zsmatch, zsattach, NULL, NULL);
228
229 /* {b,c}devsw[] function prototypes */
230 dev_type_open(zsopen);
231 dev_type_close(zsclose);
232 dev_type_read(zsread);
233 dev_type_write(zswrite);
234 dev_type_ioctl(zsioctl);
235 dev_type_stop(zsstop);
236 dev_type_tty(zstty);
237 dev_type_poll(zspoll);
238
239 const struct cdevsw zs_cdevsw = {
240 zsopen, zsclose, zsread, zswrite, zsioctl,
241 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
242 };
243
244 /* Interrupt handlers. */
245 int zshard(long);
246 static int zssoft(long);
247 static int zsrint(struct zs_chanstate *, struct zschan *);
248 static int zsxint(struct zs_chanstate *, struct zschan *);
249 static int zssint(struct zs_chanstate *, struct zschan *);
250
251 static struct zs_chanstate *zslist;
252
253 /* Routines called from other code. */
254 static void zsstart(struct tty *);
255
256 /* Routines purely local to this driver. */
257 static void zsoverrun(int, long *, const char *);
258 static int zsparam(struct tty *, struct termios *);
259 static int zsbaudrate(int, int, int *, int *, int *, int *);
260 static int zs_modem(struct zs_chanstate *, int, int);
261 static void zs_loadchannelregs(struct zschan *, uint8_t *);
262 static void zs_shutdown(struct zs_chanstate *);
263
264 static int
265 zsmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
266 {
267 static int zs_matched = 0;
268
269 if (strcmp("zs", auxp) || zs_matched)
270 return 0;
271 zs_matched = 1;
272 return 1;
273 }
274
275 /*
276 * Attach a found zs.
277 */
278 static void
279 zsattach(struct device *parent, struct device *dev, void *aux)
280 {
281 struct zs_softc *sc;
282 struct zs_chanstate *cs;
283 struct zsdevice *addr;
284 uint8_t tmp;
285
286 addr = (struct zsdevice *)AD_SCC;
287 sc = (struct zs_softc *)dev;
288 sc->sc_zs = addr;
289 cs = sc->sc_cs;
290
291 /*
292 * Get the command register into a known state.
293 */
294 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
295 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
296 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
297 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
298
299 /*
300 * Do a hardware reset.
301 */
302 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
303 delay(50000); /*enough ? */
304 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
305
306 /*
307 * Initialize both channels
308 */
309 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
310 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
311
312 if (machineid & ATARI_TT) {
313 /*
314 * ininitialise TT-MFP timer C: 307200Hz
315 * timer C and D share one control register:
316 * bits 0-2 control timer D
317 * bits 4-6 control timer C
318 */
319 int cr = MFP2->mf_tcdcr & 7;
320 MFP2->mf_tcdcr = cr; /* stop timer C */
321 MFP2->mf_tcdr = 1; /* counter 1 */
322 cr |= T_Q004 << 4; /* divisor 4 */
323 MFP2->mf_tcdcr = cr; /* start timer C */
324 /*
325 * enable scc related interrupts
326 */
327 SCU->vme_mask |= SCU_SCC;
328
329 zs_frequencies = zs_freqs_tt;
330 } else if (machineid & ATARI_FALCON) {
331 zs_frequencies = zs_freqs_falcon;
332 } else if (machineid & ATARI_HADES) {
333 zs_frequencies = zs_freqs_hades;
334 } else {
335 zs_frequencies = zs_freqs_generic;
336 }
337
338 /* link into interrupt list with order (A,B) (B=A+1) */
339 cs[0].cs_next = &cs[1];
340 cs[1].cs_next = zslist;
341 zslist = cs;
342
343 cs->cs_unit = 0;
344 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
345 cs++;
346 cs->cs_unit = 1;
347 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
348
349 zs_softint_cookie = softint_establish(SOFTINT_SERIAL,
350 (void (*)(void *))zssoft, 0);
351
352 printf(": serial2 on channel a and modem2 on channel b\n");
353 }
354
355 /*
356 * Open a zs serial port.
357 */
358 int
359 zsopen(dev_t dev, int flags, int mode, struct lwp *l)
360 {
361 struct tty *tp;
362 struct zs_chanstate *cs;
363 struct zs_softc *sc;
364 int unit = ZS_UNIT(dev);
365 int zs = unit >> 1;
366 int error, s;
367
368 sc = device_lookup_private(&zs_cd, zs);
369 if (sc == NULL)
370 return ENXIO;
371 cs = &sc->sc_cs[unit & 1];
372
373 /*
374 * When port A (ser02) is selected on the TT, make sure
375 * the port is enabled.
376 */
377 if ((machineid & ATARI_TT) && !(unit & 1))
378 ym2149_ser2(1);
379
380 if (cs->cs_rbuf == NULL) {
381 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
382 M_WAITOK);
383 }
384
385 tp = cs->cs_ttyp;
386 if(tp == NULL) {
387 cs->cs_ttyp = tp = ttymalloc();
388 tty_attach(tp);
389 tp->t_dev = dev;
390 tp->t_oproc = zsstart;
391 tp->t_param = zsparam;
392 }
393
394 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
395 return EBUSY;
396
397 s = spltty();
398
399 /*
400 * Do the following iff this is a first open.
401 */
402 if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
403 if(tp->t_ispeed == 0) {
404 tp->t_iflag = TTYDEF_IFLAG;
405 tp->t_oflag = TTYDEF_OFLAG;
406 tp->t_cflag = TTYDEF_CFLAG;
407 tp->t_lflag = TTYDEF_LFLAG;
408 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
409 }
410 ttychars(tp);
411 ttsetwater(tp);
412
413 (void)zsparam(tp, &tp->t_termios);
414
415 /*
416 * Turn on DTR. We must always do this, even if carrier is not
417 * present, because otherwise we'd have to use TIOCSDTR
418 * immediately after setting CLOCAL, which applications do not
419 * expect. We always assert DTR while the device is open
420 * unless explicitly requested to deassert it.
421 */
422 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
423 /* May never get a status intr. if DCD already on. -gwr */
424 if (((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD) != 0)
425 tp->t_state |= TS_CARR_ON;
426 if(cs->cs_softcar)
427 tp->t_state |= TS_CARR_ON;
428 }
429
430 splx(s);
431
432 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
433 if (error)
434 goto bad;
435
436 error = tp->t_linesw->l_open(dev, tp);
437 if (error)
438 goto bad;
439 return 0;
440
441 bad:
442 if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
443 /*
444 * We failed to open the device, and nobody else had it opened.
445 * Clean up the state as appropriate.
446 */
447 zs_shutdown(cs);
448 }
449 return error;
450 }
451
452 /*
453 * Close a zs serial port.
454 */
455 int
456 zsclose(dev_t dev, int flags, int mode, struct lwp *l)
457 {
458 struct zs_chanstate *cs;
459 struct tty *tp;
460 struct zs_softc *sc;
461 int unit = ZS_UNIT(dev);
462
463 sc = device_lookup_private(&zs_cd, unit >> 1);
464 cs = &sc->sc_cs[unit & 1];
465 tp = cs->cs_ttyp;
466
467 tp->t_linesw->l_close(tp, flags);
468 ttyclose(tp);
469
470 if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
471 /*
472 * Although we got a last close, the device may still be in
473 * use; e.g. if this was the dialout node, and there are still
474 * processes waiting for carrier on the non-dialout node.
475 */
476 zs_shutdown(cs);
477 }
478 return 0;
479 }
480
481 /*
482 * Read/write zs serial port.
483 */
484 int
485 zsread(dev_t dev, struct uio *uio, int flags)
486 {
487 struct zs_chanstate *cs;
488 struct zs_softc *sc;
489 struct tty *tp;
490 int unit;
491
492 unit = ZS_UNIT(dev);
493 sc = device_lookup_private(&zs_cd, unit >> 1);
494 cs = &sc->sc_cs[unit & 1];
495 tp = cs->cs_ttyp;
496
497 return (*tp->t_linesw->l_read)(tp, uio, flags);
498 }
499
500 int
501 zswrite(dev_t dev, struct uio *uio, int flags)
502 {
503 struct zs_chanstate *cs;
504 struct zs_softc *sc;
505 struct tty *tp;
506 int unit;
507
508 unit = ZS_UNIT(dev);
509 sc = device_lookup_private(&zs_cd, unit >> 1);
510 cs = &sc->sc_cs[unit & 1];
511 tp = cs->cs_ttyp;
512
513 return (*tp->t_linesw->l_write)(tp, uio, flags);
514 }
515
516 int
517 zspoll(dev_t dev, int events, struct lwp *l)
518 {
519 struct zs_chanstate *cs;
520 struct zs_softc *sc;
521 struct tty *tp;
522 int unit;
523
524 unit = ZS_UNIT(dev);
525 sc = device_lookup_private(&zs_cd, unit >> 1);
526 cs = &sc->sc_cs[unit & 1];
527 tp = cs->cs_ttyp;
528
529 return (*tp->t_linesw->l_poll)(tp, events, l);
530 }
531
532 struct tty *
533 zstty(dev_t dev)
534 {
535 struct zs_chanstate *cs;
536 struct zs_softc *sc;
537 int unit;
538
539 unit = ZS_UNIT(dev);
540 sc = device_lookup_private(&zs_cd, unit >> 1);
541 cs = &sc->sc_cs[unit & 1];
542 return cs->cs_ttyp;
543 }
544
545 /*
546 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
547 * channels are kept in (A,B) pairs.
548 *
549 * Do just a little, then get out; set a software interrupt if more
550 * work is needed.
551 *
552 * We deliberately ignore the vectoring Zilog gives us, and match up
553 * only the number of `reset interrupt under service' operations, not
554 * the order.
555 */
556
557 int
558 zshard(long sr)
559 {
560 struct zs_chanstate *a;
561 #define b (a + 1)
562 struct zschan *zc;
563 int rr3, intflags = 0, v, i;
564
565 do {
566 intflags &= ~4;
567 for (a = zslist; a != NULL; a = b->cs_next) {
568 rr3 = ZS_READ(a->cs_zc, 3);
569 if (rr3 & (ZSRR3_IP_A_RX | ZSRR3_IP_A_TX |
570 ZSRR3_IP_A_STAT)) {
571 intflags |= 4 | 2;
572 zc = a->cs_zc;
573 i = a->cs_rbput;
574 if ((rr3 & ZSRR3_IP_A_RX) != 0 &&
575 (v = zsrint(a, zc)) != 0) {
576 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
577 intflags |= 1;
578 }
579 if ((rr3 & ZSRR3_IP_A_TX) != 0 &&
580 (v = zsxint(a, zc)) != 0) {
581 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
582 intflags |= 1;
583 }
584 if ((rr3 & ZSRR3_IP_A_STAT) != 0 &&
585 (v = zssint(a, zc)) != 0) {
586 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
587 intflags |= 1;
588 }
589 a->cs_rbput = i;
590 }
591 if (rr3 & (ZSRR3_IP_B_RX | ZSRR3_IP_B_TX |
592 ZSRR3_IP_B_STAT)) {
593 intflags |= 4 | 2;
594 zc = b->cs_zc;
595 i = b->cs_rbput;
596 if ((rr3 & ZSRR3_IP_B_RX) != 0 &&
597 (v = zsrint(b, zc)) != 0) {
598 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
599 intflags |= 1;
600 }
601 if ((rr3 & ZSRR3_IP_B_TX) != 0 &&
602 (v = zsxint(b, zc)) != 0) {
603 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
604 intflags |= 1;
605 }
606 if ((rr3 & ZSRR3_IP_B_STAT) != 0 &&
607 (v = zssint(b, zc)) != 0) {
608 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
609 intflags |= 1;
610 }
611 b->cs_rbput = i;
612 }
613 }
614 } while (intflags & 4);
615 #undef b
616
617 if (intflags & 1)
618 softint_schedule(zs_softint_cookie);
619
620 return intflags & 2;
621 }
622
623 static int
624 zsrint(struct zs_chanstate *cs, struct zschan *zc)
625 {
626 int c;
627
628 /*
629 * First read the status, because read of the received char
630 * destroy the status of this char.
631 */
632 c = ZS_READ(zc, 1);
633 c |= (zc->zc_data << 8);
634
635 /* clear receive error & interrupt condition */
636 zc->zc_csr = ZSWR0_RESET_ERRORS;
637 zc->zc_csr = ZSWR0_CLR_INTR;
638
639 return ZRING_MAKE(ZRING_RINT, c);
640 }
641
642 static int
643 zsxint(struct zs_chanstate *cs, struct zschan *zc)
644 {
645 int i = cs->cs_tbc;
646
647 if (i == 0) {
648 zc->zc_csr = ZSWR0_RESET_TXINT;
649 zc->zc_csr = ZSWR0_CLR_INTR;
650 return ZRING_MAKE(ZRING_XINT, 0);
651 }
652 cs->cs_tbc = i - 1;
653 zc->zc_data = *cs->cs_tba++;
654 zc->zc_csr = ZSWR0_CLR_INTR;
655 return 0;
656 }
657
658 static int
659 zssint(struct zs_chanstate *cs, struct zschan *zc)
660 {
661 int rr0;
662
663 rr0 = zc->zc_csr;
664 zc->zc_csr = ZSWR0_RESET_STATUS;
665 zc->zc_csr = ZSWR0_CLR_INTR;
666 /*
667 * The chip's hardware flow control is, as noted in zsreg.h,
668 * busted---if the DCD line goes low the chip shuts off the
669 * receiver (!). If we want hardware CTS flow control but do
670 * not have it, and carrier is now on, turn HFC on; if we have
671 * HFC now but carrier has gone low, turn it off.
672 */
673 if (rr0 & ZSRR0_DCD) {
674 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
675 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
676 cs->cs_creg[3] |= ZSWR3_HFC;
677 ZS_WRITE(zc, 3, cs->cs_creg[3]);
678 }
679 } else {
680 if (cs->cs_creg[3] & ZSWR3_HFC) {
681 cs->cs_creg[3] &= ~ZSWR3_HFC;
682 ZS_WRITE(zc, 3, cs->cs_creg[3]);
683 }
684 }
685 return ZRING_MAKE(ZRING_SINT, rr0);
686 }
687
688 /*
689 * Print out a ring or fifo overrun error message.
690 */
691 static void
692 zsoverrun(int unit, long *ptime, const char *what)
693 {
694 time_t cur_sec = time_second;
695
696 if(*ptime != cur_sec) {
697 *ptime = cur_sec;
698 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
699 (unit & 1) + 'a', what);
700 }
701 }
702
703 /*
704 * ZS software interrupt. Scan all channels for deferred interrupts.
705 */
706 int
707 zssoft(long sr)
708 {
709 struct zs_chanstate *cs;
710 struct zschan *zc;
711 struct linesw *line;
712 struct tty *tp;
713 int get, n, c, cc, unit, s;
714 int retval = 0;
715
716 s = spltty();
717 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
718 get = cs->cs_rbget;
719 again:
720 n = cs->cs_rbput; /* atomic */
721 if (get == n) /* nothing more on this line */
722 continue;
723 retval = 1;
724 unit = cs->cs_unit; /* set up to handle interrupts */
725 zc = cs->cs_zc;
726 tp = cs->cs_ttyp;
727 line = tp->t_linesw;
728 /*
729 * Compute the number of interrupts in the receive ring.
730 * If the count is overlarge, we lost some events, and
731 * must advance to the first valid one. It may get
732 * overwritten if more data are arriving, but this is
733 * too expensive to check and gains nothing (we already
734 * lost out; all we can do at this point is trade one
735 * kind of loss for another).
736 */
737 n -= get;
738 if (n > ZLRB_RING_SIZE) {
739 zsoverrun(unit, &cs->cs_rotime, "ring");
740 get += n - ZLRB_RING_SIZE;
741 n = ZLRB_RING_SIZE;
742 }
743 while (--n >= 0) {
744 /* race to keep ahead of incoming interrupts */
745 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
746 switch (ZRING_TYPE(c)) {
747
748 case ZRING_RINT:
749 c = ZRING_VALUE(c);
750 if ((c & ZSRR1_DO) != 0)
751 zsoverrun(unit, &cs->cs_fotime, "fifo");
752 cc = c >> 8;
753 if ((c & ZSRR1_FE) != 0)
754 cc |= TTY_FE;
755 if ((c & ZSRR1_PE) != 0)
756 cc |= TTY_PE;
757 line->l_rint(cc, tp);
758 break;
759
760 case ZRING_XINT:
761 /*
762 * Transmit done: change registers and resume,
763 * or clear BUSY.
764 */
765 if (cs->cs_heldchange) {
766 int sps;
767
768 sps = splzs();
769 c = zc->zc_csr;
770 if ((c & ZSRR0_DCD) == 0)
771 cs->cs_preg[3] &= ~ZSWR3_HFC;
772 memcpy((void *)cs->cs_creg,
773 (void *)cs->cs_preg, 16);
774 zs_loadchannelregs(zc, cs->cs_creg);
775 splx(sps);
776 cs->cs_heldchange = 0;
777 if (cs->cs_heldtbc &&
778 (tp->t_state & TS_TTSTOP) == 0) {
779 cs->cs_tbc = cs->cs_heldtbc - 1;
780 zc->zc_data = *cs->cs_tba++;
781 goto again;
782 }
783 }
784 tp->t_state &= ~TS_BUSY;
785 if ((tp->t_state & TS_FLUSH) != 0)
786 tp->t_state &= ~TS_FLUSH;
787 else
788 ndflush(&tp->t_outq,
789 cs->cs_tba - tp->t_outq.c_cf);
790 line->l_start(tp);
791 break;
792
793 case ZRING_SINT:
794 /*
795 * Status line change. HFC bit is run in
796 * hardware interrupt, to avoid locking
797 * at splzs here.
798 */
799 c = ZRING_VALUE(c);
800 if (((c ^ cs->cs_rr0) & ZSRR0_DCD) != 0) {
801 cc = (c & ZSRR0_DCD) != 0;
802 if (line->l_modem(tp, cc) == 0)
803 zs_modem(cs,
804 ZSWR5_RTS | ZSWR5_DTR,
805 cc ? DMBIS : DMBIC);
806 }
807 cs->cs_rr0 = c;
808 break;
809
810 default:
811 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
812 unit >> 1, (unit & 1) + 'a', c);
813 break;
814 }
815 }
816 cs->cs_rbget = get;
817 goto again;
818 }
819 splx(s);
820 return retval;
821 }
822
823 int
824 zsioctl(dev_t dev, u_long cmd, void * data, int flag, struct lwp *l)
825 {
826 int unit = ZS_UNIT(dev);
827 struct zs_softc *sc = device_lookup_private(&zs_cd, unit >> 1);
828 struct tty *tp = sc->sc_cs[unit & 1].cs_ttyp;
829 int error, s;
830 struct zs_chanstate *cs = &sc->sc_cs[unit & 1];
831
832 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
833 if (error != EPASSTHROUGH)
834 return error;
835
836 error = ttioctl(tp, cmd, data, flag, l);
837 if (error !=EPASSTHROUGH)
838 return error;
839
840 switch (cmd) {
841 case TIOCSBRK:
842 s = splzs();
843 cs->cs_preg[5] |= ZSWR5_BREAK;
844 cs->cs_creg[5] |= ZSWR5_BREAK;
845 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
846 splx(s);
847 break;
848 case TIOCCBRK:
849 s = splzs();
850 cs->cs_preg[5] &= ~ZSWR5_BREAK;
851 cs->cs_creg[5] &= ~ZSWR5_BREAK;
852 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
853 splx(s);
854 break;
855 case TIOCGFLAGS: {
856 int bits = 0;
857
858 if (cs->cs_softcar)
859 bits |= TIOCFLAG_SOFTCAR;
860 if ((cs->cs_creg[15] & ZSWR15_DCD_IE) != 0)
861 bits |= TIOCFLAG_CLOCAL;
862 if ((cs->cs_creg[3] & ZSWR3_HFC) != 0)
863 bits |= TIOCFLAG_CRTSCTS;
864 *(int *)data = bits;
865 break;
866 }
867 case TIOCSFLAGS: {
868 int userbits = 0;
869
870 error = kauth_authorize_device_tty(l->l_cred,
871 KAUTH_DEVICE_TTY_PRIVSET, tp);
872 if (error != 0)
873 return EPERM;
874
875 userbits = *(int *)data;
876
877 /*
878 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
879 # defaulting to software flow control.
880 */
881 if ((userbits & TIOCFLAG_SOFTCAR) != 0 &&
882 (userbits & TIOCFLAG_CLOCAL) != 0)
883 return EINVAL;
884 if ((userbits & TIOCFLAG_MDMBUF) != 0)
885 /* don't support this (yet?) */
886 return ENODEV;
887
888 s = splzs();
889 if ((userbits & TIOCFLAG_SOFTCAR) != 0) {
890 cs->cs_softcar = 1; /* turn on softcar */
891 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
892 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
893 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
894 } else if ((userbits & TIOCFLAG_CLOCAL) != 0) {
895 cs->cs_softcar = 0; /* turn off softcar */
896 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
897 cs->cs_creg[15] |= ZSWR15_DCD_IE;
898 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
899 tp->t_termios.c_cflag |= CLOCAL;
900 }
901 if ((userbits & TIOCFLAG_CRTSCTS) != 0) {
902 cs->cs_preg[15] |= ZSWR15_CTS_IE;
903 cs->cs_creg[15] |= ZSWR15_CTS_IE;
904 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
905 cs->cs_preg[3] |= ZSWR3_HFC;
906 cs->cs_creg[3] |= ZSWR3_HFC;
907 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
908 tp->t_termios.c_cflag |= CRTSCTS;
909 } else {
910 /* no mdmbuf, so we must want software flow control */
911 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
912 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
913 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
914 cs->cs_preg[3] &= ~ZSWR3_HFC;
915 cs->cs_creg[3] &= ~ZSWR3_HFC;
916 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
917 tp->t_termios.c_cflag &= ~CRTSCTS;
918 }
919 splx(s);
920 break;
921 }
922 case TIOCSDTR:
923 zs_modem(cs, ZSWR5_DTR, DMBIS);
924 break;
925 case TIOCCDTR:
926 zs_modem(cs, ZSWR5_DTR, DMBIC);
927 break;
928 case TIOCMGET:
929 zs_modem(cs, 0, DMGET);
930 break;
931 case TIOCMSET:
932 case TIOCMBIS:
933 case TIOCMBIC:
934 default:
935 return EPASSTHROUGH;
936 }
937 return 0;
938 }
939
940 /*
941 * Start or restart transmission.
942 */
943 static void
944 zsstart(struct tty *tp)
945 {
946 struct zs_chanstate *cs;
947 int s, nch;
948 int unit = ZS_UNIT(tp->t_dev);
949 struct zs_softc *sc = device_lookup_private(&zs_cd, unit >> 1);
950
951 cs = &sc->sc_cs[unit & 1];
952 s = spltty();
953
954 /*
955 * If currently active or delaying, no need to do anything.
956 */
957 if ((tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) != 0)
958 goto out;
959
960 /*
961 * If there are sleepers, and output has drained below low
962 * water mark, awaken.
963 */
964 ttypull(tp);
965
966 nch = ndqb(&tp->t_outq, 0); /* XXX */
967 if (nch) {
968 char *p = tp->t_outq.c_cf;
969
970 /* mark busy, enable tx done interrupts, & send first byte */
971 tp->t_state |= TS_BUSY;
972 (void)splzs();
973 cs->cs_preg[1] |= ZSWR1_TIE;
974 cs->cs_creg[1] |= ZSWR1_TIE;
975 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
976 cs->cs_zc->zc_data = *p;
977 cs->cs_tba = p + 1;
978 cs->cs_tbc = nch - 1;
979 } else {
980 /*
981 * Nothing to send, turn off transmit done interrupts.
982 * This is useful if something is doing polled output.
983 */
984 (void)splzs();
985 cs->cs_preg[1] &= ~ZSWR1_TIE;
986 cs->cs_creg[1] &= ~ZSWR1_TIE;
987 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
988 }
989 out:
990 splx(s);
991 }
992
993 /*
994 * Stop output, e.g., for ^S or output flush.
995 */
996 void
997 zsstop(struct tty *tp, int flag)
998 {
999 struct zs_chanstate *cs;
1000 int s, unit = ZS_UNIT(tp->t_dev);
1001 struct zs_softc *sc = device_lookup_private(&zs_cd, unit >> 1);
1002
1003 cs = &sc->sc_cs[unit & 1];
1004 s = splzs();
1005 if ((tp->t_state & TS_BUSY) != 0) {
1006 /*
1007 * Device is transmitting; must stop it.
1008 */
1009 cs->cs_tbc = 0;
1010 if ((tp->t_state & TS_TTSTOP) == 0)
1011 tp->t_state |= TS_FLUSH;
1012 }
1013 splx(s);
1014 }
1015
1016 static void
1017 zs_shutdown(struct zs_chanstate *cs)
1018 {
1019 struct tty *tp = cs->cs_ttyp;
1020 int s;
1021
1022 s = splzs();
1023
1024 /*
1025 * Hang up if necessary. Wait a bit, so the other side has time to
1026 * notice even if we immediately open the port again.
1027 */
1028 if ((tp->t_cflag & HUPCL) != 0) {
1029 zs_modem(cs, 0, DMSET);
1030 (void)tsleep((void *)cs, TTIPRI, ttclos, hz);
1031 }
1032
1033 /* Clear any break condition set with TIOCSBRK. */
1034 if ((cs->cs_creg[5] & ZSWR5_BREAK) != 0) {
1035 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1036 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1037 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1038 }
1039
1040 /*
1041 * Drop all lines and cancel interrupts
1042 */
1043 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1044 splx(s);
1045 }
1046
1047 /*
1048 * Set ZS tty parameters from termios.
1049 *
1050 * This routine makes use of the fact that only registers
1051 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1052 */
1053 static int
1054 zsparam(struct tty *tp, struct termios *t)
1055 {
1056 int unit = ZS_UNIT(tp->t_dev);
1057 struct zs_softc *sc = device_lookup_private(&zs_cd, unit >> 1);
1058 struct zs_chanstate *cs = &sc->sc_cs[unit & 1];
1059 int cdiv = 0; /* XXX gcc4 -Wuninitialized */
1060 int clkm = 0; /* XXX gcc4 -Wuninitialized */
1061 int brgm = 0; /* XXX gcc4 -Wuninitialized */
1062 int tcon = 0; /* XXX gcc4 -Wuninitialized */
1063 int tmp, tmp5, cflag, s;
1064
1065 tmp = t->c_ospeed;
1066 tmp5 = t->c_ispeed;
1067 if (tmp < 0 || (tmp5 && tmp5 != tmp))
1068 return EINVAL;
1069 if (tmp == 0) {
1070 /* stty 0 => drop DTR and RTS */
1071 zs_modem(cs, 0, DMSET);
1072 return 0;
1073 }
1074 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1075 if (tmp < 0)
1076 return EINVAL;
1077 tp->t_ispeed = tp->t_ospeed = tmp;
1078
1079 cflag = tp->t_cflag = t->c_cflag;
1080 if ((cflag & CSTOPB) != 0)
1081 cdiv |= ZSWR4_TWOSB;
1082 else
1083 cdiv |= ZSWR4_ONESB;
1084 if ((cflag & PARODD) == 0)
1085 cdiv |= ZSWR4_EVENP;
1086 if ((cflag & PARENB) != 0)
1087 cdiv |= ZSWR4_PARENB;
1088
1089 switch (cflag & CSIZE) {
1090 case CS5:
1091 tmp = ZSWR3_RX_5;
1092 tmp5 = ZSWR5_TX_5;
1093 break;
1094 case CS6:
1095 tmp = ZSWR3_RX_6;
1096 tmp5 = ZSWR5_TX_6;
1097 break;
1098 case CS7:
1099 tmp = ZSWR3_RX_7;
1100 tmp5 = ZSWR5_TX_7;
1101 break;
1102 case CS8:
1103 default:
1104 tmp = ZSWR3_RX_8;
1105 tmp5 = ZSWR5_TX_8;
1106 break;
1107 }
1108 tmp |= ZSWR3_RX_ENABLE;
1109 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1110
1111 /*
1112 * Block interrupts so that state will not
1113 * be altered until we are done setting it up.
1114 */
1115 s = splzs();
1116 cs->cs_preg[4] = cdiv;
1117 cs->cs_preg[11] = clkm;
1118 cs->cs_preg[12] = tcon;
1119 cs->cs_preg[13] = tcon >> 8;
1120 cs->cs_preg[14] = brgm;
1121 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1122 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1123 cs->cs_preg[10] = ZSWR10_NRZ;
1124 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1125
1126 /*
1127 * Output hardware flow control on the chip is horrendous: if
1128 * carrier detect drops, the receiver is disabled. Hence we
1129 * can only do this when the carrier is on.
1130 */
1131 if ((cflag & CCTS_OFLOW) != 0 &&
1132 (cs->cs_zc->zc_csr & ZSRR0_DCD) != 0)
1133 tmp |= ZSWR3_HFC;
1134 cs->cs_preg[3] = tmp;
1135 cs->cs_preg[5] = tmp5;
1136
1137 /*
1138 * If nothing is being transmitted, set up new current values,
1139 * else mark them as pending.
1140 */
1141 if (cs->cs_heldchange == 0) {
1142 if ((cs->cs_ttyp->t_state & TS_BUSY) != 0) {
1143 cs->cs_heldtbc = cs->cs_tbc;
1144 cs->cs_tbc = 0;
1145 cs->cs_heldchange = 1;
1146 } else {
1147 memcpy((void *)cs->cs_creg, (void *)cs->cs_preg, 16);
1148 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1149 }
1150 }
1151 splx(s);
1152 return 0;
1153 }
1154
1155 /*
1156 * search for the best matching baudrate
1157 */
1158 static int
1159 zsbaudrate(int unit, int wanted, int *divisor, int *clockmode, int *brgenmode,
1160 int *timeconst)
1161 {
1162 int bestdiff, bestbps, source;
1163
1164 bestdiff = bestbps = 0;
1165 unit = (unit & 1) << 2;
1166 for (source = 0; source < 4; ++source) {
1167 long freq = zs_frequencies[unit + source];
1168 int diff, bps, div, clkm, brgm, tcon;
1169
1170 bps = div = clkm = brgm = tcon = 0;
1171 switch (source) {
1172 case 0: /* BRgen, PCLK */
1173 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1174 break;
1175 case 1: /* BRgen, RTxC */
1176 brgm = ZSWR14_BAUD_ENA;
1177 break;
1178 case 2: /* RTxC */
1179 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1180 break;
1181 case 3: /* TRxC */
1182 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1183 break;
1184 }
1185 switch (source) {
1186 case 0:
1187 case 1:
1188 div = ZSWR4_CLK_X16;
1189 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1190 tcon = BPS_TO_TCONST(freq, wanted);
1191 if (tcon < 0)
1192 tcon = 0;
1193 bps = TCONST_TO_BPS(freq, tcon);
1194 break;
1195 case 2:
1196 case 3:
1197 {
1198 int b1 = freq / 16, d1 = abs(b1 - wanted);
1199 int b2 = freq / 32, d2 = abs(b2 - wanted);
1200 int b3 = freq / 64, d3 = abs(b3 - wanted);
1201
1202 if (d1 < d2 && d1 < d3) {
1203 div = ZSWR4_CLK_X16;
1204 bps = b1;
1205 } else if (d2 < d3 && d2 < d1) {
1206 div = ZSWR4_CLK_X32;
1207 bps = b2;
1208 } else {
1209 div = ZSWR4_CLK_X64;
1210 bps = b3;
1211 }
1212 brgm = tcon = 0;
1213 break;
1214 }
1215 }
1216 diff = abs(bps - wanted);
1217 if (!source || diff < bestdiff) {
1218 *divisor = div;
1219 *clockmode = clkm;
1220 *brgenmode = brgm;
1221 *timeconst = tcon;
1222 bestbps = bps;
1223 bestdiff = diff;
1224 if (diff == 0)
1225 break;
1226 }
1227 }
1228 /* Allow deviations upto 5% */
1229 if (20 * bestdiff > wanted)
1230 return -1;
1231 return bestbps;
1232 }
1233
1234 /*
1235 * Raise or lower modem control (DTR/RTS) signals. If a character is
1236 * in transmission, the change is deferred.
1237 */
1238 static int
1239 zs_modem(struct zs_chanstate *cs, int bits, int how)
1240 {
1241 int s, mbits;
1242
1243 bits &= ZSWR5_DTR | ZSWR5_RTS;
1244
1245 s = splzs();
1246 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1247
1248 switch (how) {
1249 case DMSET:
1250 mbits = bits;
1251 break;
1252 case DMBIS:
1253 mbits |= bits;
1254 break;
1255 case DMBIC:
1256 mbits &= ~bits;
1257 break;
1258 case DMGET:
1259 splx(s);
1260 return mbits;
1261 }
1262
1263 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1264 if (cs->cs_heldchange == 0) {
1265 if ((cs->cs_ttyp->t_state & TS_BUSY) != 0) {
1266 cs->cs_heldtbc = cs->cs_tbc;
1267 cs->cs_tbc = 0;
1268 cs->cs_heldchange = 1;
1269 } else {
1270 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1271 }
1272 }
1273 splx(s);
1274 return 0;
1275 }
1276
1277 /*
1278 * Write the given register set to the given zs channel in the proper order.
1279 * The channel must not be transmitting at the time. The receiver will
1280 * be disabled for the time it takes to write all the registers.
1281 */
1282 static void
1283 zs_loadchannelregs(struct zschan *zc, uint8_t *reg)
1284 {
1285 int i;
1286
1287 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1288 i = zc->zc_data; /* drain fifo */
1289 i = zc->zc_data;
1290 i = zc->zc_data;
1291 ZS_WRITE(zc, 4, reg[4]);
1292 ZS_WRITE(zc, 10, reg[10]);
1293 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1294 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1295 ZS_WRITE(zc, 1, reg[1]);
1296 ZS_WRITE(zc, 9, reg[9]);
1297 ZS_WRITE(zc, 11, reg[11]);
1298 ZS_WRITE(zc, 12, reg[12]);
1299 ZS_WRITE(zc, 13, reg[13]);
1300 ZS_WRITE(zc, 14, reg[14]);
1301 ZS_WRITE(zc, 15, reg[15]);
1302 ZS_WRITE(zc, 3, reg[3]);
1303 ZS_WRITE(zc, 5, reg[5]);
1304 }
1305 #endif /* NZS > 1 */
1306