zs.c revision 1.75 1 /* $NetBSD: zs.c,v 1.75 2014/03/16 05:20:23 dholland Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)zs.c 8.1 (Berkeley) 7/19/93
42 */
43
44 /*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
61 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73 /*
74 * Zilog Z8530 (ZSCC) driver.
75 *
76 * Runs two tty ports (modem2 and serial2) on zs0.
77 *
78 * This driver knows far too much about chip to usage mappings.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.75 2014/03/16 05:20:23 dholland Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/proc.h>
87 #include <sys/device.h>
88 #include <sys/conf.h>
89 #include <sys/file.h>
90 #include <sys/ioctl.h>
91 #include <sys/malloc.h>
92 #include <sys/tty.h>
93 #include <sys/time.h>
94 #include <sys/kernel.h>
95 #include <sys/syslog.h>
96 #include <sys/kauth.h>
97
98 #include <machine/cpu.h>
99 #include <machine/iomap.h>
100 #include <machine/scu.h>
101 #include <machine/mfp.h>
102 #include <atari/dev/ym2149reg.h>
103
104 #include <dev/ic/z8530reg.h>
105 #include <atari/dev/zsvar.h>
106
107 #include "ioconf.h"
108
109 #include "zs.h"
110 #if NZS > 1
111 #error "This driver supports only 1 85C30!"
112 #endif
113
114 #if NZS > 0
115
116 #define PCLK (8053976) /* PCLK pin input clock rate */
117 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
118
119 #define splzs spl5
120
121 /*
122 * Software state per found chip.
123 */
124 struct zs_softc {
125 device_t sc_dev; /* base device */
126 struct zs_chanstate *sc_cs[2]; /* chan A and B software state */
127
128 struct zs_chanstate sc_cs_store[2];
129 void *sc_sicookie; /* for callback */
130 };
131
132 /*
133 * Define the registers for a closed port
134 */
135 static uint8_t zs_init_regs[16] = {
136 /* 0 */ 0,
137 /* 1 */ 0,
138 /* 2 */ 0x60,
139 /* 3 */ 0,
140 /* 4 */ 0,
141 /* 5 */ 0,
142 /* 6 */ 0,
143 /* 7 */ 0,
144 /* 8 */ 0,
145 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
146 /* 10 */ ZSWR10_NRZ,
147 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
148 /* 12 */ 0,
149 /* 13 */ 0,
150 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
151 /* 15 */ 0
152 };
153
154 /*
155 * Define the machine dependent clock frequencies
156 * If BRgen feeds sender/receiver we always use a
157 * divisor 16, therefor the division by 16 can as
158 * well be done here.
159 */
160 static const u_long zs_freqs_tt[] = {
161 /*
162 * Atari TT, RTxCB is generated by TT-MFP timer C,
163 * which is set to 307.2 kHz during initialisation
164 * and never changed afterwards.
165 */
166 PCLK/16, /* BRgen, PCLK, divisor 16 */
167 229500, /* BRgen, RTxCA, divisor 16 */
168 3672000, /* RTxCA, from PCLK4 */
169 0, /* TRxCA, external */
170
171 PCLK/16, /* BRgen, PCLK, divisor 16 */
172 19200, /* BRgen, RTxCB, divisor 16 */
173 307200, /* RTxCB, from TT-MFP TCO */
174 2457600 /* TRxCB, from BCLK */
175 };
176
177 static const u_long zs_freqs_falcon[] = {
178 /*
179 * Atari Falcon, XXX no specs available, this might be wrong
180 */
181 PCLK/16, /* BRgen, PCLK, divisor 16 */
182 229500, /* BRgen, RTxCA, divisor 16 */
183 3672000, /* RTxCA, ??? */
184 0, /* TRxCA, external */
185
186 PCLK/16, /* BRgen, PCLK, divisor 16 */
187 229500, /* BRgen, RTxCB, divisor 16 */
188 3672000, /* RTxCB, ??? */
189 2457600 /* TRxCB, ??? */
190 };
191
192 static const u_long zs_freqs_hades[] = {
193 /*
194 * XXX: Channel-A unchecked!!!!!
195 */
196 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
197 229500, /* BRgen, RTxCA, divisor 16 */
198 3672000, /* RTxCA, from PCLK4 */
199 0, /* TRxCA, external */
200
201 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
202 235550, /* BRgen, RTxCB, divisor 16 */
203 3768800, /* RTxCB, 3.7688MHz */
204 3768800 /* TRxCB, 3.7688MHz */
205 };
206
207 static const u_long zs_freqs_generic[] = {
208 /*
209 * other machines, assume only PCLK is available
210 */
211 PCLK/16, /* BRgen, PCLK, divisor 16 */
212 0, /* BRgen, RTxCA, divisor 16 */
213 0, /* RTxCA, unknown */
214 0, /* TRxCA, unknown */
215
216 PCLK/16, /* BRgen, PCLK, divisor 16 */
217 0, /* BRgen, RTxCB, divisor 16 */
218 0, /* RTxCB, unknown */
219 0 /* TRxCB, unknown */
220 };
221 static const u_long *zs_frequencies;
222
223 /* Definition of the driver for autoconfig. */
224 static int zsmatch(device_t, cfdata_t, void *);
225 static void zsattach(device_t, device_t, void *);
226
227 CFATTACH_DECL_NEW(zs, sizeof(struct zs_softc),
228 zsmatch, zsattach, NULL, NULL);
229
230 /* {b,c}devsw[] function prototypes */
231 dev_type_open(zsopen);
232 dev_type_close(zsclose);
233 dev_type_read(zsread);
234 dev_type_write(zswrite);
235 dev_type_ioctl(zsioctl);
236 dev_type_stop(zsstop);
237 dev_type_tty(zstty);
238 dev_type_poll(zspoll);
239
240 const struct cdevsw zs_cdevsw = {
241 .d_open = zsopen,
242 .d_close = zsclose,
243 .d_read = zsread,
244 .d_write = zswrite,
245 .d_ioctl = zsioctl,
246 .d_stop = zsstop,
247 .d_tty = zstty,
248 .d_poll = zspoll,
249 .d_mmap = nommap,
250 .d_kqfilter = ttykqfilter,
251 .d_flag = D_TTY
252 };
253
254 /* Interrupt handlers. */
255 static int zshard(void *);
256 static int zssoft(void *);
257 static int zsrint(struct zs_chanstate *, struct zschan *);
258 static int zsxint(struct zs_chanstate *, struct zschan *);
259 static int zssint(struct zs_chanstate *, struct zschan *);
260
261 /* Routines called from other code. */
262 static void zsstart(struct tty *);
263
264 /* Routines purely local to this driver. */
265 static void zsoverrun(int, long *, const char *);
266 static int zsparam(struct tty *, struct termios *);
267 static int zsbaudrate(int, int, int *, int *, int *, int *);
268 static int zs_modem(struct zs_chanstate *, int, int);
269 static void zs_loadchannelregs(struct zschan *, uint8_t *);
270 static void zs_shutdown(struct zs_chanstate *);
271
272 static int
273 zsmatch(device_t parent, cfdata_t cf, void *aux)
274 {
275 static int zs_matched = 0;
276
277 if (strcmp("zs", aux) || zs_matched)
278 return 0;
279 zs_matched = 1;
280 return 1;
281 }
282
283 /*
284 * Attach a found zs.
285 */
286 static void
287 zsattach(device_t parent, device_t self, void *aux)
288 {
289 struct zs_softc *sc;
290 struct zsdevice *zs;
291 struct zschan *zc;
292 struct zs_chanstate *cs;
293 int channel;
294
295 sc = device_private(self);
296 sc->sc_dev = self;
297
298 printf(": serial2 on channel a and modem2 on channel b\n");
299
300 zs = (struct zsdevice *)AD_SCC;
301
302 for (channel = 0; channel < 2; channel++) {
303 cs = &sc->sc_cs_store[channel];
304 sc->sc_cs[channel] = cs;
305
306 cs->cs_unit = channel;
307 cs->cs_zc = zc =
308 (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;
309 /*
310 * Get the command register into a known state.
311 */
312 (void)zc->zc_csr;
313 (void)zc->zc_csr;
314
315 /*
316 * Do a hardware reset.
317 */
318 if (channel == 0) {
319 ZS_WRITE(zc, 9, ZSWR9_HARD_RESET);
320 delay(50000); /* enough ? */
321 ZS_WRITE(zc, 9, 0);
322 }
323
324 /*
325 * Initialize channel
326 */
327 zs_loadchannelregs(zc, zs_init_regs);
328 }
329
330 if (machineid & ATARI_TT) {
331 /*
332 * ininitialise TT-MFP timer C: 307200Hz
333 * timer C and D share one control register:
334 * bits 0-2 control timer D
335 * bits 4-6 control timer C
336 */
337 int cr = MFP2->mf_tcdcr & 7;
338 MFP2->mf_tcdcr = cr; /* stop timer C */
339 MFP2->mf_tcdr = 1; /* counter 1 */
340 cr |= T_Q004 << 4; /* divisor 4 */
341 MFP2->mf_tcdcr = cr; /* start timer C */
342 /*
343 * enable scc related interrupts
344 */
345 SCU->vme_mask |= SCU_SCC;
346
347 zs_frequencies = zs_freqs_tt;
348 } else if (machineid & ATARI_FALCON) {
349 zs_frequencies = zs_freqs_falcon;
350 } else if (machineid & ATARI_HADES) {
351 zs_frequencies = zs_freqs_hades;
352 } else {
353 zs_frequencies = zs_freqs_generic;
354 }
355
356 if (intr_establish(36, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
357 aprint_error_dev(self,
358 "Can't establish interrupt (Rx chan B)\n");
359 if (intr_establish(32, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
360 aprint_error_dev(self,
361 "Can't establish interrupt (Tx empty chan B)\n");
362 if (intr_establish(34, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
363 aprint_error_dev(self,
364 "Can't establish interrupt (Ext./Status chan B)\n");
365 if (intr_establish(38, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
366 aprint_error_dev(self,
367 "Can't establish interrupt (Special Rx cond. chan B)\n");
368 if (intr_establish(44, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
369 aprint_error_dev(self,
370 "Can't establish interrupt (Rx chan A)\n");
371 if (intr_establish(40, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
372 aprint_error_dev(self,
373 "Can't establish interrupt (Tx empty chan A)\n");
374 if (intr_establish(42, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
375 aprint_error_dev(self,
376 "Can't establish interrupt (Ext./Status chan A)\n");
377 if (intr_establish(46, USER_VEC, 0, (hw_ifun_t)zshard, sc) == NULL)
378 aprint_error_dev(self,
379 "Can't establish interrupt (Special Rx cond. chan A)\n");
380
381 sc->sc_sicookie = softint_establish(SOFTINT_SERIAL,
382 (void (*)(void *))zssoft, sc);
383 }
384
385 /*
386 * Open a zs serial port.
387 */
388 int
389 zsopen(dev_t dev, int flags, int mode, struct lwp *l)
390 {
391 struct tty *tp;
392 struct zs_chanstate *cs;
393 struct zs_softc *sc;
394 int unit = ZS_UNIT(dev);
395 int zs = unit >> 1;
396 int error, s;
397
398 sc = device_lookup_private(&zs_cd, zs);
399 if (sc == NULL)
400 return ENXIO;
401 cs = sc->sc_cs[unit & 1];
402
403 /*
404 * When port A (ser02) is selected on the TT, make sure
405 * the port is enabled.
406 */
407 if ((machineid & ATARI_TT) && !(unit & 1))
408 ym2149_ser2(1);
409
410 if (cs->cs_rbuf == NULL) {
411 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
412 M_WAITOK);
413 }
414
415 tp = cs->cs_ttyp;
416 if (tp == NULL) {
417 cs->cs_ttyp = tp = tty_alloc();
418 tty_attach(tp);
419 tp->t_dev = dev;
420 tp->t_oproc = zsstart;
421 tp->t_param = zsparam;
422 }
423
424 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
425 return EBUSY;
426
427 s = spltty();
428
429 /*
430 * Do the following iff this is a first open.
431 */
432 if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
433 if (tp->t_ispeed == 0) {
434 tp->t_iflag = TTYDEF_IFLAG;
435 tp->t_oflag = TTYDEF_OFLAG;
436 tp->t_cflag = TTYDEF_CFLAG;
437 tp->t_lflag = TTYDEF_LFLAG;
438 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
439 }
440 ttychars(tp);
441 ttsetwater(tp);
442
443 (void)zsparam(tp, &tp->t_termios);
444
445 /*
446 * Turn on DTR. We must always do this, even if carrier is not
447 * present, because otherwise we'd have to use TIOCSDTR
448 * immediately after setting CLOCAL, which applications do not
449 * expect. We always assert DTR while the device is open
450 * unless explicitly requested to deassert it.
451 */
452 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
453 /* May never get a status intr. if DCD already on. -gwr */
454 if (((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD) != 0)
455 tp->t_state |= TS_CARR_ON;
456 if (cs->cs_softcar)
457 tp->t_state |= TS_CARR_ON;
458 }
459
460 splx(s);
461
462 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
463 if (error)
464 goto bad;
465
466 error = tp->t_linesw->l_open(dev, tp);
467 if (error)
468 goto bad;
469 return 0;
470
471 bad:
472 if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
473 /*
474 * We failed to open the device, and nobody else had it opened.
475 * Clean up the state as appropriate.
476 */
477 zs_shutdown(cs);
478 }
479 return error;
480 }
481
482 /*
483 * Close a zs serial port.
484 */
485 int
486 zsclose(dev_t dev, int flags, int mode, struct lwp *l)
487 {
488 struct zs_chanstate *cs;
489 struct tty *tp;
490 struct zs_softc *sc;
491 int unit = ZS_UNIT(dev);
492
493 sc = device_lookup_private(&zs_cd, unit >> 1);
494 cs = sc->sc_cs[unit & 1];
495 tp = cs->cs_ttyp;
496
497 tp->t_linesw->l_close(tp, flags);
498 ttyclose(tp);
499
500 if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
501 /*
502 * Although we got a last close, the device may still be in
503 * use; e.g. if this was the dialout node, and there are still
504 * processes waiting for carrier on the non-dialout node.
505 */
506 zs_shutdown(cs);
507 }
508 return 0;
509 }
510
511 /*
512 * Read/write zs serial port.
513 */
514 int
515 zsread(dev_t dev, struct uio *uio, int flags)
516 {
517 struct zs_chanstate *cs;
518 struct zs_softc *sc;
519 struct tty *tp;
520 int unit;
521
522 unit = ZS_UNIT(dev);
523 sc = device_lookup_private(&zs_cd, unit >> 1);
524 cs = sc->sc_cs[unit & 1];
525 tp = cs->cs_ttyp;
526
527 return (*tp->t_linesw->l_read)(tp, uio, flags);
528 }
529
530 int
531 zswrite(dev_t dev, struct uio *uio, int flags)
532 {
533 struct zs_chanstate *cs;
534 struct zs_softc *sc;
535 struct tty *tp;
536 int unit;
537
538 unit = ZS_UNIT(dev);
539 sc = device_lookup_private(&zs_cd, unit >> 1);
540 cs = sc->sc_cs[unit & 1];
541 tp = cs->cs_ttyp;
542
543 return (*tp->t_linesw->l_write)(tp, uio, flags);
544 }
545
546 int
547 zspoll(dev_t dev, int events, struct lwp *l)
548 {
549 struct zs_chanstate *cs;
550 struct zs_softc *sc;
551 struct tty *tp;
552 int unit;
553
554 unit = ZS_UNIT(dev);
555 sc = device_lookup_private(&zs_cd, unit >> 1);
556 cs = sc->sc_cs[unit & 1];
557 tp = cs->cs_ttyp;
558
559 return (*tp->t_linesw->l_poll)(tp, events, l);
560 }
561
562 struct tty *
563 zstty(dev_t dev)
564 {
565 struct zs_chanstate *cs;
566 struct zs_softc *sc;
567 int unit;
568
569 unit = ZS_UNIT(dev);
570 sc = device_lookup_private(&zs_cd, unit >> 1);
571 cs = sc->sc_cs[unit & 1];
572 return cs->cs_ttyp;
573 }
574
575 /*
576 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
577 * channels are kept in (A,B) pairs.
578 *
579 * Do just a little, then get out; set a software interrupt if more
580 * work is needed.
581 *
582 * We deliberately ignore the vectoring Zilog gives us, and match up
583 * only the number of `reset interrupt under service' operations, not
584 * the order.
585 */
586
587 int
588 zshard(void *arg)
589 {
590 struct zs_softc *sc;
591 struct zs_chanstate *cs0, *cs1;
592 struct zschan *zc;
593 int intflags, v, i;
594 uint8_t rr3;
595
596 sc = arg;
597 intflags = 0;
598 cs0 = sc->sc_cs[0];
599 cs1 = sc->sc_cs[1];
600
601 do {
602 intflags &= ~4;
603 rr3 = ZS_READ(cs0->cs_zc, 3);
604 if (rr3 & (ZSRR3_IP_A_RX | ZSRR3_IP_A_TX | ZSRR3_IP_A_STAT)) {
605 intflags |= 4 | 2;
606 zc = cs0->cs_zc;
607 i = cs0->cs_rbput;
608 if ((rr3 & ZSRR3_IP_A_RX) != 0 &&
609 (v = zsrint(cs0, zc)) != 0) {
610 cs0->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
611 intflags |= 1;
612 }
613 if ((rr3 & ZSRR3_IP_A_TX) != 0 &&
614 (v = zsxint(cs0, zc)) != 0) {
615 cs0->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
616 intflags |= 1;
617 }
618 if ((rr3 & ZSRR3_IP_A_STAT) != 0 &&
619 (v = zssint(cs0, zc)) != 0) {
620 cs0->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
621 intflags |= 1;
622 }
623 cs0->cs_rbput = i;
624 }
625 if (rr3 & (ZSRR3_IP_B_RX | ZSRR3_IP_B_TX | ZSRR3_IP_B_STAT)) {
626 intflags |= 4 | 2;
627 zc = cs1->cs_zc;
628 i = cs1->cs_rbput;
629 if ((rr3 & ZSRR3_IP_B_RX) != 0 &&
630 (v = zsrint(cs1, zc)) != 0) {
631 cs1->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
632 intflags |= 1;
633 }
634 if ((rr3 & ZSRR3_IP_B_TX) != 0 &&
635 (v = zsxint(cs1, zc)) != 0) {
636 cs1->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
637 intflags |= 1;
638 }
639 if ((rr3 & ZSRR3_IP_B_STAT) != 0 &&
640 (v = zssint(cs1, zc)) != 0) {
641 cs1->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
642 intflags |= 1;
643 }
644 cs1->cs_rbput = i;
645 }
646 } while (intflags & 4);
647
648 if (intflags & 1)
649 softint_schedule(sc->sc_sicookie);
650
651 return intflags & 2;
652 }
653
654 static int
655 zsrint(struct zs_chanstate *cs, struct zschan *zc)
656 {
657 int c;
658
659 /*
660 * First read the status, because read of the received char
661 * destroy the status of this char.
662 */
663 c = ZS_READ(zc, 1);
664 c |= (zc->zc_data << 8);
665
666 /* clear receive error & interrupt condition */
667 zc->zc_csr = ZSWR0_RESET_ERRORS;
668 zc->zc_csr = ZSWR0_CLR_INTR;
669
670 return ZRING_MAKE(ZRING_RINT, c);
671 }
672
673 static int
674 zsxint(struct zs_chanstate *cs, struct zschan *zc)
675 {
676 int i = cs->cs_tbc;
677
678 if (i == 0) {
679 zc->zc_csr = ZSWR0_RESET_TXINT;
680 zc->zc_csr = ZSWR0_CLR_INTR;
681 return ZRING_MAKE(ZRING_XINT, 0);
682 }
683 cs->cs_tbc = i - 1;
684 zc->zc_data = *cs->cs_tba++;
685 zc->zc_csr = ZSWR0_CLR_INTR;
686 return 0;
687 }
688
689 static int
690 zssint(struct zs_chanstate *cs, struct zschan *zc)
691 {
692 int rr0;
693
694 rr0 = zc->zc_csr;
695 zc->zc_csr = ZSWR0_RESET_STATUS;
696 zc->zc_csr = ZSWR0_CLR_INTR;
697 /*
698 * The chip's hardware flow control is, as noted in zsreg.h,
699 * busted---if the DCD line goes low the chip shuts off the
700 * receiver (!). If we want hardware CTS flow control but do
701 * not have it, and carrier is now on, turn HFC on; if we have
702 * HFC now but carrier has gone low, turn it off.
703 */
704 if (rr0 & ZSRR0_DCD) {
705 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
706 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
707 cs->cs_creg[3] |= ZSWR3_HFC;
708 ZS_WRITE(zc, 3, cs->cs_creg[3]);
709 }
710 } else {
711 if (cs->cs_creg[3] & ZSWR3_HFC) {
712 cs->cs_creg[3] &= ~ZSWR3_HFC;
713 ZS_WRITE(zc, 3, cs->cs_creg[3]);
714 }
715 }
716 return ZRING_MAKE(ZRING_SINT, rr0);
717 }
718
719 /*
720 * Print out a ring or fifo overrun error message.
721 */
722 static void
723 zsoverrun(int unit, long *ptime, const char *what)
724 {
725 time_t cur_sec = time_second;
726
727 if (*ptime != cur_sec) {
728 *ptime = cur_sec;
729 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
730 (unit & 1) + 'a', what);
731 }
732 }
733
734 /*
735 * ZS software interrupt. Scan all channels for deferred interrupts.
736 */
737 int
738 zssoft(void *arg)
739 {
740 struct zs_softc *sc;
741 struct zs_chanstate *cs;
742 struct zschan *zc;
743 struct linesw *line;
744 struct tty *tp;
745 int chan, get, n, c, cc, s;
746 int retval = 0;
747
748 sc = arg;
749 s = spltty();
750 for (chan = 0; chan < 2; chan++) {
751 cs = sc->sc_cs[chan];
752 get = cs->cs_rbget;
753 again:
754 n = cs->cs_rbput; /* atomic */
755 if (get == n) /* nothing more on this line */
756 continue;
757 retval = 1;
758 zc = cs->cs_zc;
759 tp = cs->cs_ttyp;
760 line = tp->t_linesw;
761 /*
762 * Compute the number of interrupts in the receive ring.
763 * If the count is overlarge, we lost some events, and
764 * must advance to the first valid one. It may get
765 * overwritten if more data are arriving, but this is
766 * too expensive to check and gains nothing (we already
767 * lost out; all we can do at this point is trade one
768 * kind of loss for another).
769 */
770 n -= get;
771 if (n > ZLRB_RING_SIZE) {
772 zsoverrun(chan, &cs->cs_rotime, "ring");
773 get += n - ZLRB_RING_SIZE;
774 n = ZLRB_RING_SIZE;
775 }
776 while (--n >= 0) {
777 /* race to keep ahead of incoming interrupts */
778 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
779 switch (ZRING_TYPE(c)) {
780
781 case ZRING_RINT:
782 c = ZRING_VALUE(c);
783 if ((c & ZSRR1_DO) != 0)
784 zsoverrun(chan, &cs->cs_fotime, "fifo");
785 cc = c >> 8;
786 if ((c & ZSRR1_FE) != 0)
787 cc |= TTY_FE;
788 if ((c & ZSRR1_PE) != 0)
789 cc |= TTY_PE;
790 line->l_rint(cc, tp);
791 break;
792
793 case ZRING_XINT:
794 /*
795 * Transmit done: change registers and resume,
796 * or clear BUSY.
797 */
798 if (cs->cs_heldchange) {
799 int sps;
800
801 sps = splzs();
802 c = zc->zc_csr;
803 if ((c & ZSRR0_DCD) == 0)
804 cs->cs_preg[3] &= ~ZSWR3_HFC;
805 memcpy((void *)cs->cs_creg,
806 (void *)cs->cs_preg, 16);
807 zs_loadchannelregs(zc, cs->cs_creg);
808 splx(sps);
809 cs->cs_heldchange = 0;
810 if (cs->cs_heldtbc &&
811 (tp->t_state & TS_TTSTOP) == 0) {
812 cs->cs_tbc = cs->cs_heldtbc - 1;
813 zc->zc_data = *cs->cs_tba++;
814 goto again;
815 }
816 }
817 tp->t_state &= ~TS_BUSY;
818 if ((tp->t_state & TS_FLUSH) != 0)
819 tp->t_state &= ~TS_FLUSH;
820 else
821 ndflush(&tp->t_outq,
822 cs->cs_tba - tp->t_outq.c_cf);
823 line->l_start(tp);
824 break;
825
826 case ZRING_SINT:
827 /*
828 * Status line change. HFC bit is run in
829 * hardware interrupt, to avoid locking
830 * at splzs here.
831 */
832 c = ZRING_VALUE(c);
833 if (((c ^ cs->cs_rr0) & ZSRR0_DCD) != 0) {
834 cc = (c & ZSRR0_DCD) != 0;
835 if (line->l_modem(tp, cc) == 0)
836 zs_modem(cs,
837 ZSWR5_RTS | ZSWR5_DTR,
838 cc ? DMBIS : DMBIC);
839 }
840 cs->cs_rr0 = c;
841 break;
842
843 default:
844 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
845 chan >> 1, (chan & 1) + 'a', c);
846 break;
847 }
848 }
849 cs->cs_rbget = get;
850 goto again;
851 }
852 splx(s);
853 return retval;
854 }
855
856 int
857 zsioctl(dev_t dev, u_long cmd, void * data, int flag, struct lwp *l)
858 {
859 int unit = ZS_UNIT(dev);
860 struct zs_softc *sc = device_lookup_private(&zs_cd, unit >> 1);
861 struct zs_chanstate *cs = sc->sc_cs[unit & 1];
862 struct tty *tp = cs->cs_ttyp;
863 int error, s;
864
865 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
866 if (error != EPASSTHROUGH)
867 return error;
868
869 error = ttioctl(tp, cmd, data, flag, l);
870 if (error !=EPASSTHROUGH)
871 return error;
872
873 switch (cmd) {
874 case TIOCSBRK:
875 s = splzs();
876 cs->cs_preg[5] |= ZSWR5_BREAK;
877 cs->cs_creg[5] |= ZSWR5_BREAK;
878 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
879 splx(s);
880 break;
881 case TIOCCBRK:
882 s = splzs();
883 cs->cs_preg[5] &= ~ZSWR5_BREAK;
884 cs->cs_creg[5] &= ~ZSWR5_BREAK;
885 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
886 splx(s);
887 break;
888 case TIOCGFLAGS: {
889 int bits = 0;
890
891 if (cs->cs_softcar)
892 bits |= TIOCFLAG_SOFTCAR;
893 if ((cs->cs_creg[15] & ZSWR15_DCD_IE) != 0)
894 bits |= TIOCFLAG_CLOCAL;
895 if ((cs->cs_creg[3] & ZSWR3_HFC) != 0)
896 bits |= TIOCFLAG_CRTSCTS;
897 *(int *)data = bits;
898 break;
899 }
900 case TIOCSFLAGS: {
901 int userbits = 0;
902
903 error = kauth_authorize_device_tty(l->l_cred,
904 KAUTH_DEVICE_TTY_PRIVSET, tp);
905 if (error != 0)
906 return EPERM;
907
908 userbits = *(int *)data;
909
910 /*
911 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
912 # defaulting to software flow control.
913 */
914 if ((userbits & TIOCFLAG_SOFTCAR) != 0 &&
915 (userbits & TIOCFLAG_CLOCAL) != 0)
916 return EINVAL;
917 if ((userbits & TIOCFLAG_MDMBUF) != 0)
918 /* don't support this (yet?) */
919 return ENODEV;
920
921 s = splzs();
922 if ((userbits & TIOCFLAG_SOFTCAR) != 0) {
923 cs->cs_softcar = 1; /* turn on softcar */
924 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
925 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
926 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
927 } else if ((userbits & TIOCFLAG_CLOCAL) != 0) {
928 cs->cs_softcar = 0; /* turn off softcar */
929 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
930 cs->cs_creg[15] |= ZSWR15_DCD_IE;
931 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
932 tp->t_termios.c_cflag |= CLOCAL;
933 }
934 if ((userbits & TIOCFLAG_CRTSCTS) != 0) {
935 cs->cs_preg[15] |= ZSWR15_CTS_IE;
936 cs->cs_creg[15] |= ZSWR15_CTS_IE;
937 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
938 cs->cs_preg[3] |= ZSWR3_HFC;
939 cs->cs_creg[3] |= ZSWR3_HFC;
940 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
941 tp->t_termios.c_cflag |= CRTSCTS;
942 } else {
943 /* no mdmbuf, so we must want software flow control */
944 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
945 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
946 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
947 cs->cs_preg[3] &= ~ZSWR3_HFC;
948 cs->cs_creg[3] &= ~ZSWR3_HFC;
949 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
950 tp->t_termios.c_cflag &= ~CRTSCTS;
951 }
952 splx(s);
953 break;
954 }
955 case TIOCSDTR:
956 zs_modem(cs, ZSWR5_DTR, DMBIS);
957 break;
958 case TIOCCDTR:
959 zs_modem(cs, ZSWR5_DTR, DMBIC);
960 break;
961 case TIOCMGET:
962 zs_modem(cs, 0, DMGET);
963 break;
964 case TIOCMSET:
965 case TIOCMBIS:
966 case TIOCMBIC:
967 default:
968 return EPASSTHROUGH;
969 }
970 return 0;
971 }
972
973 /*
974 * Start or restart transmission.
975 */
976 static void
977 zsstart(struct tty *tp)
978 {
979 struct zs_chanstate *cs;
980 int s, nch;
981 int unit = ZS_UNIT(tp->t_dev);
982 struct zs_softc *sc = device_lookup_private(&zs_cd, unit >> 1);
983
984 cs = sc->sc_cs[unit & 1];
985 s = spltty();
986
987 /*
988 * If currently active or delaying, no need to do anything.
989 */
990 if ((tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) != 0)
991 goto out;
992
993 /*
994 * If there are sleepers, and output has drained below low
995 * water mark, awaken.
996 */
997 ttypull(tp);
998
999 nch = ndqb(&tp->t_outq, 0); /* XXX */
1000 if (nch) {
1001 char *p = tp->t_outq.c_cf;
1002
1003 /* mark busy, enable tx done interrupts, & send first byte */
1004 tp->t_state |= TS_BUSY;
1005 (void)splzs();
1006 cs->cs_preg[1] |= ZSWR1_TIE;
1007 cs->cs_creg[1] |= ZSWR1_TIE;
1008 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1009 cs->cs_zc->zc_data = *p;
1010 cs->cs_tba = p + 1;
1011 cs->cs_tbc = nch - 1;
1012 } else {
1013 /*
1014 * Nothing to send, turn off transmit done interrupts.
1015 * This is useful if something is doing polled output.
1016 */
1017 (void)splzs();
1018 cs->cs_preg[1] &= ~ZSWR1_TIE;
1019 cs->cs_creg[1] &= ~ZSWR1_TIE;
1020 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1021 }
1022 out:
1023 splx(s);
1024 }
1025
1026 /*
1027 * Stop output, e.g., for ^S or output flush.
1028 */
1029 void
1030 zsstop(struct tty *tp, int flag)
1031 {
1032 struct zs_chanstate *cs;
1033 int s, unit = ZS_UNIT(tp->t_dev);
1034 struct zs_softc *sc = device_lookup_private(&zs_cd, unit >> 1);
1035
1036 cs = sc->sc_cs[unit & 1];
1037 s = splzs();
1038 if ((tp->t_state & TS_BUSY) != 0) {
1039 /*
1040 * Device is transmitting; must stop it.
1041 */
1042 cs->cs_tbc = 0;
1043 if ((tp->t_state & TS_TTSTOP) == 0)
1044 tp->t_state |= TS_FLUSH;
1045 }
1046 splx(s);
1047 }
1048
1049 static void
1050 zs_shutdown(struct zs_chanstate *cs)
1051 {
1052 struct tty *tp = cs->cs_ttyp;
1053 int s;
1054
1055 s = splzs();
1056
1057 /*
1058 * Hang up if necessary. Wait a bit, so the other side has time to
1059 * notice even if we immediately open the port again.
1060 */
1061 if ((tp->t_cflag & HUPCL) != 0) {
1062 zs_modem(cs, 0, DMSET);
1063 (void)tsleep((void *)cs, TTIPRI, ttclos, hz);
1064 }
1065
1066 /* Clear any break condition set with TIOCSBRK. */
1067 if ((cs->cs_creg[5] & ZSWR5_BREAK) != 0) {
1068 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1069 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1070 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1071 }
1072
1073 /*
1074 * Drop all lines and cancel interrupts
1075 */
1076 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1077 splx(s);
1078 }
1079
1080 /*
1081 * Set ZS tty parameters from termios.
1082 *
1083 * This routine makes use of the fact that only registers
1084 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1085 */
1086 static int
1087 zsparam(struct tty *tp, struct termios *t)
1088 {
1089 int unit = ZS_UNIT(tp->t_dev);
1090 struct zs_softc *sc = device_lookup_private(&zs_cd, unit >> 1);
1091 struct zs_chanstate *cs = sc->sc_cs[unit & 1];
1092 int cdiv = 0; /* XXX gcc4 -Wuninitialized */
1093 int clkm = 0; /* XXX gcc4 -Wuninitialized */
1094 int brgm = 0; /* XXX gcc4 -Wuninitialized */
1095 int tcon = 0; /* XXX gcc4 -Wuninitialized */
1096 int tmp, tmp5, cflag, s;
1097
1098 tmp = t->c_ospeed;
1099 tmp5 = t->c_ispeed;
1100 if (tmp < 0 || (tmp5 && tmp5 != tmp))
1101 return EINVAL;
1102 if (tmp == 0) {
1103 /* stty 0 => drop DTR and RTS */
1104 zs_modem(cs, 0, DMSET);
1105 return 0;
1106 }
1107 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1108 if (tmp < 0)
1109 return EINVAL;
1110 tp->t_ispeed = tp->t_ospeed = tmp;
1111
1112 cflag = tp->t_cflag = t->c_cflag;
1113 if ((cflag & CSTOPB) != 0)
1114 cdiv |= ZSWR4_TWOSB;
1115 else
1116 cdiv |= ZSWR4_ONESB;
1117 if ((cflag & PARODD) == 0)
1118 cdiv |= ZSWR4_EVENP;
1119 if ((cflag & PARENB) != 0)
1120 cdiv |= ZSWR4_PARENB;
1121
1122 switch (cflag & CSIZE) {
1123 case CS5:
1124 tmp = ZSWR3_RX_5;
1125 tmp5 = ZSWR5_TX_5;
1126 break;
1127 case CS6:
1128 tmp = ZSWR3_RX_6;
1129 tmp5 = ZSWR5_TX_6;
1130 break;
1131 case CS7:
1132 tmp = ZSWR3_RX_7;
1133 tmp5 = ZSWR5_TX_7;
1134 break;
1135 case CS8:
1136 default:
1137 tmp = ZSWR3_RX_8;
1138 tmp5 = ZSWR5_TX_8;
1139 break;
1140 }
1141 tmp |= ZSWR3_RX_ENABLE;
1142 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1143
1144 /*
1145 * Block interrupts so that state will not
1146 * be altered until we are done setting it up.
1147 */
1148 s = splzs();
1149 cs->cs_preg[4] = cdiv;
1150 cs->cs_preg[11] = clkm;
1151 cs->cs_preg[12] = tcon;
1152 cs->cs_preg[13] = tcon >> 8;
1153 cs->cs_preg[14] = brgm;
1154 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1155 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1156 cs->cs_preg[10] = ZSWR10_NRZ;
1157 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1158
1159 /*
1160 * Output hardware flow control on the chip is horrendous: if
1161 * carrier detect drops, the receiver is disabled. Hence we
1162 * can only do this when the carrier is on.
1163 */
1164 if ((cflag & CCTS_OFLOW) != 0 &&
1165 (cs->cs_zc->zc_csr & ZSRR0_DCD) != 0)
1166 tmp |= ZSWR3_HFC;
1167 cs->cs_preg[3] = tmp;
1168 cs->cs_preg[5] = tmp5;
1169
1170 /*
1171 * If nothing is being transmitted, set up new current values,
1172 * else mark them as pending.
1173 */
1174 if (cs->cs_heldchange == 0) {
1175 if ((cs->cs_ttyp->t_state & TS_BUSY) != 0) {
1176 cs->cs_heldtbc = cs->cs_tbc;
1177 cs->cs_tbc = 0;
1178 cs->cs_heldchange = 1;
1179 } else {
1180 memcpy((void *)cs->cs_creg, (void *)cs->cs_preg, 16);
1181 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1182 }
1183 }
1184 splx(s);
1185 return 0;
1186 }
1187
1188 /*
1189 * search for the best matching baudrate
1190 */
1191 static int
1192 zsbaudrate(int unit, int wanted, int *divisor, int *clockmode, int *brgenmode,
1193 int *timeconst)
1194 {
1195 int bestdiff, bestbps, source;
1196
1197 bestdiff = bestbps = 0;
1198 unit = (unit & 1) << 2;
1199 for (source = 0; source < 4; ++source) {
1200 u_long freq = zs_frequencies[unit + source];
1201 int diff, bps, div, clkm, brgm, tcon;
1202
1203 bps = div = clkm = brgm = tcon = 0;
1204 switch (source) {
1205 case 0: /* BRgen, PCLK */
1206 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1207 break;
1208 case 1: /* BRgen, RTxC */
1209 brgm = ZSWR14_BAUD_ENA;
1210 break;
1211 case 2: /* RTxC */
1212 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1213 break;
1214 case 3: /* TRxC */
1215 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1216 break;
1217 }
1218 switch (source) {
1219 case 0:
1220 case 1:
1221 div = ZSWR4_CLK_X16;
1222 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1223 tcon = BPS_TO_TCONST(freq, wanted);
1224 if (tcon < 0)
1225 tcon = 0;
1226 bps = TCONST_TO_BPS(freq, tcon);
1227 break;
1228 case 2:
1229 case 3:
1230 {
1231 int b1 = freq / 16, d1 = abs(b1 - wanted);
1232 int b2 = freq / 32, d2 = abs(b2 - wanted);
1233 int b3 = freq / 64, d3 = abs(b3 - wanted);
1234
1235 if (d1 < d2 && d1 < d3) {
1236 div = ZSWR4_CLK_X16;
1237 bps = b1;
1238 } else if (d2 < d3 && d2 < d1) {
1239 div = ZSWR4_CLK_X32;
1240 bps = b2;
1241 } else {
1242 div = ZSWR4_CLK_X64;
1243 bps = b3;
1244 }
1245 brgm = tcon = 0;
1246 break;
1247 }
1248 }
1249 diff = abs(bps - wanted);
1250 if (!source || diff < bestdiff) {
1251 *divisor = div;
1252 *clockmode = clkm;
1253 *brgenmode = brgm;
1254 *timeconst = tcon;
1255 bestbps = bps;
1256 bestdiff = diff;
1257 if (diff == 0)
1258 break;
1259 }
1260 }
1261 /* Allow deviations upto 5% */
1262 if (20 * bestdiff > wanted)
1263 return -1;
1264 return bestbps;
1265 }
1266
1267 /*
1268 * Raise or lower modem control (DTR/RTS) signals. If a character is
1269 * in transmission, the change is deferred.
1270 */
1271 static int
1272 zs_modem(struct zs_chanstate *cs, int bits, int how)
1273 {
1274 int s, mbits;
1275
1276 bits &= ZSWR5_DTR | ZSWR5_RTS;
1277
1278 s = splzs();
1279 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1280
1281 switch (how) {
1282 case DMSET:
1283 mbits = bits;
1284 break;
1285 case DMBIS:
1286 mbits |= bits;
1287 break;
1288 case DMBIC:
1289 mbits &= ~bits;
1290 break;
1291 case DMGET:
1292 splx(s);
1293 return mbits;
1294 }
1295
1296 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1297 if (cs->cs_heldchange == 0) {
1298 if ((cs->cs_ttyp->t_state & TS_BUSY) != 0) {
1299 cs->cs_heldtbc = cs->cs_tbc;
1300 cs->cs_tbc = 0;
1301 cs->cs_heldchange = 1;
1302 } else {
1303 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1304 }
1305 }
1306 splx(s);
1307 return 0;
1308 }
1309
1310 /*
1311 * Write the given register set to the given zs channel in the proper order.
1312 * The channel must not be transmitting at the time. The receiver will
1313 * be disabled for the time it takes to write all the registers.
1314 */
1315 static void
1316 zs_loadchannelregs(struct zschan *zc, uint8_t *reg)
1317 {
1318 int i;
1319
1320 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1321 i = zc->zc_data; /* drain fifo */
1322 i = zc->zc_data;
1323 i = zc->zc_data;
1324 ZS_WRITE(zc, 4, reg[4]);
1325 ZS_WRITE(zc, 10, reg[10]);
1326 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1327 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1328 ZS_WRITE(zc, 1, reg[1]);
1329 ZS_WRITE(zc, 9, reg[9]);
1330 ZS_WRITE(zc, 11, reg[11]);
1331 ZS_WRITE(zc, 12, reg[12]);
1332 ZS_WRITE(zc, 13, reg[13]);
1333 ZS_WRITE(zc, 14, reg[14]);
1334 ZS_WRITE(zc, 15, reg[15]);
1335 ZS_WRITE(zc, 3, reg[3]);
1336 ZS_WRITE(zc, 5, reg[5]);
1337 }
1338 #endif /* NZS > 1 */
1339