Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.7
      1 /*	$NetBSD: zs.c,v 1.7 1995/06/28 04:30:42 cgd Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/proc.h>
     58 #include <sys/device.h>
     59 #include <sys/conf.h>
     60 #include <sys/file.h>
     61 #include <sys/ioctl.h>
     62 #include <sys/tty.h>
     63 #include <sys/time.h>
     64 #include <sys/kernel.h>
     65 #include <sys/syslog.h>
     66 
     67 #include <machine/cpu.h>
     68 #include <machine/iomap.h>
     69 #include <machine/scu.h>
     70 #include <machine/mfp.h>
     71 
     72 #include <dev/ic/z8530reg.h>
     73 #include <atari/dev/zsvar.h>
     74 #include "zs.h"
     75 #if NZS > 1
     76 #error "This driver supports only 1 85C30!"
     77 #endif
     78 
     79 #if NZS > 0
     80 
     81 #define PCLK	(8000000)	/* PCLK pin input clock rate */
     82 
     83 #define splzs	spl5
     84 
     85 /*
     86  * Software state per found chip.
     87  */
     88 struct zs_softc {
     89     struct	device		zi_dev;    /* base device		  */
     90     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     91     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     92 };
     93 
     94 /*
     95  * Define the registers for a closed port
     96  */
     97 static u_char zs_init_regs[16] = {
     98 /*  0 */	0,
     99 /*  1 */	0,
    100 /*  2 */	0x60,
    101 /*  3 */	0,
    102 /*  4 */	0,
    103 /*  5 */	0,
    104 /*  6 */	0,
    105 /*  7 */	0,
    106 /*  8 */	0,
    107 /*  9 */	ZSWR9_VECTOR_INCL_STAT,
    108 /* 10 */	ZSWR10_NRZ,
    109 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    110 /* 12 */	0,
    111 /* 13 */	0,
    112 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    113 /* 15 */	0
    114 };
    115 
    116 /*
    117  * Define the machine dependant clock frequencies
    118  * If BRgen feeds sender/receiver we always use a
    119  * divisor 16, therefor the division by 16 can as
    120  * well be done here.
    121  */
    122 static u_long zs_freqs_tt[] = {
    123 	/*
    124 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    125 	 * which is set to 307.2KHz during initialisation
    126 	 * and never changed afterwards.
    127 	 */
    128 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    129 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    130 	3672000,	/* RTxCA, from PCLK4		*/
    131 	      0,	/* TRxCA, external		*/
    132 
    133 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    134 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    135 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    136 	2457600		/* TRxCB, from BCLK		*/
    137 };
    138 static u_long zs_freqs_falcon[] = {
    139 	/*
    140 	 * Atari Falcon, XXX no specs available, this might be wrong
    141 	 */
    142 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    143 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    144 	3672000,	/* RTxCA, ???			*/
    145 	      0,	/* TRxCA, external		*/
    146 
    147 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    148 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    149 	3672000,	/* RTxCB, ???			*/
    150 	2457600		/* TRxCB, ???			*/
    151 };
    152 static u_long zs_freqs_generic[] = {
    153 	/*
    154 	 * other machines, assume only PCLK is available
    155 	 */
    156 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    157 	      0,	/* BRgen, RTxCA, divisor 16	*/
    158 	      0,	/* RTxCA, unknown		*/
    159 	      0,	/* TRxCA, unknown		*/
    160 
    161 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    162 	      0,	/* BRgen, RTxCB, divisor 16	*/
    163 	      0,	/* RTxCB, unknown		*/
    164 	      0		/* TRxCB, unknown		*/
    165 };
    166 static u_long *zs_frequencies;
    167 
    168 /* Definition of the driver for autoconfig. */
    169 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    170 static void	zsattach __P((struct device *, struct device *, void *));
    171 struct cfdriver zscd = {
    172 	NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
    173 	sizeof(struct zs_softc), NULL, 0 };
    174 
    175 /* Interrupt handlers. */
    176 int		zshard __P((long));
    177 static int	zssoft __P((long));
    178 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    179 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    180 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    181 
    182 static struct zs_chanstate *zslist;
    183 
    184 /* Routines called from other code. */
    185 static void	zsstart __P((struct tty *));
    186 void		zsstop __P((struct tty *, int));
    187 static int	zsparam __P((struct tty *, struct termios *));
    188 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    189 
    190 /* Routines purely local to this driver. */
    191 static void	zs_reset __P((volatile struct zschan *, int, int));
    192 static int	zs_modem __P((struct zs_chanstate *, int, int));
    193 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    194 
    195 static int zsshortcuts;	/* number of "shortcut" software interrupts */
    196 
    197 static int
    198 zsmatch(pdp, cfp, auxp)
    199 struct device	*pdp;
    200 struct cfdata	*cfp;
    201 void		*auxp;
    202 {
    203 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
    204 		return(0);
    205 	return(1);
    206 }
    207 
    208 /*
    209  * Attach a found zs.
    210  */
    211 static void
    212 zsattach(parent, dev, aux)
    213 struct device	*parent;
    214 struct device	*dev;
    215 void		*aux;
    216 {
    217 	register struct zs_softc		*zi;
    218 	register struct zs_chanstate		*cs;
    219 	register volatile struct zsdevice	*addr;
    220 	register struct tty			*tp;
    221 		 char				tmp;
    222 
    223 	addr      = (struct zsdevice *)AD_SCC;
    224 	zi        = (struct zs_softc *)dev;
    225 	zi->zi_zs = addr;
    226 	cs        = zi->zi_cs;
    227 
    228 	/*
    229 	 * Get the command register into a known state.
    230 	 */
    231 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    232 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    233 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    234 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    235 
    236 	/*
    237 	 * Do a hardware reset.
    238 	 */
    239 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    240 	delay(50000);	/*enough ? */
    241 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    242 
    243 	/*
    244 	 * Initialize both channels
    245 	 */
    246 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    247 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    248 
    249 	if(machineid & ATARI_TT) {
    250 		/*
    251 		 * ininitialise TT-MFP timer C: 307200Hz
    252 		 * timer C and D share one control register:
    253 		 *	bits 0-2 control timer D
    254 		 *	bits 4-6 control timer C
    255 		 */
    256 		int cr = MFP2->mf_tcdcr & 7;
    257 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    258 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    259 		cr |= T_Q004 << 4;		/* divisor 4     */
    260 		MFP2->mf_tcdcr = cr;		/* start timer C */
    261 		/*
    262 		 * enable scc related interrupts
    263 		 */
    264 		SCU->sys_mask |= SCU_SCC;
    265 
    266 		zs_frequencies = zs_freqs_tt;
    267 	} else if (machineid & ATARI_FALCON) {
    268 		zs_frequencies = zs_freqs_falcon;
    269 	} else {
    270 		zs_frequencies = zs_freqs_generic;
    271 	}
    272 
    273 	/* link into interrupt list with order (A,B) (B=A+1) */
    274 	cs[0].cs_next = &cs[1];
    275 	cs[1].cs_next = zslist;
    276 	zslist        = cs;
    277 
    278 	cs->cs_unit  = 0;
    279 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    280 	cs++;
    281 	cs->cs_unit  = 1;
    282 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    283 
    284 	printf(": serial2 on channel a and modem2 on channel b\n");
    285 }
    286 
    287 /*
    288  * Open a zs serial port.
    289  */
    290 int
    291 zsopen(dev, flags, mode, p)
    292 dev_t		dev;
    293 int		flags;
    294 int		mode;
    295 struct proc	*p;
    296 {
    297 	register struct tty		*tp;
    298 	register struct zs_chanstate	*cs;
    299 		 struct zs_softc	*zi;
    300 		 int			unit = ZS_UNIT(dev);
    301 		 int			zs = unit >> 1;
    302 		 int			error, s;
    303 
    304 	if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
    305 		return (ENXIO);
    306 	cs = &zi->zi_cs[unit & 1];
    307 	tp = cs->cs_ttyp;
    308 	if(tp == NULL) {
    309 		cs->cs_ttyp  = tp = ttymalloc();
    310 		tp->t_dev    = dev;
    311 		tp->t_oproc  = zsstart;
    312 		tp->t_param  = zsparam;
    313 	}
    314 
    315 	s  = spltty();
    316 	if((tp->t_state & TS_ISOPEN) == 0) {
    317 		ttychars(tp);
    318 		if(tp->t_ispeed == 0) {
    319 			tp->t_iflag = TTYDEF_IFLAG;
    320 			tp->t_oflag = TTYDEF_OFLAG;
    321 			tp->t_cflag = TTYDEF_CFLAG;
    322 			tp->t_lflag = TTYDEF_LFLAG;
    323 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    324 		}
    325 		(void)zsparam(tp, &tp->t_termios);
    326 		ttsetwater(tp);
    327 	}
    328 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    329 			splx(s);
    330 			return (EBUSY);
    331 	}
    332 	error = 0;
    333 	for(;;) {
    334 		/* loop, turning on the device, until carrier present */
    335 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    336 		if(cs->cs_softcar)
    337 			tp->t_state |= TS_CARR_ON;
    338 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    339 		    tp->t_state & TS_CARR_ON)
    340 			break;
    341 		tp->t_state |= TS_WOPEN;
    342 		if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    343 		    ttopen, 0)) {
    344 			if(!(tp->t_state & TS_ISOPEN)) {
    345 				zs_modem(cs, 0, DMSET);
    346 				tp->t_state &= ~TS_WOPEN;
    347 				ttwakeup(tp);
    348 			}
    349 			splx(s);
    350 			return error;
    351 		}
    352 	}
    353 	splx(s);
    354 	if(error == 0)
    355 		error = linesw[tp->t_line].l_open(dev, tp);
    356 	if(error)
    357 		zs_modem(cs, 0, DMSET);
    358 	return(error);
    359 }
    360 
    361 /*
    362  * Close a zs serial port.
    363  */
    364 int
    365 zsclose(dev, flags, mode, p)
    366 dev_t		dev;
    367 int		flags;
    368 int		mode;
    369 struct proc	*p;
    370 {
    371 	register struct zs_chanstate	*cs;
    372 	register struct tty		*tp;
    373 		 struct zs_softc	*zi;
    374 		 int			unit = ZS_UNIT(dev);
    375 		 int			s;
    376 
    377 	zi = zscd.cd_devs[unit >> 1];
    378 	cs = &zi->zi_cs[unit & 1];
    379 	tp = cs->cs_ttyp;
    380 	linesw[tp->t_line].l_close(tp, flags);
    381 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    382 	    (tp->t_state & TS_ISOPEN) == 0) {
    383 		zs_modem(cs, 0, DMSET);
    384 		/* hold low for 1 second */
    385 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    386 	}
    387 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
    388 		s = splzs();
    389 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    390 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    391 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    392 		splx(s);
    393 	}
    394 	ttyclose(tp);
    395 
    396 	/*
    397 	 * Drop all lines and cancel interrupts
    398 	 */
    399 	zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
    400 	return (0);
    401 }
    402 
    403 /*
    404  * Read/write zs serial port.
    405  */
    406 int
    407 zsread(dev, uio, flags)
    408 dev_t		dev;
    409 struct uio	*uio;
    410 int		flags;
    411 {
    412 	register struct zs_chanstate	*cs;
    413 	register struct zs_softc	*zi;
    414 	register struct tty		*tp;
    415 		 int			unit;
    416 
    417 	unit = ZS_UNIT(dev);
    418 	zi   = zscd.cd_devs[unit >> 1];
    419 	cs   = &zi->zi_cs[unit & 1];
    420 	tp   = cs->cs_ttyp;
    421 
    422 	return(linesw[tp->t_line].l_read(tp, uio, flags));
    423 }
    424 
    425 int
    426 zswrite(dev, uio, flags)
    427 dev_t		dev;
    428 struct uio	*uio;
    429 int		flags;
    430 {
    431 	register struct zs_chanstate	*cs;
    432 	register struct zs_softc	*zi;
    433 	register struct tty		*tp;
    434 		 int			unit;
    435 
    436 	unit = ZS_UNIT(dev);
    437 	zi   = zscd.cd_devs[unit >> 1];
    438 	cs   = &zi->zi_cs[unit & 1];
    439 	tp   = cs->cs_ttyp;
    440 
    441 	return(linesw[tp->t_line].l_write(tp, uio, flags));
    442 }
    443 
    444 struct tty *
    445 zstty(dev)
    446 dev_t	dev;
    447 {
    448 	register struct zs_chanstate	*cs;
    449 	register struct zs_softc	*zi;
    450 		 int			unit;
    451 
    452 	unit = ZS_UNIT(dev);
    453 	zi   = zscd.cd_devs[unit >> 1];
    454 	cs   = &zi->zi_cs[unit & 1];
    455 	return(cs->cs_ttyp);
    456 }
    457 
    458 /*
    459  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    460  * channels are kept in (A,B) pairs.
    461  *
    462  * Do just a little, then get out; set a software interrupt if more
    463  * work is needed.
    464  *
    465  * We deliberately ignore the vectoring Zilog gives us, and match up
    466  * only the number of `reset interrupt under service' operations, not
    467  * the order.
    468  */
    469 int
    470 zshard(sr)
    471 long sr;
    472 {
    473 	register struct zs_chanstate	*a;
    474 #define	b (a + 1)
    475 	register volatile struct zschan *zc;
    476 	register int			rr3, intflags = 0, v, i;
    477 
    478 	for(a = zslist; a != NULL; a = b->cs_next) {
    479 		rr3 = ZS_READ(a->cs_zc, 3);
    480 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    481 			intflags |= 2;
    482 			zc = a->cs_zc;
    483 			i  = a->cs_rbput;
    484 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    485 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    486 				intflags |= 1;
    487 			}
    488 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    489 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    490 				intflags |= 1;
    491 			}
    492 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    493 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    494 				intflags |= 1;
    495 			}
    496 			a->cs_rbput = i;
    497 		}
    498 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    499 			intflags |= 2;
    500 			zc = b->cs_zc;
    501 			i  = b->cs_rbput;
    502 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    503 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    504 				intflags |= 1;
    505 			}
    506 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    507 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    508 				intflags |= 1;
    509 			}
    510 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    511 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    512 				intflags |= 1;
    513 			}
    514 			b->cs_rbput = i;
    515 		}
    516 	}
    517 #undef b
    518 
    519 	if(intflags & 1) {
    520 		if(BASEPRI(sr)) {
    521 			spl1();
    522 			zsshortcuts++;
    523 			return(zssoft(sr));
    524 		}
    525 		else add_sicallback(zssoft, 0, 0);
    526 	}
    527 	return(intflags & 2);
    528 }
    529 
    530 static int
    531 zsrint(cs, zc)
    532 register struct zs_chanstate	*cs;
    533 register volatile struct zschan	*zc;
    534 {
    535 	register int c = zc->zc_data;
    536 
    537 	/* compose receive character and status */
    538 	c <<= 8;
    539 	c |= ZS_READ(zc, 1);
    540 
    541 	/* clear receive error & interrupt condition */
    542 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    543 	zc->zc_csr = ZSWR0_CLR_INTR;
    544 
    545 	return(ZRING_MAKE(ZRING_RINT, c));
    546 }
    547 
    548 static int
    549 zsxint(cs, zc)
    550 register struct zs_chanstate	*cs;
    551 register volatile struct zschan	*zc;
    552 {
    553 	register int i = cs->cs_tbc;
    554 
    555 	if(i == 0) {
    556 		zc->zc_csr = ZSWR0_RESET_TXINT;
    557 		zc->zc_csr = ZSWR0_CLR_INTR;
    558 		return(ZRING_MAKE(ZRING_XINT, 0));
    559 	}
    560 	cs->cs_tbc = i - 1;
    561 	zc->zc_data = *cs->cs_tba++;
    562 	zc->zc_csr = ZSWR0_CLR_INTR;
    563 	return (0);
    564 }
    565 
    566 static int
    567 zssint(cs, zc)
    568 register struct zs_chanstate	*cs;
    569 register volatile struct zschan	*zc;
    570 {
    571 	register int rr0;
    572 
    573 	rr0 = zc->zc_csr;
    574 	zc->zc_csr = ZSWR0_RESET_STATUS;
    575 	zc->zc_csr = ZSWR0_CLR_INTR;
    576 	/*
    577 	 * The chip's hardware flow control is, as noted in zsreg.h,
    578 	 * busted---if the DCD line goes low the chip shuts off the
    579 	 * receiver (!).  If we want hardware CTS flow control but do
    580 	 * not have it, and carrier is now on, turn HFC on; if we have
    581 	 * HFC now but carrier has gone low, turn it off.
    582 	 */
    583 	if(rr0 & ZSRR0_DCD) {
    584 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    585 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    586 			cs->cs_creg[3] |= ZSWR3_HFC;
    587 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    588 		}
    589 	}
    590 	else {
    591 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    592 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    593 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    594 		}
    595 	}
    596 	return(ZRING_MAKE(ZRING_SINT, rr0));
    597 }
    598 
    599 /*
    600  * Print out a ring or fifo overrun error message.
    601  */
    602 static void
    603 zsoverrun(unit, ptime, what)
    604 int	unit;
    605 long	*ptime;
    606 char	*what;
    607 {
    608 
    609 	if(*ptime != time.tv_sec) {
    610 		*ptime = time.tv_sec;
    611 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    612 		    (unit & 1) + 'a', what);
    613 	}
    614 }
    615 
    616 /*
    617  * ZS software interrupt.  Scan all channels for deferred interrupts.
    618  */
    619 int
    620 zssoft(sr)
    621 long sr;
    622 {
    623     register struct zs_chanstate	*cs;
    624     register volatile struct zschan	*zc;
    625     register struct linesw		*line;
    626     register struct tty			*tp;
    627     register int			get, n, c, cc, unit, s;
    628  	     int			retval = 0;
    629 
    630     s = spltty();
    631     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    632 	get = cs->cs_rbget;
    633 again:
    634 	n = cs->cs_rbput;	/* atomic			*/
    635 	if(get == n)		/* nothing more on this line	*/
    636 		continue;
    637 	retval = 1;
    638 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    639 	zc     = cs->cs_zc;
    640 	tp     = cs->cs_ttyp;
    641 	line   = &linesw[tp->t_line];
    642 	/*
    643 	 * Compute the number of interrupts in the receive ring.
    644 	 * If the count is overlarge, we lost some events, and
    645 	 * must advance to the first valid one.  It may get
    646 	 * overwritten if more data are arriving, but this is
    647 	 * too expensive to check and gains nothing (we already
    648 	 * lost out; all we can do at this point is trade one
    649 	 * kind of loss for another).
    650 	 */
    651 	n -= get;
    652 	if(n > ZLRB_RING_SIZE) {
    653 		zsoverrun(unit, &cs->cs_rotime, "ring");
    654 		get += n - ZLRB_RING_SIZE;
    655 		n    = ZLRB_RING_SIZE;
    656 	}
    657 	while(--n >= 0) {
    658 		/* race to keep ahead of incoming interrupts */
    659 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    660 		switch (ZRING_TYPE(c)) {
    661 
    662 		case ZRING_RINT:
    663 			c = ZRING_VALUE(c);
    664 			if(c & ZSRR1_DO)
    665 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    666 			cc = c >> 8;
    667 			if(c & ZSRR1_FE)
    668 				cc |= TTY_FE;
    669 			if(c & ZSRR1_PE)
    670 				cc |= TTY_PE;
    671 			line->l_rint(cc, tp);
    672 			break;
    673 
    674 		case ZRING_XINT:
    675 			/*
    676 			 * Transmit done: change registers and resume,
    677 			 * or clear BUSY.
    678 			 */
    679 			if(cs->cs_heldchange) {
    680 				int sps;
    681 
    682 				sps = splzs();
    683 				c = zc->zc_csr;
    684 				if((c & ZSRR0_DCD) == 0)
    685 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    686 				bcopy((caddr_t)cs->cs_preg,
    687 				    (caddr_t)cs->cs_creg, 16);
    688 				zs_loadchannelregs(zc, cs->cs_creg);
    689 				splx(sps);
    690 				cs->cs_heldchange = 0;
    691 				if(cs->cs_heldtbc
    692 					&& (tp->t_state & TS_TTSTOP) == 0) {
    693 					cs->cs_tbc = cs->cs_heldtbc - 1;
    694 					zc->zc_data = *cs->cs_tba++;
    695 					goto again;
    696 				}
    697 			}
    698 			tp->t_state &= ~TS_BUSY;
    699 			if(tp->t_state & TS_FLUSH)
    700 				tp->t_state &= ~TS_FLUSH;
    701 			else ndflush(&tp->t_outq,cs->cs_tba
    702 						- (caddr_t)tp->t_outq.c_cf);
    703 			line->l_start(tp);
    704 			break;
    705 
    706 		case ZRING_SINT:
    707 			/*
    708 			 * Status line change.  HFC bit is run in
    709 			 * hardware interrupt, to avoid locking
    710 			 * at splzs here.
    711 			 */
    712 			c = ZRING_VALUE(c);
    713 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    714 				cc = (c & ZSRR0_DCD) != 0;
    715 				if(line->l_modem(tp, cc) == 0)
    716 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    717 							cc ? DMBIS : DMBIC);
    718 			}
    719 			cs->cs_rr0 = c;
    720 			break;
    721 
    722 		default:
    723 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    724 			    unit >> 1, (unit & 1) + 'a', c);
    725 			break;
    726 		}
    727 	}
    728 	cs->cs_rbget = get;
    729 	goto again;
    730     }
    731     splx(s);
    732     return (retval);
    733 }
    734 
    735 int
    736 zsioctl(dev, cmd, data, flag, p)
    737 dev_t		dev;
    738 u_long		cmd;
    739 caddr_t		data;
    740 int		flag;
    741 struct proc	*p;
    742 {
    743 		 int			unit = ZS_UNIT(dev);
    744 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    745 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    746 	register int			error, s;
    747 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    748 
    749 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
    750 	if(error >= 0)
    751 		return(error);
    752 	error = ttioctl(tp, cmd, data, flag, p);
    753 	if(error >= 0)
    754 		return (error);
    755 
    756 	switch (cmd) {
    757 	case TIOCSBRK:
    758 		s = splzs();
    759 		cs->cs_preg[5] |= ZSWR5_BREAK;
    760 		cs->cs_creg[5] |= ZSWR5_BREAK;
    761 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    762 		splx(s);
    763 		break;
    764 	case TIOCCBRK:
    765 		s = splzs();
    766 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    767 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    768 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    769 		splx(s);
    770 		break;
    771 	case TIOCGFLAGS: {
    772 		int bits = 0;
    773 
    774 		if(cs->cs_softcar)
    775 			bits |= TIOCFLAG_SOFTCAR;
    776 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    777 			bits |= TIOCFLAG_CLOCAL;
    778 		if(cs->cs_creg[3] & ZSWR3_HFC)
    779 			bits |= TIOCFLAG_CRTSCTS;
    780 		*(int *)data = bits;
    781 		break;
    782 	}
    783 	case TIOCSFLAGS: {
    784 		int userbits, driverbits = 0;
    785 
    786 		error = suser(p->p_ucred, &p->p_acflag);
    787 		if(error != 0)
    788 			return (EPERM);
    789 
    790 		userbits = *(int *)data;
    791 
    792 		/*
    793 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    794 		 # defaulting to software flow control.
    795 		 */
    796 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    797 			return(EINVAL);
    798 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    799 			return(ENXIO);
    800 
    801 		s = splzs();
    802 		if((userbits & TIOCFLAG_SOFTCAR)) {
    803 			cs->cs_softcar = 1;	/* turn on softcar */
    804 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    805 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    806 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    807 		}
    808 		else if(userbits & TIOCFLAG_CLOCAL) {
    809 			cs->cs_softcar = 0; 	/* turn off softcar */
    810 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    811 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    812 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    813 			tp->t_termios.c_cflag |= CLOCAL;
    814 		}
    815 		if(userbits & TIOCFLAG_CRTSCTS) {
    816 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    817 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    818 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    819 			cs->cs_preg[3] |= ZSWR3_HFC;
    820 			cs->cs_creg[3] |= ZSWR3_HFC;
    821 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    822 			tp->t_termios.c_cflag |= CRTSCTS;
    823 		}
    824 		else {
    825 			/* no mdmbuf, so we must want software flow control */
    826 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    827 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    828 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    829 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    830 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    831 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    832 			tp->t_termios.c_cflag &= ~CRTSCTS;
    833 		}
    834 		splx(s);
    835 		break;
    836 	}
    837 	case TIOCSDTR:
    838 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    839 		break;
    840 	case TIOCCDTR:
    841 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    842 		break;
    843 	case TIOCMGET:
    844 		zs_modem(cs, 0, DMGET);
    845 		break;
    846 	case TIOCMSET:
    847 	case TIOCMBIS:
    848 	case TIOCMBIC:
    849 	default:
    850 		return (ENOTTY);
    851 	}
    852 	return (0);
    853 }
    854 
    855 /*
    856  * Start or restart transmission.
    857  */
    858 static void
    859 zsstart(tp)
    860 register struct tty *tp;
    861 {
    862 	register struct zs_chanstate	*cs;
    863 	register int			s, nch;
    864 		 int			unit = ZS_UNIT(tp->t_dev);
    865 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    866 
    867 	cs = &zi->zi_cs[unit & 1];
    868 	s  = spltty();
    869 
    870 	/*
    871 	 * If currently active or delaying, no need to do anything.
    872 	 */
    873 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    874 		goto out;
    875 
    876 	/*
    877 	 * If there are sleepers, and output has drained below low
    878 	 * water mark, awaken.
    879 	 */
    880 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    881 		if(tp->t_state & TS_ASLEEP) {
    882 			tp->t_state &= ~TS_ASLEEP;
    883 			wakeup((caddr_t)&tp->t_outq);
    884 		}
    885 		selwakeup(&tp->t_wsel);
    886 	}
    887 
    888 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    889 	if(nch) {
    890 		register char *p = tp->t_outq.c_cf;
    891 
    892 		/* mark busy, enable tx done interrupts, & send first byte */
    893 		tp->t_state |= TS_BUSY;
    894 		(void) splzs();
    895 		cs->cs_preg[1] |= ZSWR1_TIE;
    896 		cs->cs_creg[1] |= ZSWR1_TIE;
    897 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    898 		cs->cs_zc->zc_data = *p;
    899 		cs->cs_tba = p + 1;
    900 		cs->cs_tbc = nch - 1;
    901 	} else {
    902 		/*
    903 		 * Nothing to send, turn off transmit done interrupts.
    904 		 * This is useful if something is doing polled output.
    905 		 */
    906 		(void) splzs();
    907 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    908 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    909 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    910 	}
    911 out:
    912 	splx(s);
    913 }
    914 
    915 /*
    916  * Stop output, e.g., for ^S or output flush.
    917  */
    918 void
    919 zsstop(tp, flag)
    920 register struct tty	*tp;
    921 	 int		flag;
    922 {
    923 	register struct zs_chanstate	*cs;
    924 	register int			s, unit = ZS_UNIT(tp->t_dev);
    925 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    926 
    927 	cs = &zi->zi_cs[unit & 1];
    928 	s  = splzs();
    929 	if(tp->t_state & TS_BUSY) {
    930 		/*
    931 		 * Device is transmitting; must stop it.
    932 		 */
    933 		cs->cs_tbc = 0;
    934 		if ((tp->t_state & TS_TTSTOP) == 0)
    935 			tp->t_state |= TS_FLUSH;
    936 	}
    937 	splx(s);
    938 }
    939 
    940 /*
    941  * Set ZS tty parameters from termios.
    942  *
    943  * This routine makes use of the fact that only registers
    944  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
    945  */
    946 static int
    947 zsparam(tp, t)
    948 register struct tty	*tp;
    949 register struct termios	*t;
    950 {
    951 		 int			unit = ZS_UNIT(tp->t_dev);
    952 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    953 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    954 		 int			cdiv, clkm, brgm, tcon;
    955 	register int			tmp, tmp5, cflag, s;
    956 
    957 	tmp  = t->c_ospeed;
    958 	tmp5 = t->c_ispeed;
    959 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
    960 		return(EINVAL);
    961 	if(tmp == 0) {
    962 		/* stty 0 => drop DTR and RTS */
    963 		zs_modem(cs, 0, DMSET);
    964 		return(0);
    965 	}
    966 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
    967 	if (tmp < 0)
    968 		return(EINVAL);
    969 	tp->t_ispeed = tp->t_ospeed = tmp;
    970 
    971 	cflag = tp->t_cflag = t->c_cflag;
    972 	if (cflag & CSTOPB)
    973 		cdiv |= ZSWR4_TWOSB;
    974 	else
    975 		cdiv |= ZSWR4_ONESB;
    976 	if (!(cflag & PARODD))
    977 		cdiv |= ZSWR4_EVENP;
    978 	if (cflag & PARENB)
    979 		cdiv |= ZSWR4_PARENB;
    980 
    981 	switch(cflag & CSIZE) {
    982 	case CS5:
    983 		tmp  = ZSWR3_RX_5;
    984 		tmp5 = ZSWR5_TX_5;
    985 		break;
    986 	case CS6:
    987 		tmp  = ZSWR3_RX_6;
    988 		tmp5 = ZSWR5_TX_6;
    989 		break;
    990 	case CS7:
    991 		tmp  = ZSWR3_RX_7;
    992 		tmp5 = ZSWR5_TX_7;
    993 		break;
    994 	case CS8:
    995 	default:
    996 		tmp  = ZSWR3_RX_8;
    997 		tmp5 = ZSWR5_TX_8;
    998 		break;
    999 	}
   1000 	tmp  |= ZSWR3_RX_ENABLE;
   1001 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1002 
   1003 	/*
   1004 	 * Block interrupts so that state will not
   1005 	 * be altered until we are done setting it up.
   1006 	 */
   1007 	s = splzs();
   1008 	cs->cs_preg[4]  = cdiv;
   1009 	cs->cs_preg[11] = clkm;
   1010 	cs->cs_preg[12] = tcon;
   1011 	cs->cs_preg[13] = tcon >> 8;
   1012 	cs->cs_preg[14] = brgm;
   1013 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1014 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1015 	cs->cs_preg[10] = ZSWR10_NRZ;
   1016 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1017 
   1018 	/*
   1019 	 * Output hardware flow control on the chip is horrendous: if
   1020 	 * carrier detect drops, the receiver is disabled.  Hence we
   1021 	 * can only do this when the carrier is on.
   1022 	 */
   1023 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1024 		tmp |= ZSWR3_HFC;
   1025 	cs->cs_preg[3] = tmp;
   1026 	cs->cs_preg[5] = tmp5;
   1027 
   1028 	/*
   1029 	 * If nothing is being transmitted, set up new current values,
   1030 	 * else mark them as pending.
   1031 	 */
   1032 	if(cs->cs_heldchange == 0) {
   1033 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1034 			cs->cs_heldtbc = cs->cs_tbc;
   1035 			cs->cs_tbc = 0;
   1036 			cs->cs_heldchange = 1;
   1037 		} else {
   1038 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1039 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1040 		}
   1041 	}
   1042 	splx(s);
   1043 	return (0);
   1044 }
   1045 
   1046 /*
   1047  * search for the best matching baudrate
   1048  */
   1049 static int
   1050 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1051 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1052 {
   1053 	int	bestdiff, bestbps, source;
   1054 
   1055 	unit = (unit & 1) << 2;
   1056 	for (source = 0; source < 4; ++source) {
   1057 		long	freq = zs_frequencies[unit + source];
   1058 		int	diff, bps, div, clkm, brgm, tcon;
   1059 		switch (source) {
   1060 			case 0:	/* BRgen, PCLK */
   1061 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1062 				break;
   1063 			case 1:	/* BRgen, RTxC */
   1064 				brgm = ZSWR14_BAUD_ENA;
   1065 				break;
   1066 			case 2: /* RTxC */
   1067 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1068 				break;
   1069 			case 3: /* TRxC */
   1070 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1071 				break;
   1072 		}
   1073 		switch (source) {
   1074 			case 0:
   1075 			case 1:
   1076 				div  = ZSWR4_CLK_X16;
   1077 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1078 				tcon = BPS_TO_TCONST(freq, wanted);
   1079 				if (tcon < 0)
   1080 					tcon = 0;
   1081 				bps  = TCONST_TO_BPS(freq, tcon);
   1082 				break;
   1083 			case 2:
   1084 			case 3:
   1085 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1086 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1087 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1088 
   1089 				if (d1 < d2 && d1 < d3) {
   1090 					div = ZSWR4_CLK_X16;
   1091 					bps = b1;
   1092 				} else if (d2 < d3 && d2 < d1) {
   1093 					div = ZSWR4_CLK_X32;
   1094 					bps = b2;
   1095 				} else {
   1096 					div = ZSWR4_CLK_X64;
   1097 					bps = b3;
   1098 				}
   1099 				brgm = tcon = 0;
   1100 				break;
   1101 			}
   1102 		}
   1103 		diff = abs(bps - wanted);
   1104 		if (!source || diff < bestdiff) {
   1105 			*divisor   = div;
   1106 			*clockmode = clkm;
   1107 			*brgenmode = brgm;
   1108 			*timeconst = tcon;
   1109 			bestbps    = bps;
   1110 			bestdiff   = diff;
   1111 			if (diff == 0)
   1112 				break;
   1113 		}
   1114 	}
   1115 	/* Allow deviations upto 5% */
   1116 	if (20 * bestdiff > wanted)
   1117 		return -1;
   1118 	return bestbps;
   1119 }
   1120 
   1121 /*
   1122  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1123  * in transmission, the change is deferred.
   1124  */
   1125 static int
   1126 zs_modem(cs, bits, how)
   1127 struct zs_chanstate	*cs;
   1128 int			bits, how;
   1129 {
   1130 	int s, mbits;
   1131 
   1132 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1133 
   1134 	s = splzs();
   1135 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1136 
   1137 	switch(how) {
   1138 		case DMSET:
   1139 				mbits  = bits;
   1140 				break;
   1141 		case DMBIS:
   1142 				mbits |= bits;
   1143 				break;
   1144 		case DMBIC:
   1145 				mbits &= ~bits;
   1146 				break;
   1147 		case DMGET:
   1148 				splx(s);
   1149 				return(mbits);
   1150 	}
   1151 
   1152 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1153 	if(cs->cs_heldchange == 0) {
   1154 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1155 			cs->cs_heldtbc = cs->cs_tbc;
   1156 			cs->cs_tbc = 0;
   1157 			cs->cs_heldchange = 1;
   1158 		}
   1159 		else {
   1160 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1161 		}
   1162 	}
   1163 	splx(s);
   1164 	return(0);
   1165 }
   1166 
   1167 /*
   1168  * Write the given register set to the given zs channel in the proper order.
   1169  * The channel must not be transmitting at the time.  The receiver will
   1170  * be disabled for the time it takes to write all the registers.
   1171  */
   1172 static void
   1173 zs_loadchannelregs(zc, reg)
   1174 volatile struct zschan	*zc;
   1175 u_char			*reg;
   1176 {
   1177 	int i;
   1178 
   1179 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1180 	i = zc->zc_data;		/* drain fifo */
   1181 	i = zc->zc_data;
   1182 	i = zc->zc_data;
   1183 	ZS_WRITE(zc,  4, reg[4]);
   1184 	ZS_WRITE(zc, 10, reg[10]);
   1185 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1186 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1187 	ZS_WRITE(zc,  1, reg[1]);
   1188 	ZS_WRITE(zc,  9, reg[9]);
   1189 	ZS_WRITE(zc, 11, reg[11]);
   1190 	ZS_WRITE(zc, 12, reg[12]);
   1191 	ZS_WRITE(zc, 13, reg[13]);
   1192 	ZS_WRITE(zc, 14, reg[14]);
   1193 	ZS_WRITE(zc, 15, reg[15]);
   1194 	ZS_WRITE(zc,  3, reg[3]);
   1195 	ZS_WRITE(zc,  5, reg[5]);
   1196 }
   1197 #endif /* NZS > 1 */
   1198