zs.c revision 1.74 1 /* $NetBSD: zs.c,v 1.74 2011/06/30 20:09:21 wiz Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 */
43
44 /*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
61 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73 /*
74 * Zilog Z8530 (ZSCC) driver.
75 *
76 * Runs two tty ports (modem2 and serial2) on zs0.
77 *
78 * This driver knows far too much about chip to usage mappings.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.74 2011/06/30 20:09:21 wiz Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/proc.h>
87 #include <sys/device.h>
88 #include <sys/conf.h>
89 #include <sys/file.h>
90 #include <sys/ioctl.h>
91 #include <sys/malloc.h>
92 #include <sys/tty.h>
93 #include <sys/time.h>
94 #include <sys/kernel.h>
95 #include <sys/syslog.h>
96 #include <sys/kauth.h>
97
98 #include <machine/cpu.h>
99 #include <machine/iomap.h>
100 #include <machine/scu.h>
101 #include <machine/mfp.h>
102 #include <atari/dev/ym2149reg.h>
103
104 #include <dev/ic/z8530reg.h>
105 #include <atari/dev/zsvar.h>
106
107 #include "ioconf.h"
108
109 #include "zs.h"
110 #if NZS > 1
111 #error "This driver supports only 1 85C30!"
112 #endif
113
114 #if NZS > 0
115
116 #define PCLK (8053976) /* PCLK pin input clock rate */
117 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
118
119 #define splzs spl5
120
121 /*
122 * Software state per found chip.
123 */
124 struct zs_softc {
125 device_t sc_dev; /* base device */
126 struct zs_chanstate *sc_cs[2]; /* chan A and B software state */
127
128 struct zs_chanstate sc_cs_store[2];
129 void *sc_sicookie; /* for callback */
130 };
131
132 /*
133 * Define the registers for a closed port
134 */
135 static uint8_t zs_init_regs[16] = {
136 /* 0 */ 0,
137 /* 1 */ 0,
138 /* 2 */ 0x60,
139 /* 3 */ 0,
140 /* 4 */ 0,
141 /* 5 */ 0,
142 /* 6 */ 0,
143 /* 7 */ 0,
144 /* 8 */ 0,
145 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
146 /* 10 */ ZSWR10_NRZ,
147 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
148 /* 12 */ 0,
149 /* 13 */ 0,
150 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
151 /* 15 */ 0
152 };
153
154 /*
155 * Define the machine dependent clock frequencies
156 * If BRgen feeds sender/receiver we always use a
157 * divisor 16, therefor the division by 16 can as
158 * well be done here.
159 */
160 static const u_long zs_freqs_tt[] = {
161 /*
162 * Atari TT, RTxCB is generated by TT-MFP timer C,
163 * which is set to 307.2 kHz during initialisation
164 * and never changed afterwards.
165 */
166 PCLK/16, /* BRgen, PCLK, divisor 16 */
167 229500, /* BRgen, RTxCA, divisor 16 */
168 3672000, /* RTxCA, from PCLK4 */
169 0, /* TRxCA, external */
170
171 PCLK/16, /* BRgen, PCLK, divisor 16 */
172 19200, /* BRgen, RTxCB, divisor 16 */
173 307200, /* RTxCB, from TT-MFP TCO */
174 2457600 /* TRxCB, from BCLK */
175 };
176
177 static const u_long zs_freqs_falcon[] = {
178 /*
179 * Atari Falcon, XXX no specs available, this might be wrong
180 */
181 PCLK/16, /* BRgen, PCLK, divisor 16 */
182 229500, /* BRgen, RTxCA, divisor 16 */
183 3672000, /* RTxCA, ??? */
184 0, /* TRxCA, external */
185
186 PCLK/16, /* BRgen, PCLK, divisor 16 */
187 229500, /* BRgen, RTxCB, divisor 16 */
188 3672000, /* RTxCB, ??? */
189 2457600 /* TRxCB, ??? */
190 };
191
192 static const u_long zs_freqs_hades[] = {
193 /*
194 * XXX: Channel-A unchecked!!!!!
195 */
196 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
197 229500, /* BRgen, RTxCA, divisor 16 */
198 3672000, /* RTxCA, from PCLK4 */
199 0, /* TRxCA, external */
200
201 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
202 235550, /* BRgen, RTxCB, divisor 16 */
203 3768800, /* RTxCB, 3.7688MHz */
204 3768800 /* TRxCB, 3.7688MHz */
205 };
206
207 static const u_long zs_freqs_generic[] = {
208 /*
209 * other machines, assume only PCLK is available
210 */
211 PCLK/16, /* BRgen, PCLK, divisor 16 */
212 0, /* BRgen, RTxCA, divisor 16 */
213 0, /* RTxCA, unknown */
214 0, /* TRxCA, unknown */
215
216 PCLK/16, /* BRgen, PCLK, divisor 16 */
217 0, /* BRgen, RTxCB, divisor 16 */
218 0, /* RTxCB, unknown */
219 0 /* TRxCB, unknown */
220 };
221 static const u_long *zs_frequencies;
222
223 /* Definition of the driver for autoconfig. */
224 static int zsmatch(device_t, cfdata_t, void *);
225 static void zsattach(device_t, device_t, void *);
226
227 CFATTACH_DECL_NEW(zs, sizeof(struct zs_softc),
228 zsmatch, zsattach, NULL, NULL);
229
230 /* {b,c}devsw[] function prototypes */
231 dev_type_open(zsopen);
232 dev_type_close(zsclose);
233 dev_type_read(zsread);
234 dev_type_write(zswrite);
235 dev_type_ioctl(zsioctl);
236 dev_type_stop(zsstop);
237 dev_type_tty(zstty);
238 dev_type_poll(zspoll);
239
240 const struct cdevsw zs_cdevsw = {
241 zsopen, zsclose, zsread, zswrite, zsioctl,
242 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
243 };
244
245 /* Interrupt handlers. */
246 static int zshard(void *);
247 static int zssoft(void *);
248 static int zsrint(struct zs_chanstate *, struct zschan *);
249 static int zsxint(struct zs_chanstate *, struct zschan *);
250 static int zssint(struct zs_chanstate *, struct zschan *);
251
252 /* Routines called from other code. */
253 static void zsstart(struct tty *);
254
255 /* Routines purely local to this driver. */
256 static void zsoverrun(int, long *, const char *);
257 static int zsparam(struct tty *, struct termios *);
258 static int zsbaudrate(int, int, int *, int *, int *, int *);
259 static int zs_modem(struct zs_chanstate *, int, int);
260 static void zs_loadchannelregs(struct zschan *, uint8_t *);
261 static void zs_shutdown(struct zs_chanstate *);
262
263 static int
264 zsmatch(device_t parent, cfdata_t cf, void *aux)
265 {
266 static int zs_matched = 0;
267
268 if (strcmp("zs", aux) || zs_matched)
269 return 0;
270 zs_matched = 1;
271 return 1;
272 }
273
274 /*
275 * Attach a found zs.
276 */
277 static void
278 zsattach(device_t parent, device_t self, void *aux)
279 {
280 struct zs_softc *sc;
281 struct zsdevice *zs;
282 struct zschan *zc;
283 struct zs_chanstate *cs;
284 int channel;
285
286 sc = device_private(self);
287 sc->sc_dev = self;
288
289 printf(": serial2 on channel a and modem2 on channel b\n");
290
291 zs = (struct zsdevice *)AD_SCC;
292
293 for (channel = 0; channel < 2; channel++) {
294 cs = &sc->sc_cs_store[channel];
295 sc->sc_cs[channel] = cs;
296
297 cs->cs_unit = channel;
298 cs->cs_zc = zc =
299 (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;
300 /*
301 * Get the command register into a known state.
302 */
303 (void)zc->zc_csr;
304 (void)zc->zc_csr;
305
306 /*
307 * Do a hardware reset.
308 */
309 if (channel == 0) {
310 ZS_WRITE(zc, 9, ZSWR9_HARD_RESET);
311 delay(50000); /* enough ? */
312 ZS_WRITE(zc, 9, 0);
313 }
314
315 /*
316 * Initialize channel
317 */
318 zs_loadchannelregs(zc, zs_init_regs);
319 }
320
321 if (machineid & ATARI_TT) {
322 /*
323 * ininitialise TT-MFP timer C: 307200Hz
324 * timer C and D share one control register:
325 * bits 0-2 control timer D
326 * bits 4-6 control timer C
327 */
328 int cr = MFP2->mf_tcdcr & 7;
329 MFP2->mf_tcdcr = cr; /* stop timer C */
330 MFP2->mf_tcdr = 1; /* counter 1 */
331 cr |= T_Q004 << 4; /* divisor 4 */
332 MFP2->mf_tcdcr = cr; /* start timer C */
333 /*
334 * enable scc related interrupts
335 */
336 SCU->vme_mask |= SCU_SCC;
337
338 zs_frequencies = zs_freqs_tt;
339 } else if (machineid & ATARI_FALCON) {
340 zs_frequencies = zs_freqs_falcon;
341 } else if (machineid & ATARI_HADES) {
342 zs_frequencies = zs_freqs_hades;
343 } else {
344 zs_frequencies = zs_freqs_generic;
345 }
346
347 if (intr_establish(36, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
348 aprint_error_dev(self,
349 "Can't establish interrupt (Rx chan B)\n");
350 if (intr_establish(32, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
351 aprint_error_dev(self,
352 "Can't establish interrupt (Tx empty chan B)\n");
353 if (intr_establish(34, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
354 aprint_error_dev(self,
355 "Can't establish interrupt (Ext./Status chan B)\n");
356 if (intr_establish(38, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
357 aprint_error_dev(self,
358 "Can't establish interrupt (Special Rx cond. chan B)\n");
359 if (intr_establish(44, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
360 aprint_error_dev(self,
361 "Can't establish interrupt (Rx chan A)\n");
362 if (intr_establish(40, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
363 aprint_error_dev(self,
364 "Can't establish interrupt (Tx empty chan A)\n");
365 if (intr_establish(42, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
366 aprint_error_dev(self,
367 "Can't establish interrupt (Ext./Status chan A)\n");
368 if (intr_establish(46, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
369 aprint_error_dev(self,
370 "Can't establish interrupt (Special Rx cond. chan A)\n");
371
372 sc->sc_sicookie = softint_establish(SOFTINT_SERIAL,
373 (void (*)(void *))zssoft, sc);
374 }
375
376 /*
377 * Open a zs serial port.
378 */
379 int
380 zsopen(dev_t dev, int flags, int mode, struct lwp *l)
381 {
382 struct tty *tp;
383 struct zs_chanstate *cs;
384 struct zs_softc *sc;
385 int unit = ZS_UNIT(dev);
386 int zs = unit >> 1;
387 int error, s;
388
389 sc = device_lookup_private(&zs_cd, zs);
390 if (sc == NULL)
391 return ENXIO;
392 cs = sc->sc_cs[unit & 1];
393
394 /*
395 * When port A (ser02) is selected on the TT, make sure
396 * the port is enabled.
397 */
398 if ((machineid & ATARI_TT) && !(unit & 1))
399 ym2149_ser2(1);
400
401 if (cs->cs_rbuf == NULL) {
402 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
403 M_WAITOK);
404 }
405
406 tp = cs->cs_ttyp;
407 if (tp == NULL) {
408 cs->cs_ttyp = tp = tty_alloc();
409 tty_attach(tp);
410 tp->t_dev = dev;
411 tp->t_oproc = zsstart;
412 tp->t_param = zsparam;
413 }
414
415 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
416 return EBUSY;
417
418 s = spltty();
419
420 /*
421 * Do the following iff this is a first open.
422 */
423 if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
424 if (tp->t_ispeed == 0) {
425 tp->t_iflag = TTYDEF_IFLAG;
426 tp->t_oflag = TTYDEF_OFLAG;
427 tp->t_cflag = TTYDEF_CFLAG;
428 tp->t_lflag = TTYDEF_LFLAG;
429 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
430 }
431 ttychars(tp);
432 ttsetwater(tp);
433
434 (void)zsparam(tp, &tp->t_termios);
435
436 /*
437 * Turn on DTR. We must always do this, even if carrier is not
438 * present, because otherwise we'd have to use TIOCSDTR
439 * immediately after setting CLOCAL, which applications do not
440 * expect. We always assert DTR while the device is open
441 * unless explicitly requested to deassert it.
442 */
443 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
444 /* May never get a status intr. if DCD already on. -gwr */
445 if (((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD) != 0)
446 tp->t_state |= TS_CARR_ON;
447 if (cs->cs_softcar)
448 tp->t_state |= TS_CARR_ON;
449 }
450
451 splx(s);
452
453 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
454 if (error)
455 goto bad;
456
457 error = tp->t_linesw->l_open(dev, tp);
458 if (error)
459 goto bad;
460 return 0;
461
462 bad:
463 if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
464 /*
465 * We failed to open the device, and nobody else had it opened.
466 * Clean up the state as appropriate.
467 */
468 zs_shutdown(cs);
469 }
470 return error;
471 }
472
473 /*
474 * Close a zs serial port.
475 */
476 int
477 zsclose(dev_t dev, int flags, int mode, struct lwp *l)
478 {
479 struct zs_chanstate *cs;
480 struct tty *tp;
481 struct zs_softc *sc;
482 int unit = ZS_UNIT(dev);
483
484 sc = device_lookup_private(&zs_cd, unit >> 1);
485 cs = sc->sc_cs[unit & 1];
486 tp = cs->cs_ttyp;
487
488 tp->t_linesw->l_close(tp, flags);
489 ttyclose(tp);
490
491 if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
492 /*
493 * Although we got a last close, the device may still be in
494 * use; e.g. if this was the dialout node, and there are still
495 * processes waiting for carrier on the non-dialout node.
496 */
497 zs_shutdown(cs);
498 }
499 return 0;
500 }
501
502 /*
503 * Read/write zs serial port.
504 */
505 int
506 zsread(dev_t dev, struct uio *uio, int flags)
507 {
508 struct zs_chanstate *cs;
509 struct zs_softc *sc;
510 struct tty *tp;
511 int unit;
512
513 unit = ZS_UNIT(dev);
514 sc = device_lookup_private(&zs_cd, unit >> 1);
515 cs = sc->sc_cs[unit & 1];
516 tp = cs->cs_ttyp;
517
518 return (*tp->t_linesw->l_read)(tp, uio, flags);
519 }
520
521 int
522 zswrite(dev_t dev, struct uio *uio, int flags)
523 {
524 struct zs_chanstate *cs;
525 struct zs_softc *sc;
526 struct tty *tp;
527 int unit;
528
529 unit = ZS_UNIT(dev);
530 sc = device_lookup_private(&zs_cd, unit >> 1);
531 cs = sc->sc_cs[unit & 1];
532 tp = cs->cs_ttyp;
533
534 return (*tp->t_linesw->l_write)(tp, uio, flags);
535 }
536
537 int
538 zspoll(dev_t dev, int events, struct lwp *l)
539 {
540 struct zs_chanstate *cs;
541 struct zs_softc *sc;
542 struct tty *tp;
543 int unit;
544
545 unit = ZS_UNIT(dev);
546 sc = device_lookup_private(&zs_cd, unit >> 1);
547 cs = sc->sc_cs[unit & 1];
548 tp = cs->cs_ttyp;
549
550 return (*tp->t_linesw->l_poll)(tp, events, l);
551 }
552
553 struct tty *
554 zstty(dev_t dev)
555 {
556 struct zs_chanstate *cs;
557 struct zs_softc *sc;
558 int unit;
559
560 unit = ZS_UNIT(dev);
561 sc = device_lookup_private(&zs_cd, unit >> 1);
562 cs = sc->sc_cs[unit & 1];
563 return cs->cs_ttyp;
564 }
565
566 /*
567 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
568 * channels are kept in (A,B) pairs.
569 *
570 * Do just a little, then get out; set a software interrupt if more
571 * work is needed.
572 *
573 * We deliberately ignore the vectoring Zilog gives us, and match up
574 * only the number of `reset interrupt under service' operations, not
575 * the order.
576 */
577
578 int
579 zshard(void *arg)
580 {
581 struct zs_softc *sc;
582 struct zs_chanstate *cs0, *cs1;
583 struct zschan *zc;
584 int intflags, v, i;
585 uint8_t rr3;
586
587 sc = arg;
588 intflags = 0;
589 cs0 = sc->sc_cs[0];
590 cs1 = sc->sc_cs[1];
591
592 do {
593 intflags &= ~4;
594 rr3 = ZS_READ(cs0->cs_zc, 3);
595 if (rr3 & (ZSRR3_IP_A_RX | ZSRR3_IP_A_TX | ZSRR3_IP_A_STAT)) {
596 intflags |= 4 | 2;
597 zc = cs0->cs_zc;
598 i = cs0->cs_rbput;
599 if ((rr3 & ZSRR3_IP_A_RX) != 0 &&
600 (v = zsrint(cs0, zc)) != 0) {
601 cs0->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
602 intflags |= 1;
603 }
604 if ((rr3 & ZSRR3_IP_A_TX) != 0 &&
605 (v = zsxint(cs0, zc)) != 0) {
606 cs0->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
607 intflags |= 1;
608 }
609 if ((rr3 & ZSRR3_IP_A_STAT) != 0 &&
610 (v = zssint(cs0, zc)) != 0) {
611 cs0->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
612 intflags |= 1;
613 }
614 cs0->cs_rbput = i;
615 }
616 if (rr3 & (ZSRR3_IP_B_RX | ZSRR3_IP_B_TX | ZSRR3_IP_B_STAT)) {
617 intflags |= 4 | 2;
618 zc = cs1->cs_zc;
619 i = cs1->cs_rbput;
620 if ((rr3 & ZSRR3_IP_B_RX) != 0 &&
621 (v = zsrint(cs1, zc)) != 0) {
622 cs1->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
623 intflags |= 1;
624 }
625 if ((rr3 & ZSRR3_IP_B_TX) != 0 &&
626 (v = zsxint(cs1, zc)) != 0) {
627 cs1->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
628 intflags |= 1;
629 }
630 if ((rr3 & ZSRR3_IP_B_STAT) != 0 &&
631 (v = zssint(cs1, zc)) != 0) {
632 cs1->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
633 intflags |= 1;
634 }
635 cs1->cs_rbput = i;
636 }
637 } while (intflags & 4);
638
639 if (intflags & 1)
640 softint_schedule(sc->sc_sicookie);
641
642 return intflags & 2;
643 }
644
645 static int
646 zsrint(struct zs_chanstate *cs, struct zschan *zc)
647 {
648 int c;
649
650 /*
651 * First read the status, because read of the received char
652 * destroy the status of this char.
653 */
654 c = ZS_READ(zc, 1);
655 c |= (zc->zc_data << 8);
656
657 /* clear receive error & interrupt condition */
658 zc->zc_csr = ZSWR0_RESET_ERRORS;
659 zc->zc_csr = ZSWR0_CLR_INTR;
660
661 return ZRING_MAKE(ZRING_RINT, c);
662 }
663
664 static int
665 zsxint(struct zs_chanstate *cs, struct zschan *zc)
666 {
667 int i = cs->cs_tbc;
668
669 if (i == 0) {
670 zc->zc_csr = ZSWR0_RESET_TXINT;
671 zc->zc_csr = ZSWR0_CLR_INTR;
672 return ZRING_MAKE(ZRING_XINT, 0);
673 }
674 cs->cs_tbc = i - 1;
675 zc->zc_data = *cs->cs_tba++;
676 zc->zc_csr = ZSWR0_CLR_INTR;
677 return 0;
678 }
679
680 static int
681 zssint(struct zs_chanstate *cs, struct zschan *zc)
682 {
683 int rr0;
684
685 rr0 = zc->zc_csr;
686 zc->zc_csr = ZSWR0_RESET_STATUS;
687 zc->zc_csr = ZSWR0_CLR_INTR;
688 /*
689 * The chip's hardware flow control is, as noted in zsreg.h,
690 * busted---if the DCD line goes low the chip shuts off the
691 * receiver (!). If we want hardware CTS flow control but do
692 * not have it, and carrier is now on, turn HFC on; if we have
693 * HFC now but carrier has gone low, turn it off.
694 */
695 if (rr0 & ZSRR0_DCD) {
696 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
697 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
698 cs->cs_creg[3] |= ZSWR3_HFC;
699 ZS_WRITE(zc, 3, cs->cs_creg[3]);
700 }
701 } else {
702 if (cs->cs_creg[3] & ZSWR3_HFC) {
703 cs->cs_creg[3] &= ~ZSWR3_HFC;
704 ZS_WRITE(zc, 3, cs->cs_creg[3]);
705 }
706 }
707 return ZRING_MAKE(ZRING_SINT, rr0);
708 }
709
710 /*
711 * Print out a ring or fifo overrun error message.
712 */
713 static void
714 zsoverrun(int unit, long *ptime, const char *what)
715 {
716 time_t cur_sec = time_second;
717
718 if (*ptime != cur_sec) {
719 *ptime = cur_sec;
720 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
721 (unit & 1) + 'a', what);
722 }
723 }
724
725 /*
726 * ZS software interrupt. Scan all channels for deferred interrupts.
727 */
728 int
729 zssoft(void *arg)
730 {
731 struct zs_softc *sc;
732 struct zs_chanstate *cs;
733 struct zschan *zc;
734 struct linesw *line;
735 struct tty *tp;
736 int chan, get, n, c, cc, s;
737 int retval = 0;
738
739 sc = arg;
740 s = spltty();
741 for (chan = 0; chan < 2; chan++) {
742 cs = sc->sc_cs[chan];
743 get = cs->cs_rbget;
744 again:
745 n = cs->cs_rbput; /* atomic */
746 if (get == n) /* nothing more on this line */
747 continue;
748 retval = 1;
749 zc = cs->cs_zc;
750 tp = cs->cs_ttyp;
751 line = tp->t_linesw;
752 /*
753 * Compute the number of interrupts in the receive ring.
754 * If the count is overlarge, we lost some events, and
755 * must advance to the first valid one. It may get
756 * overwritten if more data are arriving, but this is
757 * too expensive to check and gains nothing (we already
758 * lost out; all we can do at this point is trade one
759 * kind of loss for another).
760 */
761 n -= get;
762 if (n > ZLRB_RING_SIZE) {
763 zsoverrun(chan, &cs->cs_rotime, "ring");
764 get += n - ZLRB_RING_SIZE;
765 n = ZLRB_RING_SIZE;
766 }
767 while (--n >= 0) {
768 /* race to keep ahead of incoming interrupts */
769 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
770 switch (ZRING_TYPE(c)) {
771
772 case ZRING_RINT:
773 c = ZRING_VALUE(c);
774 if ((c & ZSRR1_DO) != 0)
775 zsoverrun(chan, &cs->cs_fotime, "fifo");
776 cc = c >> 8;
777 if ((c & ZSRR1_FE) != 0)
778 cc |= TTY_FE;
779 if ((c & ZSRR1_PE) != 0)
780 cc |= TTY_PE;
781 line->l_rint(cc, tp);
782 break;
783
784 case ZRING_XINT:
785 /*
786 * Transmit done: change registers and resume,
787 * or clear BUSY.
788 */
789 if (cs->cs_heldchange) {
790 int sps;
791
792 sps = splzs();
793 c = zc->zc_csr;
794 if ((c & ZSRR0_DCD) == 0)
795 cs->cs_preg[3] &= ~ZSWR3_HFC;
796 memcpy((void *)cs->cs_creg,
797 (void *)cs->cs_preg, 16);
798 zs_loadchannelregs(zc, cs->cs_creg);
799 splx(sps);
800 cs->cs_heldchange = 0;
801 if (cs->cs_heldtbc &&
802 (tp->t_state & TS_TTSTOP) == 0) {
803 cs->cs_tbc = cs->cs_heldtbc - 1;
804 zc->zc_data = *cs->cs_tba++;
805 goto again;
806 }
807 }
808 tp->t_state &= ~TS_BUSY;
809 if ((tp->t_state & TS_FLUSH) != 0)
810 tp->t_state &= ~TS_FLUSH;
811 else
812 ndflush(&tp->t_outq,
813 cs->cs_tba - tp->t_outq.c_cf);
814 line->l_start(tp);
815 break;
816
817 case ZRING_SINT:
818 /*
819 * Status line change. HFC bit is run in
820 * hardware interrupt, to avoid locking
821 * at splzs here.
822 */
823 c = ZRING_VALUE(c);
824 if (((c ^ cs->cs_rr0) & ZSRR0_DCD) != 0) {
825 cc = (c & ZSRR0_DCD) != 0;
826 if (line->l_modem(tp, cc) == 0)
827 zs_modem(cs,
828 ZSWR5_RTS | ZSWR5_DTR,
829 cc ? DMBIS : DMBIC);
830 }
831 cs->cs_rr0 = c;
832 break;
833
834 default:
835 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
836 chan >> 1, (chan & 1) + 'a', c);
837 break;
838 }
839 }
840 cs->cs_rbget = get;
841 goto again;
842 }
843 splx(s);
844 return retval;
845 }
846
847 int
848 zsioctl(dev_t dev, u_long cmd, void * data, int flag, struct lwp *l)
849 {
850 int unit = ZS_UNIT(dev);
851 struct zs_softc *sc = device_lookup_private(&zs_cd, unit >> 1);
852 struct zs_chanstate *cs = sc->sc_cs[unit & 1];
853 struct tty *tp = cs->cs_ttyp;
854 int error, s;
855
856 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
857 if (error != EPASSTHROUGH)
858 return error;
859
860 error = ttioctl(tp, cmd, data, flag, l);
861 if (error !=EPASSTHROUGH)
862 return error;
863
864 switch (cmd) {
865 case TIOCSBRK:
866 s = splzs();
867 cs->cs_preg[5] |= ZSWR5_BREAK;
868 cs->cs_creg[5] |= ZSWR5_BREAK;
869 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
870 splx(s);
871 break;
872 case TIOCCBRK:
873 s = splzs();
874 cs->cs_preg[5] &= ~ZSWR5_BREAK;
875 cs->cs_creg[5] &= ~ZSWR5_BREAK;
876 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
877 splx(s);
878 break;
879 case TIOCGFLAGS: {
880 int bits = 0;
881
882 if (cs->cs_softcar)
883 bits |= TIOCFLAG_SOFTCAR;
884 if ((cs->cs_creg[15] & ZSWR15_DCD_IE) != 0)
885 bits |= TIOCFLAG_CLOCAL;
886 if ((cs->cs_creg[3] & ZSWR3_HFC) != 0)
887 bits |= TIOCFLAG_CRTSCTS;
888 *(int *)data = bits;
889 break;
890 }
891 case TIOCSFLAGS: {
892 int userbits = 0;
893
894 error = kauth_authorize_device_tty(l->l_cred,
895 KAUTH_DEVICE_TTY_PRIVSET, tp);
896 if (error != 0)
897 return EPERM;
898
899 userbits = *(int *)data;
900
901 /*
902 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
903 # defaulting to software flow control.
904 */
905 if ((userbits & TIOCFLAG_SOFTCAR) != 0 &&
906 (userbits & TIOCFLAG_CLOCAL) != 0)
907 return EINVAL;
908 if ((userbits & TIOCFLAG_MDMBUF) != 0)
909 /* don't support this (yet?) */
910 return ENODEV;
911
912 s = splzs();
913 if ((userbits & TIOCFLAG_SOFTCAR) != 0) {
914 cs->cs_softcar = 1; /* turn on softcar */
915 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
916 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
917 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
918 } else if ((userbits & TIOCFLAG_CLOCAL) != 0) {
919 cs->cs_softcar = 0; /* turn off softcar */
920 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
921 cs->cs_creg[15] |= ZSWR15_DCD_IE;
922 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
923 tp->t_termios.c_cflag |= CLOCAL;
924 }
925 if ((userbits & TIOCFLAG_CRTSCTS) != 0) {
926 cs->cs_preg[15] |= ZSWR15_CTS_IE;
927 cs->cs_creg[15] |= ZSWR15_CTS_IE;
928 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
929 cs->cs_preg[3] |= ZSWR3_HFC;
930 cs->cs_creg[3] |= ZSWR3_HFC;
931 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
932 tp->t_termios.c_cflag |= CRTSCTS;
933 } else {
934 /* no mdmbuf, so we must want software flow control */
935 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
936 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
937 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
938 cs->cs_preg[3] &= ~ZSWR3_HFC;
939 cs->cs_creg[3] &= ~ZSWR3_HFC;
940 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
941 tp->t_termios.c_cflag &= ~CRTSCTS;
942 }
943 splx(s);
944 break;
945 }
946 case TIOCSDTR:
947 zs_modem(cs, ZSWR5_DTR, DMBIS);
948 break;
949 case TIOCCDTR:
950 zs_modem(cs, ZSWR5_DTR, DMBIC);
951 break;
952 case TIOCMGET:
953 zs_modem(cs, 0, DMGET);
954 break;
955 case TIOCMSET:
956 case TIOCMBIS:
957 case TIOCMBIC:
958 default:
959 return EPASSTHROUGH;
960 }
961 return 0;
962 }
963
964 /*
965 * Start or restart transmission.
966 */
967 static void
968 zsstart(struct tty *tp)
969 {
970 struct zs_chanstate *cs;
971 int s, nch;
972 int unit = ZS_UNIT(tp->t_dev);
973 struct zs_softc *sc = device_lookup_private(&zs_cd, unit >> 1);
974
975 cs = sc->sc_cs[unit & 1];
976 s = spltty();
977
978 /*
979 * If currently active or delaying, no need to do anything.
980 */
981 if ((tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) != 0)
982 goto out;
983
984 /*
985 * If there are sleepers, and output has drained below low
986 * water mark, awaken.
987 */
988 ttypull(tp);
989
990 nch = ndqb(&tp->t_outq, 0); /* XXX */
991 if (nch) {
992 char *p = tp->t_outq.c_cf;
993
994 /* mark busy, enable tx done interrupts, & send first byte */
995 tp->t_state |= TS_BUSY;
996 (void)splzs();
997 cs->cs_preg[1] |= ZSWR1_TIE;
998 cs->cs_creg[1] |= ZSWR1_TIE;
999 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1000 cs->cs_zc->zc_data = *p;
1001 cs->cs_tba = p + 1;
1002 cs->cs_tbc = nch - 1;
1003 } else {
1004 /*
1005 * Nothing to send, turn off transmit done interrupts.
1006 * This is useful if something is doing polled output.
1007 */
1008 (void)splzs();
1009 cs->cs_preg[1] &= ~ZSWR1_TIE;
1010 cs->cs_creg[1] &= ~ZSWR1_TIE;
1011 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1012 }
1013 out:
1014 splx(s);
1015 }
1016
1017 /*
1018 * Stop output, e.g., for ^S or output flush.
1019 */
1020 void
1021 zsstop(struct tty *tp, int flag)
1022 {
1023 struct zs_chanstate *cs;
1024 int s, unit = ZS_UNIT(tp->t_dev);
1025 struct zs_softc *sc = device_lookup_private(&zs_cd, unit >> 1);
1026
1027 cs = sc->sc_cs[unit & 1];
1028 s = splzs();
1029 if ((tp->t_state & TS_BUSY) != 0) {
1030 /*
1031 * Device is transmitting; must stop it.
1032 */
1033 cs->cs_tbc = 0;
1034 if ((tp->t_state & TS_TTSTOP) == 0)
1035 tp->t_state |= TS_FLUSH;
1036 }
1037 splx(s);
1038 }
1039
1040 static void
1041 zs_shutdown(struct zs_chanstate *cs)
1042 {
1043 struct tty *tp = cs->cs_ttyp;
1044 int s;
1045
1046 s = splzs();
1047
1048 /*
1049 * Hang up if necessary. Wait a bit, so the other side has time to
1050 * notice even if we immediately open the port again.
1051 */
1052 if ((tp->t_cflag & HUPCL) != 0) {
1053 zs_modem(cs, 0, DMSET);
1054 (void)tsleep((void *)cs, TTIPRI, ttclos, hz);
1055 }
1056
1057 /* Clear any break condition set with TIOCSBRK. */
1058 if ((cs->cs_creg[5] & ZSWR5_BREAK) != 0) {
1059 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1060 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1061 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1062 }
1063
1064 /*
1065 * Drop all lines and cancel interrupts
1066 */
1067 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1068 splx(s);
1069 }
1070
1071 /*
1072 * Set ZS tty parameters from termios.
1073 *
1074 * This routine makes use of the fact that only registers
1075 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1076 */
1077 static int
1078 zsparam(struct tty *tp, struct termios *t)
1079 {
1080 int unit = ZS_UNIT(tp->t_dev);
1081 struct zs_softc *sc = device_lookup_private(&zs_cd, unit >> 1);
1082 struct zs_chanstate *cs = sc->sc_cs[unit & 1];
1083 int cdiv = 0; /* XXX gcc4 -Wuninitialized */
1084 int clkm = 0; /* XXX gcc4 -Wuninitialized */
1085 int brgm = 0; /* XXX gcc4 -Wuninitialized */
1086 int tcon = 0; /* XXX gcc4 -Wuninitialized */
1087 int tmp, tmp5, cflag, s;
1088
1089 tmp = t->c_ospeed;
1090 tmp5 = t->c_ispeed;
1091 if (tmp < 0 || (tmp5 && tmp5 != tmp))
1092 return EINVAL;
1093 if (tmp == 0) {
1094 /* stty 0 => drop DTR and RTS */
1095 zs_modem(cs, 0, DMSET);
1096 return 0;
1097 }
1098 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1099 if (tmp < 0)
1100 return EINVAL;
1101 tp->t_ispeed = tp->t_ospeed = tmp;
1102
1103 cflag = tp->t_cflag = t->c_cflag;
1104 if ((cflag & CSTOPB) != 0)
1105 cdiv |= ZSWR4_TWOSB;
1106 else
1107 cdiv |= ZSWR4_ONESB;
1108 if ((cflag & PARODD) == 0)
1109 cdiv |= ZSWR4_EVENP;
1110 if ((cflag & PARENB) != 0)
1111 cdiv |= ZSWR4_PARENB;
1112
1113 switch (cflag & CSIZE) {
1114 case CS5:
1115 tmp = ZSWR3_RX_5;
1116 tmp5 = ZSWR5_TX_5;
1117 break;
1118 case CS6:
1119 tmp = ZSWR3_RX_6;
1120 tmp5 = ZSWR5_TX_6;
1121 break;
1122 case CS7:
1123 tmp = ZSWR3_RX_7;
1124 tmp5 = ZSWR5_TX_7;
1125 break;
1126 case CS8:
1127 default:
1128 tmp = ZSWR3_RX_8;
1129 tmp5 = ZSWR5_TX_8;
1130 break;
1131 }
1132 tmp |= ZSWR3_RX_ENABLE;
1133 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1134
1135 /*
1136 * Block interrupts so that state will not
1137 * be altered until we are done setting it up.
1138 */
1139 s = splzs();
1140 cs->cs_preg[4] = cdiv;
1141 cs->cs_preg[11] = clkm;
1142 cs->cs_preg[12] = tcon;
1143 cs->cs_preg[13] = tcon >> 8;
1144 cs->cs_preg[14] = brgm;
1145 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1146 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1147 cs->cs_preg[10] = ZSWR10_NRZ;
1148 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1149
1150 /*
1151 * Output hardware flow control on the chip is horrendous: if
1152 * carrier detect drops, the receiver is disabled. Hence we
1153 * can only do this when the carrier is on.
1154 */
1155 if ((cflag & CCTS_OFLOW) != 0 &&
1156 (cs->cs_zc->zc_csr & ZSRR0_DCD) != 0)
1157 tmp |= ZSWR3_HFC;
1158 cs->cs_preg[3] = tmp;
1159 cs->cs_preg[5] = tmp5;
1160
1161 /*
1162 * If nothing is being transmitted, set up new current values,
1163 * else mark them as pending.
1164 */
1165 if (cs->cs_heldchange == 0) {
1166 if ((cs->cs_ttyp->t_state & TS_BUSY) != 0) {
1167 cs->cs_heldtbc = cs->cs_tbc;
1168 cs->cs_tbc = 0;
1169 cs->cs_heldchange = 1;
1170 } else {
1171 memcpy((void *)cs->cs_creg, (void *)cs->cs_preg, 16);
1172 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1173 }
1174 }
1175 splx(s);
1176 return 0;
1177 }
1178
1179 /*
1180 * search for the best matching baudrate
1181 */
1182 static int
1183 zsbaudrate(int unit, int wanted, int *divisor, int *clockmode, int *brgenmode,
1184 int *timeconst)
1185 {
1186 int bestdiff, bestbps, source;
1187
1188 bestdiff = bestbps = 0;
1189 unit = (unit & 1) << 2;
1190 for (source = 0; source < 4; ++source) {
1191 u_long freq = zs_frequencies[unit + source];
1192 int diff, bps, div, clkm, brgm, tcon;
1193
1194 bps = div = clkm = brgm = tcon = 0;
1195 switch (source) {
1196 case 0: /* BRgen, PCLK */
1197 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1198 break;
1199 case 1: /* BRgen, RTxC */
1200 brgm = ZSWR14_BAUD_ENA;
1201 break;
1202 case 2: /* RTxC */
1203 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1204 break;
1205 case 3: /* TRxC */
1206 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1207 break;
1208 }
1209 switch (source) {
1210 case 0:
1211 case 1:
1212 div = ZSWR4_CLK_X16;
1213 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1214 tcon = BPS_TO_TCONST(freq, wanted);
1215 if (tcon < 0)
1216 tcon = 0;
1217 bps = TCONST_TO_BPS(freq, tcon);
1218 break;
1219 case 2:
1220 case 3:
1221 {
1222 int b1 = freq / 16, d1 = abs(b1 - wanted);
1223 int b2 = freq / 32, d2 = abs(b2 - wanted);
1224 int b3 = freq / 64, d3 = abs(b3 - wanted);
1225
1226 if (d1 < d2 && d1 < d3) {
1227 div = ZSWR4_CLK_X16;
1228 bps = b1;
1229 } else if (d2 < d3 && d2 < d1) {
1230 div = ZSWR4_CLK_X32;
1231 bps = b2;
1232 } else {
1233 div = ZSWR4_CLK_X64;
1234 bps = b3;
1235 }
1236 brgm = tcon = 0;
1237 break;
1238 }
1239 }
1240 diff = abs(bps - wanted);
1241 if (!source || diff < bestdiff) {
1242 *divisor = div;
1243 *clockmode = clkm;
1244 *brgenmode = brgm;
1245 *timeconst = tcon;
1246 bestbps = bps;
1247 bestdiff = diff;
1248 if (diff == 0)
1249 break;
1250 }
1251 }
1252 /* Allow deviations upto 5% */
1253 if (20 * bestdiff > wanted)
1254 return -1;
1255 return bestbps;
1256 }
1257
1258 /*
1259 * Raise or lower modem control (DTR/RTS) signals. If a character is
1260 * in transmission, the change is deferred.
1261 */
1262 static int
1263 zs_modem(struct zs_chanstate *cs, int bits, int how)
1264 {
1265 int s, mbits;
1266
1267 bits &= ZSWR5_DTR | ZSWR5_RTS;
1268
1269 s = splzs();
1270 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1271
1272 switch (how) {
1273 case DMSET:
1274 mbits = bits;
1275 break;
1276 case DMBIS:
1277 mbits |= bits;
1278 break;
1279 case DMBIC:
1280 mbits &= ~bits;
1281 break;
1282 case DMGET:
1283 splx(s);
1284 return mbits;
1285 }
1286
1287 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1288 if (cs->cs_heldchange == 0) {
1289 if ((cs->cs_ttyp->t_state & TS_BUSY) != 0) {
1290 cs->cs_heldtbc = cs->cs_tbc;
1291 cs->cs_tbc = 0;
1292 cs->cs_heldchange = 1;
1293 } else {
1294 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1295 }
1296 }
1297 splx(s);
1298 return 0;
1299 }
1300
1301 /*
1302 * Write the given register set to the given zs channel in the proper order.
1303 * The channel must not be transmitting at the time. The receiver will
1304 * be disabled for the time it takes to write all the registers.
1305 */
1306 static void
1307 zs_loadchannelregs(struct zschan *zc, uint8_t *reg)
1308 {
1309 int i;
1310
1311 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1312 i = zc->zc_data; /* drain fifo */
1313 i = zc->zc_data;
1314 i = zc->zc_data;
1315 ZS_WRITE(zc, 4, reg[4]);
1316 ZS_WRITE(zc, 10, reg[10]);
1317 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1318 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1319 ZS_WRITE(zc, 1, reg[1]);
1320 ZS_WRITE(zc, 9, reg[9]);
1321 ZS_WRITE(zc, 11, reg[11]);
1322 ZS_WRITE(zc, 12, reg[12]);
1323 ZS_WRITE(zc, 13, reg[13]);
1324 ZS_WRITE(zc, 14, reg[14]);
1325 ZS_WRITE(zc, 15, reg[15]);
1326 ZS_WRITE(zc, 3, reg[3]);
1327 ZS_WRITE(zc, 5, reg[5]);
1328 }
1329 #endif /* NZS > 1 */
1330