Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.8
      1 /*	$NetBSD: zs.c,v 1.8 1995/08/20 13:28:10 leo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/proc.h>
     58 #include <sys/device.h>
     59 #include <sys/conf.h>
     60 #include <sys/file.h>
     61 #include <sys/ioctl.h>
     62 #include <sys/tty.h>
     63 #include <sys/time.h>
     64 #include <sys/kernel.h>
     65 #include <sys/syslog.h>
     66 
     67 #include <machine/cpu.h>
     68 #include <machine/iomap.h>
     69 #include <machine/scu.h>
     70 #include <machine/mfp.h>
     71 
     72 #include <dev/ic/z8530reg.h>
     73 #include <atari/dev/zsvar.h>
     74 #include "zs.h"
     75 #if NZS > 1
     76 #error "This driver supports only 1 85C30!"
     77 #endif
     78 
     79 #if NZS > 0
     80 
     81 #define PCLK	(8000000)	/* PCLK pin input clock rate */
     82 
     83 #define splzs	spl5
     84 
     85 /*
     86  * Software state per found chip.
     87  */
     88 struct zs_softc {
     89     struct	device		zi_dev;    /* base device		  */
     90     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     91     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     92 };
     93 
     94 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
     95 /*
     96  * Define the registers for a closed port
     97  */
     98 static u_char zs_init_regs[16] = {
     99 /*  0 */	0,
    100 /*  1 */	0,
    101 /*  2 */	0x60,
    102 /*  3 */	0,
    103 /*  4 */	0,
    104 /*  5 */	0,
    105 /*  6 */	0,
    106 /*  7 */	0,
    107 /*  8 */	0,
    108 /*  9 */	ZSWR9_VECTOR_INCL_STAT,
    109 /* 10 */	ZSWR10_NRZ,
    110 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    111 /* 12 */	0,
    112 /* 13 */	0,
    113 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    114 /* 15 */	0
    115 };
    116 
    117 /*
    118  * Define the machine dependant clock frequencies
    119  * If BRgen feeds sender/receiver we always use a
    120  * divisor 16, therefor the division by 16 can as
    121  * well be done here.
    122  */
    123 static u_long zs_freqs_tt[] = {
    124 	/*
    125 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    126 	 * which is set to 307.2KHz during initialisation
    127 	 * and never changed afterwards.
    128 	 */
    129 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    130 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    131 	3672000,	/* RTxCA, from PCLK4		*/
    132 	      0,	/* TRxCA, external		*/
    133 
    134 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    135 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    136 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    137 	2457600		/* TRxCB, from BCLK		*/
    138 };
    139 static u_long zs_freqs_falcon[] = {
    140 	/*
    141 	 * Atari Falcon, XXX no specs available, this might be wrong
    142 	 */
    143 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    144 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    145 	3672000,	/* RTxCA, ???			*/
    146 	      0,	/* TRxCA, external		*/
    147 
    148 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    149 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    150 	3672000,	/* RTxCB, ???			*/
    151 	2457600		/* TRxCB, ???			*/
    152 };
    153 static u_long zs_freqs_generic[] = {
    154 	/*
    155 	 * other machines, assume only PCLK is available
    156 	 */
    157 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    158 	      0,	/* BRgen, RTxCA, divisor 16	*/
    159 	      0,	/* RTxCA, unknown		*/
    160 	      0,	/* TRxCA, unknown		*/
    161 
    162 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    163 	      0,	/* BRgen, RTxCB, divisor 16	*/
    164 	      0,	/* RTxCB, unknown		*/
    165 	      0		/* TRxCB, unknown		*/
    166 };
    167 static u_long *zs_frequencies;
    168 
    169 /* Definition of the driver for autoconfig. */
    170 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    171 static void	zsattach __P((struct device *, struct device *, void *));
    172 struct cfdriver zscd = {
    173 	NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
    174 	sizeof(struct zs_softc), NULL, 0 };
    175 
    176 /* Interrupt handlers. */
    177 int		zshard __P((long));
    178 static int	zssoft __P((long));
    179 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    180 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    181 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    182 
    183 static struct zs_chanstate *zslist;
    184 
    185 /* Routines called from other code. */
    186 static void	zsstart __P((struct tty *));
    187 void		zsstop __P((struct tty *, int));
    188 static int	zsparam __P((struct tty *, struct termios *));
    189 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    190 
    191 /* Routines purely local to this driver. */
    192 static void	zs_reset __P((volatile struct zschan *, int, int));
    193 static int	zs_modem __P((struct zs_chanstate *, int, int));
    194 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    195 
    196 static int zsshortcuts;	/* number of "shortcut" software interrupts */
    197 
    198 static int
    199 zsmatch(pdp, cfp, auxp)
    200 struct device	*pdp;
    201 struct cfdata	*cfp;
    202 void		*auxp;
    203 {
    204 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
    205 		return(0);
    206 	return(1);
    207 }
    208 
    209 /*
    210  * Attach a found zs.
    211  */
    212 static void
    213 zsattach(parent, dev, aux)
    214 struct device	*parent;
    215 struct device	*dev;
    216 void		*aux;
    217 {
    218 	register struct zs_softc		*zi;
    219 	register struct zs_chanstate		*cs;
    220 	register volatile struct zsdevice	*addr;
    221 	register struct tty			*tp;
    222 		 char				tmp;
    223 
    224 	addr      = (struct zsdevice *)AD_SCC;
    225 	zi        = (struct zs_softc *)dev;
    226 	zi->zi_zs = addr;
    227 	cs        = zi->zi_cs;
    228 
    229 	/*
    230 	 * Get the command register into a known state.
    231 	 */
    232 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    233 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    234 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    235 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    236 
    237 	/*
    238 	 * Do a hardware reset.
    239 	 */
    240 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    241 	delay(50000);	/*enough ? */
    242 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    243 
    244 	/*
    245 	 * Initialize both channels
    246 	 */
    247 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    248 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    249 
    250 	if(machineid & ATARI_TT) {
    251 		/*
    252 		 * ininitialise TT-MFP timer C: 307200Hz
    253 		 * timer C and D share one control register:
    254 		 *	bits 0-2 control timer D
    255 		 *	bits 4-6 control timer C
    256 		 */
    257 		int cr = MFP2->mf_tcdcr & 7;
    258 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    259 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    260 		cr |= T_Q004 << 4;		/* divisor 4     */
    261 		MFP2->mf_tcdcr = cr;		/* start timer C */
    262 		/*
    263 		 * enable scc related interrupts
    264 		 */
    265 		SCU->sys_mask |= SCU_SCC;
    266 
    267 		zs_frequencies = zs_freqs_tt;
    268 	} else if (machineid & ATARI_FALCON) {
    269 		zs_frequencies = zs_freqs_falcon;
    270 	} else {
    271 		zs_frequencies = zs_freqs_generic;
    272 	}
    273 
    274 	/* link into interrupt list with order (A,B) (B=A+1) */
    275 	cs[0].cs_next = &cs[1];
    276 	cs[1].cs_next = zslist;
    277 	zslist        = cs;
    278 
    279 	cs->cs_unit  = 0;
    280 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    281 	cs++;
    282 	cs->cs_unit  = 1;
    283 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    284 
    285 	printf(": serial2 on channel a and modem2 on channel b\n");
    286 }
    287 
    288 /*
    289  * Open a zs serial port.
    290  */
    291 int
    292 zsopen(dev, flags, mode, p)
    293 dev_t		dev;
    294 int		flags;
    295 int		mode;
    296 struct proc	*p;
    297 {
    298 	register struct tty		*tp;
    299 	register struct zs_chanstate	*cs;
    300 		 struct zs_softc	*zi;
    301 		 int			unit = ZS_UNIT(dev);
    302 		 int			zs = unit >> 1;
    303 		 int			error, s;
    304 
    305 	if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
    306 		return (ENXIO);
    307 	cs = &zi->zi_cs[unit & 1];
    308 	tp = cs->cs_ttyp;
    309 	if(tp == NULL) {
    310 		cs->cs_ttyp  = tp = ttymalloc();
    311 		tp->t_dev    = dev;
    312 		tp->t_oproc  = zsstart;
    313 		tp->t_param  = zsparam;
    314 	}
    315 
    316 	s  = spltty();
    317 	if((tp->t_state & TS_ISOPEN) == 0) {
    318 		ttychars(tp);
    319 		if(tp->t_ispeed == 0) {
    320 			tp->t_iflag = TTYDEF_IFLAG;
    321 			tp->t_oflag = TTYDEF_OFLAG;
    322 			tp->t_cflag = TTYDEF_CFLAG;
    323 			tp->t_lflag = TTYDEF_LFLAG;
    324 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    325 		}
    326 		(void)zsparam(tp, &tp->t_termios);
    327 		ttsetwater(tp);
    328 	}
    329 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    330 			splx(s);
    331 			return (EBUSY);
    332 	}
    333 	error = 0;
    334 	for(;;) {
    335 		/* loop, turning on the device, until carrier present */
    336 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    337 
    338 		/* May never get a status intr. if DCD already on. -gwr */
    339 		if(cs->cs_zc->zc_csr & ZSRR0_DCD)
    340 			tp->t_state |= TS_CARR_ON;
    341 		if(cs->cs_softcar)
    342 			tp->t_state |= TS_CARR_ON;
    343 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    344 		    tp->t_state & TS_CARR_ON)
    345 			break;
    346 		tp->t_state |= TS_WOPEN;
    347 		if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    348 		    ttopen, 0)) {
    349 			if(!(tp->t_state & TS_ISOPEN)) {
    350 				zs_modem(cs, 0, DMSET);
    351 				tp->t_state &= ~TS_WOPEN;
    352 				ttwakeup(tp);
    353 			}
    354 			splx(s);
    355 			return error;
    356 		}
    357 	}
    358 	splx(s);
    359 	if(error == 0)
    360 		error = linesw[tp->t_line].l_open(dev, tp);
    361 	if(error)
    362 		zs_modem(cs, 0, DMSET);
    363 	return(error);
    364 }
    365 
    366 /*
    367  * Close a zs serial port.
    368  */
    369 int
    370 zsclose(dev, flags, mode, p)
    371 dev_t		dev;
    372 int		flags;
    373 int		mode;
    374 struct proc	*p;
    375 {
    376 	register struct zs_chanstate	*cs;
    377 	register struct tty		*tp;
    378 		 struct zs_softc	*zi;
    379 		 int			unit = ZS_UNIT(dev);
    380 		 int			s;
    381 
    382 	zi = zscd.cd_devs[unit >> 1];
    383 	cs = &zi->zi_cs[unit & 1];
    384 	tp = cs->cs_ttyp;
    385 	linesw[tp->t_line].l_close(tp, flags);
    386 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    387 	    (tp->t_state & TS_ISOPEN) == 0) {
    388 		zs_modem(cs, 0, DMSET);
    389 		/* hold low for 1 second */
    390 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    391 	}
    392 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
    393 		s = splzs();
    394 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    395 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    396 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    397 		splx(s);
    398 	}
    399 	ttyclose(tp);
    400 
    401 	/*
    402 	 * Drop all lines and cancel interrupts
    403 	 */
    404 	zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
    405 	return (0);
    406 }
    407 
    408 /*
    409  * Read/write zs serial port.
    410  */
    411 int
    412 zsread(dev, uio, flags)
    413 dev_t		dev;
    414 struct uio	*uio;
    415 int		flags;
    416 {
    417 	register struct zs_chanstate	*cs;
    418 	register struct zs_softc	*zi;
    419 	register struct tty		*tp;
    420 		 int			unit;
    421 
    422 	unit = ZS_UNIT(dev);
    423 	zi   = zscd.cd_devs[unit >> 1];
    424 	cs   = &zi->zi_cs[unit & 1];
    425 	tp   = cs->cs_ttyp;
    426 
    427 	return(linesw[tp->t_line].l_read(tp, uio, flags));
    428 }
    429 
    430 int
    431 zswrite(dev, uio, flags)
    432 dev_t		dev;
    433 struct uio	*uio;
    434 int		flags;
    435 {
    436 	register struct zs_chanstate	*cs;
    437 	register struct zs_softc	*zi;
    438 	register struct tty		*tp;
    439 		 int			unit;
    440 
    441 	unit = ZS_UNIT(dev);
    442 	zi   = zscd.cd_devs[unit >> 1];
    443 	cs   = &zi->zi_cs[unit & 1];
    444 	tp   = cs->cs_ttyp;
    445 
    446 	return(linesw[tp->t_line].l_write(tp, uio, flags));
    447 }
    448 
    449 struct tty *
    450 zstty(dev)
    451 dev_t	dev;
    452 {
    453 	register struct zs_chanstate	*cs;
    454 	register struct zs_softc	*zi;
    455 		 int			unit;
    456 
    457 	unit = ZS_UNIT(dev);
    458 	zi   = zscd.cd_devs[unit >> 1];
    459 	cs   = &zi->zi_cs[unit & 1];
    460 	return(cs->cs_ttyp);
    461 }
    462 
    463 /*
    464  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    465  * channels are kept in (A,B) pairs.
    466  *
    467  * Do just a little, then get out; set a software interrupt if more
    468  * work is needed.
    469  *
    470  * We deliberately ignore the vectoring Zilog gives us, and match up
    471  * only the number of `reset interrupt under service' operations, not
    472  * the order.
    473  */
    474 
    475 int
    476 zshard(sr)
    477 long sr;
    478 {
    479 	register struct zs_chanstate	*a;
    480 #define	b (a + 1)
    481 	register volatile struct zschan *zc;
    482 	register int			rr3, intflags = 0, v, i;
    483 
    484 	do {
    485 	    intflags &= ~4;
    486 	    for(a = zslist; a != NULL; a = b->cs_next) {
    487 		rr3 = ZS_READ(a->cs_zc, 3);
    488 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    489 			intflags |= 4|2;
    490 			zc = a->cs_zc;
    491 			i  = a->cs_rbput;
    492 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    493 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    494 				intflags |= 1;
    495 			}
    496 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    497 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    498 				intflags |= 1;
    499 			}
    500 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    501 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    502 				intflags |= 1;
    503 			}
    504 			a->cs_rbput = i;
    505 		}
    506 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    507 			intflags |= 4|2;
    508 			zc = b->cs_zc;
    509 			i  = b->cs_rbput;
    510 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    511 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    512 				intflags |= 1;
    513 			}
    514 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    515 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    516 				intflags |= 1;
    517 			}
    518 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    519 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    520 				intflags |= 1;
    521 			}
    522 			b->cs_rbput = i;
    523 		}
    524 	    }
    525 	} while(intflags & 4);
    526 #undef b
    527 
    528 	if(intflags & 1) {
    529 		if(BASEPRI(sr)) {
    530 			spl1();
    531 			zsshortcuts++;
    532 			return(zssoft(sr));
    533 		}
    534 		else if(!cb_scheduled) {
    535 			cb_scheduled++;
    536 			add_sicallback(zssoft, 0, 0);
    537 		}
    538 	}
    539 	return(intflags & 2);
    540 }
    541 
    542 static int
    543 zsrint(cs, zc)
    544 register struct zs_chanstate	*cs;
    545 register volatile struct zschan	*zc;
    546 {
    547 	register int c;
    548 
    549 	/*
    550 	 * First read the status, because read of the received char
    551 	 * destroy the status of this char.
    552 	 */
    553 	c = ZS_READ(zc, 1);
    554 	c |= (zc->zc_data << 8);
    555 
    556 	/* clear receive error & interrupt condition */
    557 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    558 	zc->zc_csr = ZSWR0_CLR_INTR;
    559 
    560 	return(ZRING_MAKE(ZRING_RINT, c));
    561 }
    562 
    563 static int
    564 zsxint(cs, zc)
    565 register struct zs_chanstate	*cs;
    566 register volatile struct zschan	*zc;
    567 {
    568 	register int i = cs->cs_tbc;
    569 
    570 	if(i == 0) {
    571 		zc->zc_csr = ZSWR0_RESET_TXINT;
    572 		zc->zc_csr = ZSWR0_CLR_INTR;
    573 		return(ZRING_MAKE(ZRING_XINT, 0));
    574 	}
    575 	cs->cs_tbc = i - 1;
    576 	zc->zc_data = *cs->cs_tba++;
    577 	zc->zc_csr = ZSWR0_CLR_INTR;
    578 	return (0);
    579 }
    580 
    581 static int
    582 zssint(cs, zc)
    583 register struct zs_chanstate	*cs;
    584 register volatile struct zschan	*zc;
    585 {
    586 	register int rr0;
    587 
    588 	rr0 = zc->zc_csr;
    589 	zc->zc_csr = ZSWR0_RESET_STATUS;
    590 	zc->zc_csr = ZSWR0_CLR_INTR;
    591 	/*
    592 	 * The chip's hardware flow control is, as noted in zsreg.h,
    593 	 * busted---if the DCD line goes low the chip shuts off the
    594 	 * receiver (!).  If we want hardware CTS flow control but do
    595 	 * not have it, and carrier is now on, turn HFC on; if we have
    596 	 * HFC now but carrier has gone low, turn it off.
    597 	 */
    598 	if(rr0 & ZSRR0_DCD) {
    599 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    600 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    601 			cs->cs_creg[3] |= ZSWR3_HFC;
    602 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    603 		}
    604 	}
    605 	else {
    606 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    607 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    608 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    609 		}
    610 	}
    611 	return(ZRING_MAKE(ZRING_SINT, rr0));
    612 }
    613 
    614 /*
    615  * Print out a ring or fifo overrun error message.
    616  */
    617 static void
    618 zsoverrun(unit, ptime, what)
    619 int	unit;
    620 long	*ptime;
    621 char	*what;
    622 {
    623 
    624 	if(*ptime != time.tv_sec) {
    625 		*ptime = time.tv_sec;
    626 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    627 		    (unit & 1) + 'a', what);
    628 	}
    629 }
    630 
    631 /*
    632  * ZS software interrupt.  Scan all channels for deferred interrupts.
    633  */
    634 int
    635 zssoft(sr)
    636 long sr;
    637 {
    638     register struct zs_chanstate	*cs;
    639     register volatile struct zschan	*zc;
    640     register struct linesw		*line;
    641     register struct tty			*tp;
    642     register int			get, n, c, cc, unit, s;
    643  	     int			retval = 0;
    644 
    645     cb_scheduled = 0;
    646     s = spltty();
    647     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    648 	get = cs->cs_rbget;
    649 again:
    650 	n = cs->cs_rbput;	/* atomic			*/
    651 	if(get == n)		/* nothing more on this line	*/
    652 		continue;
    653 	retval = 1;
    654 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    655 	zc     = cs->cs_zc;
    656 	tp     = cs->cs_ttyp;
    657 	line   = &linesw[tp->t_line];
    658 	/*
    659 	 * Compute the number of interrupts in the receive ring.
    660 	 * If the count is overlarge, we lost some events, and
    661 	 * must advance to the first valid one.  It may get
    662 	 * overwritten if more data are arriving, but this is
    663 	 * too expensive to check and gains nothing (we already
    664 	 * lost out; all we can do at this point is trade one
    665 	 * kind of loss for another).
    666 	 */
    667 	n -= get;
    668 	if(n > ZLRB_RING_SIZE) {
    669 		zsoverrun(unit, &cs->cs_rotime, "ring");
    670 		get += n - ZLRB_RING_SIZE;
    671 		n    = ZLRB_RING_SIZE;
    672 	}
    673 	while(--n >= 0) {
    674 		/* race to keep ahead of incoming interrupts */
    675 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    676 		switch (ZRING_TYPE(c)) {
    677 
    678 		case ZRING_RINT:
    679 			c = ZRING_VALUE(c);
    680 			if(c & ZSRR1_DO)
    681 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    682 			cc = c >> 8;
    683 			if(c & ZSRR1_FE)
    684 				cc |= TTY_FE;
    685 			if(c & ZSRR1_PE)
    686 				cc |= TTY_PE;
    687 			line->l_rint(cc, tp);
    688 			break;
    689 
    690 		case ZRING_XINT:
    691 			/*
    692 			 * Transmit done: change registers and resume,
    693 			 * or clear BUSY.
    694 			 */
    695 			if(cs->cs_heldchange) {
    696 				int sps;
    697 
    698 				sps = splzs();
    699 				c = zc->zc_csr;
    700 				if((c & ZSRR0_DCD) == 0)
    701 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    702 				bcopy((caddr_t)cs->cs_preg,
    703 				    (caddr_t)cs->cs_creg, 16);
    704 				zs_loadchannelregs(zc, cs->cs_creg);
    705 				splx(sps);
    706 				cs->cs_heldchange = 0;
    707 				if(cs->cs_heldtbc
    708 					&& (tp->t_state & TS_TTSTOP) == 0) {
    709 					cs->cs_tbc = cs->cs_heldtbc - 1;
    710 					zc->zc_data = *cs->cs_tba++;
    711 					goto again;
    712 				}
    713 			}
    714 			tp->t_state &= ~TS_BUSY;
    715 			if(tp->t_state & TS_FLUSH)
    716 				tp->t_state &= ~TS_FLUSH;
    717 			else ndflush(&tp->t_outq,cs->cs_tba
    718 						- (caddr_t)tp->t_outq.c_cf);
    719 			line->l_start(tp);
    720 			break;
    721 
    722 		case ZRING_SINT:
    723 			/*
    724 			 * Status line change.  HFC bit is run in
    725 			 * hardware interrupt, to avoid locking
    726 			 * at splzs here.
    727 			 */
    728 			c = ZRING_VALUE(c);
    729 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    730 				cc = (c & ZSRR0_DCD) != 0;
    731 				if(line->l_modem(tp, cc) == 0)
    732 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    733 							cc ? DMBIS : DMBIC);
    734 			}
    735 			cs->cs_rr0 = c;
    736 			break;
    737 
    738 		default:
    739 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    740 			    unit >> 1, (unit & 1) + 'a', c);
    741 			break;
    742 		}
    743 	}
    744 	cs->cs_rbget = get;
    745 	goto again;
    746     }
    747     splx(s);
    748     return (retval);
    749 }
    750 
    751 int
    752 zsioctl(dev, cmd, data, flag, p)
    753 dev_t		dev;
    754 u_long		cmd;
    755 caddr_t		data;
    756 int		flag;
    757 struct proc	*p;
    758 {
    759 		 int			unit = ZS_UNIT(dev);
    760 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    761 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    762 	register int			error, s;
    763 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    764 
    765 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
    766 	if(error >= 0)
    767 		return(error);
    768 	error = ttioctl(tp, cmd, data, flag, p);
    769 	if(error >= 0)
    770 		return (error);
    771 
    772 	switch (cmd) {
    773 	case TIOCSBRK:
    774 		s = splzs();
    775 		cs->cs_preg[5] |= ZSWR5_BREAK;
    776 		cs->cs_creg[5] |= ZSWR5_BREAK;
    777 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    778 		splx(s);
    779 		break;
    780 	case TIOCCBRK:
    781 		s = splzs();
    782 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    783 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    784 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    785 		splx(s);
    786 		break;
    787 	case TIOCGFLAGS: {
    788 		int bits = 0;
    789 
    790 		if(cs->cs_softcar)
    791 			bits |= TIOCFLAG_SOFTCAR;
    792 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    793 			bits |= TIOCFLAG_CLOCAL;
    794 		if(cs->cs_creg[3] & ZSWR3_HFC)
    795 			bits |= TIOCFLAG_CRTSCTS;
    796 		*(int *)data = bits;
    797 		break;
    798 	}
    799 	case TIOCSFLAGS: {
    800 		int userbits, driverbits = 0;
    801 
    802 		error = suser(p->p_ucred, &p->p_acflag);
    803 		if(error != 0)
    804 			return (EPERM);
    805 
    806 		userbits = *(int *)data;
    807 
    808 		/*
    809 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    810 		 # defaulting to software flow control.
    811 		 */
    812 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    813 			return(EINVAL);
    814 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    815 			return(ENXIO);
    816 
    817 		s = splzs();
    818 		if((userbits & TIOCFLAG_SOFTCAR)) {
    819 			cs->cs_softcar = 1;	/* turn on softcar */
    820 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    821 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    822 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    823 		}
    824 		else if(userbits & TIOCFLAG_CLOCAL) {
    825 			cs->cs_softcar = 0; 	/* turn off softcar */
    826 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    827 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    828 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    829 			tp->t_termios.c_cflag |= CLOCAL;
    830 		}
    831 		if(userbits & TIOCFLAG_CRTSCTS) {
    832 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    833 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    834 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    835 			cs->cs_preg[3] |= ZSWR3_HFC;
    836 			cs->cs_creg[3] |= ZSWR3_HFC;
    837 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    838 			tp->t_termios.c_cflag |= CRTSCTS;
    839 		}
    840 		else {
    841 			/* no mdmbuf, so we must want software flow control */
    842 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    843 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    844 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    845 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    846 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    847 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    848 			tp->t_termios.c_cflag &= ~CRTSCTS;
    849 		}
    850 		splx(s);
    851 		break;
    852 	}
    853 	case TIOCSDTR:
    854 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    855 		break;
    856 	case TIOCCDTR:
    857 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    858 		break;
    859 	case TIOCMGET:
    860 		zs_modem(cs, 0, DMGET);
    861 		break;
    862 	case TIOCMSET:
    863 	case TIOCMBIS:
    864 	case TIOCMBIC:
    865 	default:
    866 		return (ENOTTY);
    867 	}
    868 	return (0);
    869 }
    870 
    871 /*
    872  * Start or restart transmission.
    873  */
    874 static void
    875 zsstart(tp)
    876 register struct tty *tp;
    877 {
    878 	register struct zs_chanstate	*cs;
    879 	register int			s, nch;
    880 		 int			unit = ZS_UNIT(tp->t_dev);
    881 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    882 
    883 	cs = &zi->zi_cs[unit & 1];
    884 	s  = spltty();
    885 
    886 	/*
    887 	 * If currently active or delaying, no need to do anything.
    888 	 */
    889 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    890 		goto out;
    891 
    892 	/*
    893 	 * If there are sleepers, and output has drained below low
    894 	 * water mark, awaken.
    895 	 */
    896 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    897 		if(tp->t_state & TS_ASLEEP) {
    898 			tp->t_state &= ~TS_ASLEEP;
    899 			wakeup((caddr_t)&tp->t_outq);
    900 		}
    901 		selwakeup(&tp->t_wsel);
    902 	}
    903 
    904 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    905 	if(nch) {
    906 		register char *p = tp->t_outq.c_cf;
    907 
    908 		/* mark busy, enable tx done interrupts, & send first byte */
    909 		tp->t_state |= TS_BUSY;
    910 		(void) splzs();
    911 		cs->cs_preg[1] |= ZSWR1_TIE;
    912 		cs->cs_creg[1] |= ZSWR1_TIE;
    913 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    914 		cs->cs_zc->zc_data = *p;
    915 		cs->cs_tba = p + 1;
    916 		cs->cs_tbc = nch - 1;
    917 	} else {
    918 		/*
    919 		 * Nothing to send, turn off transmit done interrupts.
    920 		 * This is useful if something is doing polled output.
    921 		 */
    922 		(void) splzs();
    923 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    924 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    925 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    926 	}
    927 out:
    928 	splx(s);
    929 }
    930 
    931 /*
    932  * Stop output, e.g., for ^S or output flush.
    933  */
    934 void
    935 zsstop(tp, flag)
    936 register struct tty	*tp;
    937 	 int		flag;
    938 {
    939 	register struct zs_chanstate	*cs;
    940 	register int			s, unit = ZS_UNIT(tp->t_dev);
    941 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    942 
    943 	cs = &zi->zi_cs[unit & 1];
    944 	s  = splzs();
    945 	if(tp->t_state & TS_BUSY) {
    946 		/*
    947 		 * Device is transmitting; must stop it.
    948 		 */
    949 		cs->cs_tbc = 0;
    950 		if ((tp->t_state & TS_TTSTOP) == 0)
    951 			tp->t_state |= TS_FLUSH;
    952 	}
    953 	splx(s);
    954 }
    955 
    956 /*
    957  * Set ZS tty parameters from termios.
    958  *
    959  * This routine makes use of the fact that only registers
    960  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
    961  */
    962 static int
    963 zsparam(tp, t)
    964 register struct tty	*tp;
    965 register struct termios	*t;
    966 {
    967 		 int			unit = ZS_UNIT(tp->t_dev);
    968 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    969 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    970 		 int			cdiv, clkm, brgm, tcon;
    971 	register int			tmp, tmp5, cflag, s;
    972 
    973 	tmp  = t->c_ospeed;
    974 	tmp5 = t->c_ispeed;
    975 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
    976 		return(EINVAL);
    977 	if(tmp == 0) {
    978 		/* stty 0 => drop DTR and RTS */
    979 		zs_modem(cs, 0, DMSET);
    980 		return(0);
    981 	}
    982 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
    983 	if (tmp < 0)
    984 		return(EINVAL);
    985 	tp->t_ispeed = tp->t_ospeed = tmp;
    986 
    987 	cflag = tp->t_cflag = t->c_cflag;
    988 	if (cflag & CSTOPB)
    989 		cdiv |= ZSWR4_TWOSB;
    990 	else
    991 		cdiv |= ZSWR4_ONESB;
    992 	if (!(cflag & PARODD))
    993 		cdiv |= ZSWR4_EVENP;
    994 	if (cflag & PARENB)
    995 		cdiv |= ZSWR4_PARENB;
    996 
    997 	switch(cflag & CSIZE) {
    998 	case CS5:
    999 		tmp  = ZSWR3_RX_5;
   1000 		tmp5 = ZSWR5_TX_5;
   1001 		break;
   1002 	case CS6:
   1003 		tmp  = ZSWR3_RX_6;
   1004 		tmp5 = ZSWR5_TX_6;
   1005 		break;
   1006 	case CS7:
   1007 		tmp  = ZSWR3_RX_7;
   1008 		tmp5 = ZSWR5_TX_7;
   1009 		break;
   1010 	case CS8:
   1011 	default:
   1012 		tmp  = ZSWR3_RX_8;
   1013 		tmp5 = ZSWR5_TX_8;
   1014 		break;
   1015 	}
   1016 	tmp  |= ZSWR3_RX_ENABLE;
   1017 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1018 
   1019 	/*
   1020 	 * Block interrupts so that state will not
   1021 	 * be altered until we are done setting it up.
   1022 	 */
   1023 	s = splzs();
   1024 	cs->cs_preg[4]  = cdiv;
   1025 	cs->cs_preg[11] = clkm;
   1026 	cs->cs_preg[12] = tcon;
   1027 	cs->cs_preg[13] = tcon >> 8;
   1028 	cs->cs_preg[14] = brgm;
   1029 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1030 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1031 	cs->cs_preg[10] = ZSWR10_NRZ;
   1032 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1033 
   1034 	/*
   1035 	 * Output hardware flow control on the chip is horrendous: if
   1036 	 * carrier detect drops, the receiver is disabled.  Hence we
   1037 	 * can only do this when the carrier is on.
   1038 	 */
   1039 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1040 		tmp |= ZSWR3_HFC;
   1041 	cs->cs_preg[3] = tmp;
   1042 	cs->cs_preg[5] = tmp5;
   1043 
   1044 	/*
   1045 	 * If nothing is being transmitted, set up new current values,
   1046 	 * else mark them as pending.
   1047 	 */
   1048 	if(cs->cs_heldchange == 0) {
   1049 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1050 			cs->cs_heldtbc = cs->cs_tbc;
   1051 			cs->cs_tbc = 0;
   1052 			cs->cs_heldchange = 1;
   1053 		} else {
   1054 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1055 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1056 		}
   1057 	}
   1058 	splx(s);
   1059 	return (0);
   1060 }
   1061 
   1062 /*
   1063  * search for the best matching baudrate
   1064  */
   1065 static int
   1066 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1067 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1068 {
   1069 	int	bestdiff, bestbps, source;
   1070 
   1071 	unit = (unit & 1) << 2;
   1072 	for (source = 0; source < 4; ++source) {
   1073 		long	freq = zs_frequencies[unit + source];
   1074 		int	diff, bps, div, clkm, brgm, tcon;
   1075 		switch (source) {
   1076 			case 0:	/* BRgen, PCLK */
   1077 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1078 				break;
   1079 			case 1:	/* BRgen, RTxC */
   1080 				brgm = ZSWR14_BAUD_ENA;
   1081 				break;
   1082 			case 2: /* RTxC */
   1083 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1084 				break;
   1085 			case 3: /* TRxC */
   1086 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1087 				break;
   1088 		}
   1089 		switch (source) {
   1090 			case 0:
   1091 			case 1:
   1092 				div  = ZSWR4_CLK_X16;
   1093 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1094 				tcon = BPS_TO_TCONST(freq, wanted);
   1095 				if (tcon < 0)
   1096 					tcon = 0;
   1097 				bps  = TCONST_TO_BPS(freq, tcon);
   1098 				break;
   1099 			case 2:
   1100 			case 3:
   1101 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1102 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1103 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1104 
   1105 				if (d1 < d2 && d1 < d3) {
   1106 					div = ZSWR4_CLK_X16;
   1107 					bps = b1;
   1108 				} else if (d2 < d3 && d2 < d1) {
   1109 					div = ZSWR4_CLK_X32;
   1110 					bps = b2;
   1111 				} else {
   1112 					div = ZSWR4_CLK_X64;
   1113 					bps = b3;
   1114 				}
   1115 				brgm = tcon = 0;
   1116 				break;
   1117 			}
   1118 		}
   1119 		diff = abs(bps - wanted);
   1120 		if (!source || diff < bestdiff) {
   1121 			*divisor   = div;
   1122 			*clockmode = clkm;
   1123 			*brgenmode = brgm;
   1124 			*timeconst = tcon;
   1125 			bestbps    = bps;
   1126 			bestdiff   = diff;
   1127 			if (diff == 0)
   1128 				break;
   1129 		}
   1130 	}
   1131 	/* Allow deviations upto 5% */
   1132 	if (20 * bestdiff > wanted)
   1133 		return -1;
   1134 	return bestbps;
   1135 }
   1136 
   1137 /*
   1138  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1139  * in transmission, the change is deferred.
   1140  */
   1141 static int
   1142 zs_modem(cs, bits, how)
   1143 struct zs_chanstate	*cs;
   1144 int			bits, how;
   1145 {
   1146 	int s, mbits;
   1147 
   1148 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1149 
   1150 	s = splzs();
   1151 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1152 
   1153 	switch(how) {
   1154 		case DMSET:
   1155 				mbits  = bits;
   1156 				break;
   1157 		case DMBIS:
   1158 				mbits |= bits;
   1159 				break;
   1160 		case DMBIC:
   1161 				mbits &= ~bits;
   1162 				break;
   1163 		case DMGET:
   1164 				splx(s);
   1165 				return(mbits);
   1166 	}
   1167 
   1168 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1169 	if(cs->cs_heldchange == 0) {
   1170 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1171 			cs->cs_heldtbc = cs->cs_tbc;
   1172 			cs->cs_tbc = 0;
   1173 			cs->cs_heldchange = 1;
   1174 		}
   1175 		else {
   1176 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1177 		}
   1178 	}
   1179 	splx(s);
   1180 	return(0);
   1181 }
   1182 
   1183 /*
   1184  * Write the given register set to the given zs channel in the proper order.
   1185  * The channel must not be transmitting at the time.  The receiver will
   1186  * be disabled for the time it takes to write all the registers.
   1187  */
   1188 static void
   1189 zs_loadchannelregs(zc, reg)
   1190 volatile struct zschan	*zc;
   1191 u_char			*reg;
   1192 {
   1193 	int i;
   1194 
   1195 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1196 	i = zc->zc_data;		/* drain fifo */
   1197 	i = zc->zc_data;
   1198 	i = zc->zc_data;
   1199 	ZS_WRITE(zc,  4, reg[4]);
   1200 	ZS_WRITE(zc, 10, reg[10]);
   1201 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1202 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1203 	ZS_WRITE(zc,  1, reg[1]);
   1204 	ZS_WRITE(zc,  9, reg[9]);
   1205 	ZS_WRITE(zc, 11, reg[11]);
   1206 	ZS_WRITE(zc, 12, reg[12]);
   1207 	ZS_WRITE(zc, 13, reg[13]);
   1208 	ZS_WRITE(zc, 14, reg[14]);
   1209 	ZS_WRITE(zc, 15, reg[15]);
   1210 	ZS_WRITE(zc,  3, reg[3]);
   1211 	ZS_WRITE(zc,  5, reg[5]);
   1212 }
   1213 #endif /* NZS > 1 */
   1214