Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.9
      1 /*	$NetBSD: zs.c,v 1.9 1995/09/23 20:29:17 leo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This software was developed by the Computer Systems Engineering group
      9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  * contributed to Berkeley.
     11  *
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Lawrence Berkeley Laboratory.
     17  *
     18  * Redistribution and use in source and binary forms, with or without
     19  * modification, are permitted provided that the following conditions
     20  * are met:
     21  * 1. Redistributions of source code must retain the above copyright
     22  *    notice, this list of conditions and the following disclaimer.
     23  * 2. Redistributions in binary form must reproduce the above copyright
     24  *    notice, this list of conditions and the following disclaimer in the
     25  *    documentation and/or other materials provided with the distribution.
     26  * 3. All advertising materials mentioning features or use of this software
     27  *    must display the following acknowledgement:
     28  *	This product includes software developed by the University of
     29  *	California, Berkeley and its contributors.
     30  * 4. Neither the name of the University nor the names of its contributors
     31  *    may be used to endorse or promote products derived from this software
     32  *    without specific prior written permission.
     33  *
     34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     44  * SUCH DAMAGE.
     45  *
     46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (modem2 and serial2) on zs0.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include <sys/param.h>
     57 #include <sys/systm.h>
     58 #include <sys/proc.h>
     59 #include <sys/device.h>
     60 #include <sys/conf.h>
     61 #include <sys/file.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/tty.h>
     64 #include <sys/time.h>
     65 #include <sys/kernel.h>
     66 #include <sys/syslog.h>
     67 
     68 #include <machine/cpu.h>
     69 #include <machine/iomap.h>
     70 #include <machine/scu.h>
     71 #include <machine/mfp.h>
     72 
     73 #include <dev/ic/z8530reg.h>
     74 #include <atari/dev/zsvar.h>
     75 #include "zs.h"
     76 #if NZS > 1
     77 #error "This driver supports only 1 85C30!"
     78 #endif
     79 
     80 #if NZS > 0
     81 
     82 #define PCLK	(8000000)	/* PCLK pin input clock rate */
     83 
     84 #define splzs	spl5
     85 
     86 /*
     87  * Software state per found chip.
     88  */
     89 struct zs_softc {
     90     struct	device		zi_dev;    /* base device		  */
     91     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
     92     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
     93 };
     94 
     95 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
     96 /*
     97  * Define the registers for a closed port
     98  */
     99 static u_char zs_init_regs[16] = {
    100 /*  0 */	0,
    101 /*  1 */	0,
    102 /*  2 */	0x60,
    103 /*  3 */	0,
    104 /*  4 */	0,
    105 /*  5 */	0,
    106 /*  6 */	0,
    107 /*  7 */	0,
    108 /*  8 */	0,
    109 /*  9 */	ZSWR9_VECTOR_INCL_STAT,
    110 /* 10 */	ZSWR10_NRZ,
    111 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    112 /* 12 */	0,
    113 /* 13 */	0,
    114 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    115 /* 15 */	0
    116 };
    117 
    118 /*
    119  * Define the machine dependant clock frequencies
    120  * If BRgen feeds sender/receiver we always use a
    121  * divisor 16, therefor the division by 16 can as
    122  * well be done here.
    123  */
    124 static u_long zs_freqs_tt[] = {
    125 	/*
    126 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
    127 	 * which is set to 307.2KHz during initialisation
    128 	 * and never changed afterwards.
    129 	 */
    130 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    131 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    132 	3672000,	/* RTxCA, from PCLK4		*/
    133 	      0,	/* TRxCA, external		*/
    134 
    135 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    136 	  19200,	/* BRgen, RTxCB, divisor 16	*/
    137 	 307200,	/* RTxCB, from TT-MFP TCO	*/
    138 	2457600		/* TRxCB, from BCLK		*/
    139 };
    140 static u_long zs_freqs_falcon[] = {
    141 	/*
    142 	 * Atari Falcon, XXX no specs available, this might be wrong
    143 	 */
    144 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    145 	 229500,	/* BRgen, RTxCA, divisor 16	*/
    146 	3672000,	/* RTxCA, ???			*/
    147 	      0,	/* TRxCA, external		*/
    148 
    149 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    150 	 229500,	/* BRgen, RTxCB, divisor 16	*/
    151 	3672000,	/* RTxCB, ???			*/
    152 	2457600		/* TRxCB, ???			*/
    153 };
    154 static u_long zs_freqs_generic[] = {
    155 	/*
    156 	 * other machines, assume only PCLK is available
    157 	 */
    158 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    159 	      0,	/* BRgen, RTxCA, divisor 16	*/
    160 	      0,	/* RTxCA, unknown		*/
    161 	      0,	/* TRxCA, unknown		*/
    162 
    163 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
    164 	      0,	/* BRgen, RTxCB, divisor 16	*/
    165 	      0,	/* RTxCB, unknown		*/
    166 	      0		/* TRxCB, unknown		*/
    167 };
    168 static u_long *zs_frequencies;
    169 
    170 /* Definition of the driver for autoconfig. */
    171 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    172 static void	zsattach __P((struct device *, struct device *, void *));
    173 struct cfdriver zscd = {
    174 	NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
    175 	sizeof(struct zs_softc), NULL, 0 };
    176 
    177 /* Interrupt handlers. */
    178 int		zshard __P((long));
    179 static int	zssoft __P((long));
    180 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    181 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    182 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
    183 
    184 static struct zs_chanstate *zslist;
    185 
    186 /* Routines called from other code. */
    187 static void	zsstart __P((struct tty *));
    188 void		zsstop __P((struct tty *, int));
    189 static int	zsparam __P((struct tty *, struct termios *));
    190 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
    191 
    192 /* Routines purely local to this driver. */
    193 static void	zs_reset __P((volatile struct zschan *, int, int));
    194 static int	zs_modem __P((struct zs_chanstate *, int, int));
    195 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    196 
    197 static int zsshortcuts;	/* number of "shortcut" software interrupts */
    198 
    199 static int
    200 zsmatch(pdp, cfp, auxp)
    201 struct device	*pdp;
    202 struct cfdata	*cfp;
    203 void		*auxp;
    204 {
    205 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
    206 		return(0);
    207 	return(1);
    208 }
    209 
    210 /*
    211  * Attach a found zs.
    212  */
    213 static void
    214 zsattach(parent, dev, aux)
    215 struct device	*parent;
    216 struct device	*dev;
    217 void		*aux;
    218 {
    219 	register struct zs_softc		*zi;
    220 	register struct zs_chanstate		*cs;
    221 	register volatile struct zsdevice	*addr;
    222 	register struct tty			*tp;
    223 		 char				tmp;
    224 
    225 	addr      = (struct zsdevice *)AD_SCC;
    226 	zi        = (struct zs_softc *)dev;
    227 	zi->zi_zs = addr;
    228 	cs        = zi->zi_cs;
    229 
    230 	/*
    231 	 * Get the command register into a known state.
    232 	 */
    233 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    234 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
    235 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    236 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
    237 
    238 	/*
    239 	 * Do a hardware reset.
    240 	 */
    241 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
    242 	delay(50000);	/*enough ? */
    243 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
    244 
    245 	/*
    246 	 * Initialize both channels
    247 	 */
    248 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
    249 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
    250 
    251 	if(machineid & ATARI_TT) {
    252 		/*
    253 		 * ininitialise TT-MFP timer C: 307200Hz
    254 		 * timer C and D share one control register:
    255 		 *	bits 0-2 control timer D
    256 		 *	bits 4-6 control timer C
    257 		 */
    258 		int cr = MFP2->mf_tcdcr & 7;
    259 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
    260 		MFP2->mf_tcdr  = 1;		/* counter 1     */
    261 		cr |= T_Q004 << 4;		/* divisor 4     */
    262 		MFP2->mf_tcdcr = cr;		/* start timer C */
    263 		/*
    264 		 * enable scc related interrupts
    265 		 */
    266 		SCU->sys_mask |= SCU_SCC;
    267 
    268 		zs_frequencies = zs_freqs_tt;
    269 	} else if (machineid & ATARI_FALCON) {
    270 		zs_frequencies = zs_freqs_falcon;
    271 	} else {
    272 		zs_frequencies = zs_freqs_generic;
    273 	}
    274 
    275 	/* link into interrupt list with order (A,B) (B=A+1) */
    276 	cs[0].cs_next = &cs[1];
    277 	cs[1].cs_next = zslist;
    278 	zslist        = cs;
    279 
    280 	cs->cs_unit  = 0;
    281 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
    282 	cs++;
    283 	cs->cs_unit  = 1;
    284 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
    285 
    286 	printf(": serial2 on channel a and modem2 on channel b\n");
    287 }
    288 
    289 /*
    290  * Open a zs serial port.
    291  */
    292 int
    293 zsopen(dev, flags, mode, p)
    294 dev_t		dev;
    295 int		flags;
    296 int		mode;
    297 struct proc	*p;
    298 {
    299 	register struct tty		*tp;
    300 	register struct zs_chanstate	*cs;
    301 		 struct zs_softc	*zi;
    302 		 int			unit = ZS_UNIT(dev);
    303 		 int			zs = unit >> 1;
    304 		 int			error, s;
    305 
    306 	if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
    307 		return (ENXIO);
    308 	cs = &zi->zi_cs[unit & 1];
    309 	tp = cs->cs_ttyp;
    310 	if(tp == NULL) {
    311 		cs->cs_ttyp  = tp = ttymalloc();
    312 		tp->t_dev    = dev;
    313 		tp->t_oproc  = zsstart;
    314 		tp->t_param  = zsparam;
    315 	}
    316 
    317 	s  = spltty();
    318 	if((tp->t_state & TS_ISOPEN) == 0) {
    319 		ttychars(tp);
    320 		if(tp->t_ispeed == 0) {
    321 			tp->t_iflag = TTYDEF_IFLAG;
    322 			tp->t_oflag = TTYDEF_OFLAG;
    323 			tp->t_cflag = TTYDEF_CFLAG;
    324 			tp->t_lflag = TTYDEF_LFLAG;
    325 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
    326 		}
    327 		(void)zsparam(tp, &tp->t_termios);
    328 		ttsetwater(tp);
    329 	}
    330 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    331 			splx(s);
    332 			return (EBUSY);
    333 	}
    334 	error = 0;
    335 	for(;;) {
    336 		/* loop, turning on the device, until carrier present */
    337 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
    338 
    339 		/* May never get a status intr. if DCD already on. -gwr */
    340 		if(cs->cs_zc->zc_csr & ZSRR0_DCD)
    341 			tp->t_state |= TS_CARR_ON;
    342 		if(cs->cs_softcar)
    343 			tp->t_state |= TS_CARR_ON;
    344 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    345 		    tp->t_state & TS_CARR_ON)
    346 			break;
    347 		tp->t_state |= TS_WOPEN;
    348 		if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    349 		    ttopen, 0)) {
    350 			if(!(tp->t_state & TS_ISOPEN)) {
    351 				zs_modem(cs, 0, DMSET);
    352 				tp->t_state &= ~TS_WOPEN;
    353 				ttwakeup(tp);
    354 			}
    355 			splx(s);
    356 			return error;
    357 		}
    358 	}
    359 	splx(s);
    360 	if(error == 0)
    361 		error = linesw[tp->t_line].l_open(dev, tp);
    362 	if(error)
    363 		zs_modem(cs, 0, DMSET);
    364 	return(error);
    365 }
    366 
    367 /*
    368  * Close a zs serial port.
    369  */
    370 int
    371 zsclose(dev, flags, mode, p)
    372 dev_t		dev;
    373 int		flags;
    374 int		mode;
    375 struct proc	*p;
    376 {
    377 	register struct zs_chanstate	*cs;
    378 	register struct tty		*tp;
    379 		 struct zs_softc	*zi;
    380 		 int			unit = ZS_UNIT(dev);
    381 		 int			s;
    382 
    383 	zi = zscd.cd_devs[unit >> 1];
    384 	cs = &zi->zi_cs[unit & 1];
    385 	tp = cs->cs_ttyp;
    386 	linesw[tp->t_line].l_close(tp, flags);
    387 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    388 	    (tp->t_state & TS_ISOPEN) == 0) {
    389 		zs_modem(cs, 0, DMSET);
    390 		/* hold low for 1 second */
    391 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    392 	}
    393 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
    394 		s = splzs();
    395 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    396 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    397 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    398 		splx(s);
    399 	}
    400 	ttyclose(tp);
    401 
    402 	/*
    403 	 * Drop all lines and cancel interrupts
    404 	 */
    405 	zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
    406 	return (0);
    407 }
    408 
    409 /*
    410  * Read/write zs serial port.
    411  */
    412 int
    413 zsread(dev, uio, flags)
    414 dev_t		dev;
    415 struct uio	*uio;
    416 int		flags;
    417 {
    418 	register struct zs_chanstate	*cs;
    419 	register struct zs_softc	*zi;
    420 	register struct tty		*tp;
    421 		 int			unit;
    422 
    423 	unit = ZS_UNIT(dev);
    424 	zi   = zscd.cd_devs[unit >> 1];
    425 	cs   = &zi->zi_cs[unit & 1];
    426 	tp   = cs->cs_ttyp;
    427 
    428 	return(linesw[tp->t_line].l_read(tp, uio, flags));
    429 }
    430 
    431 int
    432 zswrite(dev, uio, flags)
    433 dev_t		dev;
    434 struct uio	*uio;
    435 int		flags;
    436 {
    437 	register struct zs_chanstate	*cs;
    438 	register struct zs_softc	*zi;
    439 	register struct tty		*tp;
    440 		 int			unit;
    441 
    442 	unit = ZS_UNIT(dev);
    443 	zi   = zscd.cd_devs[unit >> 1];
    444 	cs   = &zi->zi_cs[unit & 1];
    445 	tp   = cs->cs_ttyp;
    446 
    447 	return(linesw[tp->t_line].l_write(tp, uio, flags));
    448 }
    449 
    450 struct tty *
    451 zstty(dev)
    452 dev_t	dev;
    453 {
    454 	register struct zs_chanstate	*cs;
    455 	register struct zs_softc	*zi;
    456 		 int			unit;
    457 
    458 	unit = ZS_UNIT(dev);
    459 	zi   = zscd.cd_devs[unit >> 1];
    460 	cs   = &zi->zi_cs[unit & 1];
    461 	return(cs->cs_ttyp);
    462 }
    463 
    464 /*
    465  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    466  * channels are kept in (A,B) pairs.
    467  *
    468  * Do just a little, then get out; set a software interrupt if more
    469  * work is needed.
    470  *
    471  * We deliberately ignore the vectoring Zilog gives us, and match up
    472  * only the number of `reset interrupt under service' operations, not
    473  * the order.
    474  */
    475 
    476 int
    477 zshard(sr)
    478 long sr;
    479 {
    480 	register struct zs_chanstate	*a;
    481 #define	b (a + 1)
    482 	register volatile struct zschan *zc;
    483 	register int			rr3, intflags = 0, v, i;
    484 
    485 	do {
    486 	    intflags &= ~4;
    487 	    for(a = zslist; a != NULL; a = b->cs_next) {
    488 		rr3 = ZS_READ(a->cs_zc, 3);
    489 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    490 			intflags |= 4|2;
    491 			zc = a->cs_zc;
    492 			i  = a->cs_rbput;
    493 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    494 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    495 				intflags |= 1;
    496 			}
    497 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    498 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    499 				intflags |= 1;
    500 			}
    501 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    502 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    503 				intflags |= 1;
    504 			}
    505 			a->cs_rbput = i;
    506 		}
    507 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    508 			intflags |= 4|2;
    509 			zc = b->cs_zc;
    510 			i  = b->cs_rbput;
    511 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    512 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    513 				intflags |= 1;
    514 			}
    515 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    516 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    517 				intflags |= 1;
    518 			}
    519 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    520 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    521 				intflags |= 1;
    522 			}
    523 			b->cs_rbput = i;
    524 		}
    525 	    }
    526 	} while(intflags & 4);
    527 #undef b
    528 
    529 	if(intflags & 1) {
    530 		if(BASEPRI(sr)) {
    531 			spl1();
    532 			zsshortcuts++;
    533 			return(zssoft(sr));
    534 		}
    535 		else if(!cb_scheduled) {
    536 			cb_scheduled++;
    537 			add_sicallback(zssoft, 0, 0);
    538 		}
    539 	}
    540 	return(intflags & 2);
    541 }
    542 
    543 static int
    544 zsrint(cs, zc)
    545 register struct zs_chanstate	*cs;
    546 register volatile struct zschan	*zc;
    547 {
    548 	register int c;
    549 
    550 	/*
    551 	 * First read the status, because read of the received char
    552 	 * destroy the status of this char.
    553 	 */
    554 	c = ZS_READ(zc, 1);
    555 	c |= (zc->zc_data << 8);
    556 
    557 	/* clear receive error & interrupt condition */
    558 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    559 	zc->zc_csr = ZSWR0_CLR_INTR;
    560 
    561 	return(ZRING_MAKE(ZRING_RINT, c));
    562 }
    563 
    564 static int
    565 zsxint(cs, zc)
    566 register struct zs_chanstate	*cs;
    567 register volatile struct zschan	*zc;
    568 {
    569 	register int i = cs->cs_tbc;
    570 
    571 	if(i == 0) {
    572 		zc->zc_csr = ZSWR0_RESET_TXINT;
    573 		zc->zc_csr = ZSWR0_CLR_INTR;
    574 		return(ZRING_MAKE(ZRING_XINT, 0));
    575 	}
    576 	cs->cs_tbc = i - 1;
    577 	zc->zc_data = *cs->cs_tba++;
    578 	zc->zc_csr = ZSWR0_CLR_INTR;
    579 	return (0);
    580 }
    581 
    582 static int
    583 zssint(cs, zc)
    584 register struct zs_chanstate	*cs;
    585 register volatile struct zschan	*zc;
    586 {
    587 	register int rr0;
    588 
    589 	rr0 = zc->zc_csr;
    590 	zc->zc_csr = ZSWR0_RESET_STATUS;
    591 	zc->zc_csr = ZSWR0_CLR_INTR;
    592 	/*
    593 	 * The chip's hardware flow control is, as noted in zsreg.h,
    594 	 * busted---if the DCD line goes low the chip shuts off the
    595 	 * receiver (!).  If we want hardware CTS flow control but do
    596 	 * not have it, and carrier is now on, turn HFC on; if we have
    597 	 * HFC now but carrier has gone low, turn it off.
    598 	 */
    599 	if(rr0 & ZSRR0_DCD) {
    600 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    601 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    602 			cs->cs_creg[3] |= ZSWR3_HFC;
    603 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    604 		}
    605 	}
    606 	else {
    607 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    608 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    609 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    610 		}
    611 	}
    612 	return(ZRING_MAKE(ZRING_SINT, rr0));
    613 }
    614 
    615 /*
    616  * Print out a ring or fifo overrun error message.
    617  */
    618 static void
    619 zsoverrun(unit, ptime, what)
    620 int	unit;
    621 long	*ptime;
    622 char	*what;
    623 {
    624 
    625 	if(*ptime != time.tv_sec) {
    626 		*ptime = time.tv_sec;
    627 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    628 		    (unit & 1) + 'a', what);
    629 	}
    630 }
    631 
    632 /*
    633  * ZS software interrupt.  Scan all channels for deferred interrupts.
    634  */
    635 int
    636 zssoft(sr)
    637 long sr;
    638 {
    639     register struct zs_chanstate	*cs;
    640     register volatile struct zschan	*zc;
    641     register struct linesw		*line;
    642     register struct tty			*tp;
    643     register int			get, n, c, cc, unit, s;
    644  	     int			retval = 0;
    645 
    646     cb_scheduled = 0;
    647     s = spltty();
    648     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
    649 	get = cs->cs_rbget;
    650 again:
    651 	n = cs->cs_rbput;	/* atomic			*/
    652 	if(get == n)		/* nothing more on this line	*/
    653 		continue;
    654 	retval = 1;
    655 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
    656 	zc     = cs->cs_zc;
    657 	tp     = cs->cs_ttyp;
    658 	line   = &linesw[tp->t_line];
    659 	/*
    660 	 * Compute the number of interrupts in the receive ring.
    661 	 * If the count is overlarge, we lost some events, and
    662 	 * must advance to the first valid one.  It may get
    663 	 * overwritten if more data are arriving, but this is
    664 	 * too expensive to check and gains nothing (we already
    665 	 * lost out; all we can do at this point is trade one
    666 	 * kind of loss for another).
    667 	 */
    668 	n -= get;
    669 	if(n > ZLRB_RING_SIZE) {
    670 		zsoverrun(unit, &cs->cs_rotime, "ring");
    671 		get += n - ZLRB_RING_SIZE;
    672 		n    = ZLRB_RING_SIZE;
    673 	}
    674 	while(--n >= 0) {
    675 		/* race to keep ahead of incoming interrupts */
    676 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    677 		switch (ZRING_TYPE(c)) {
    678 
    679 		case ZRING_RINT:
    680 			c = ZRING_VALUE(c);
    681 			if(c & ZSRR1_DO)
    682 				zsoverrun(unit, &cs->cs_fotime, "fifo");
    683 			cc = c >> 8;
    684 			if(c & ZSRR1_FE)
    685 				cc |= TTY_FE;
    686 			if(c & ZSRR1_PE)
    687 				cc |= TTY_PE;
    688 			line->l_rint(cc, tp);
    689 			break;
    690 
    691 		case ZRING_XINT:
    692 			/*
    693 			 * Transmit done: change registers and resume,
    694 			 * or clear BUSY.
    695 			 */
    696 			if(cs->cs_heldchange) {
    697 				int sps;
    698 
    699 				sps = splzs();
    700 				c = zc->zc_csr;
    701 				if((c & ZSRR0_DCD) == 0)
    702 					cs->cs_preg[3] &= ~ZSWR3_HFC;
    703 				bcopy((caddr_t)cs->cs_preg,
    704 				    (caddr_t)cs->cs_creg, 16);
    705 				zs_loadchannelregs(zc, cs->cs_creg);
    706 				splx(sps);
    707 				cs->cs_heldchange = 0;
    708 				if(cs->cs_heldtbc
    709 					&& (tp->t_state & TS_TTSTOP) == 0) {
    710 					cs->cs_tbc = cs->cs_heldtbc - 1;
    711 					zc->zc_data = *cs->cs_tba++;
    712 					goto again;
    713 				}
    714 			}
    715 			tp->t_state &= ~TS_BUSY;
    716 			if(tp->t_state & TS_FLUSH)
    717 				tp->t_state &= ~TS_FLUSH;
    718 			else ndflush(&tp->t_outq,cs->cs_tba
    719 						- (caddr_t)tp->t_outq.c_cf);
    720 			line->l_start(tp);
    721 			break;
    722 
    723 		case ZRING_SINT:
    724 			/*
    725 			 * Status line change.  HFC bit is run in
    726 			 * hardware interrupt, to avoid locking
    727 			 * at splzs here.
    728 			 */
    729 			c = ZRING_VALUE(c);
    730 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
    731 				cc = (c & ZSRR0_DCD) != 0;
    732 				if(line->l_modem(tp, cc) == 0)
    733 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
    734 							cc ? DMBIS : DMBIC);
    735 			}
    736 			cs->cs_rr0 = c;
    737 			break;
    738 
    739 		default:
    740 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
    741 			    unit >> 1, (unit & 1) + 'a', c);
    742 			break;
    743 		}
    744 	}
    745 	cs->cs_rbget = get;
    746 	goto again;
    747     }
    748     splx(s);
    749     return (retval);
    750 }
    751 
    752 int
    753 zsioctl(dev, cmd, data, flag, p)
    754 dev_t		dev;
    755 u_long		cmd;
    756 caddr_t		data;
    757 int		flag;
    758 struct proc	*p;
    759 {
    760 		 int			unit = ZS_UNIT(dev);
    761 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    762 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
    763 	register int			error, s;
    764 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    765 
    766 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
    767 	if(error >= 0)
    768 		return(error);
    769 	error = ttioctl(tp, cmd, data, flag, p);
    770 	if(error >= 0)
    771 		return (error);
    772 
    773 	switch (cmd) {
    774 	case TIOCSBRK:
    775 		s = splzs();
    776 		cs->cs_preg[5] |= ZSWR5_BREAK;
    777 		cs->cs_creg[5] |= ZSWR5_BREAK;
    778 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    779 		splx(s);
    780 		break;
    781 	case TIOCCBRK:
    782 		s = splzs();
    783 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    784 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    785 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    786 		splx(s);
    787 		break;
    788 	case TIOCGFLAGS: {
    789 		int bits = 0;
    790 
    791 		if(cs->cs_softcar)
    792 			bits |= TIOCFLAG_SOFTCAR;
    793 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
    794 			bits |= TIOCFLAG_CLOCAL;
    795 		if(cs->cs_creg[3] & ZSWR3_HFC)
    796 			bits |= TIOCFLAG_CRTSCTS;
    797 		*(int *)data = bits;
    798 		break;
    799 	}
    800 	case TIOCSFLAGS: {
    801 		int userbits, driverbits = 0;
    802 
    803 		error = suser(p->p_ucred, &p->p_acflag);
    804 		if(error != 0)
    805 			return (EPERM);
    806 
    807 		userbits = *(int *)data;
    808 
    809 		/*
    810 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
    811 		 # defaulting to software flow control.
    812 		 */
    813 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
    814 			return(EINVAL);
    815 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
    816 			return(ENXIO);
    817 
    818 		s = splzs();
    819 		if((userbits & TIOCFLAG_SOFTCAR)) {
    820 			cs->cs_softcar = 1;	/* turn on softcar */
    821 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
    822 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
    823 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    824 		}
    825 		else if(userbits & TIOCFLAG_CLOCAL) {
    826 			cs->cs_softcar = 0; 	/* turn off softcar */
    827 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
    828 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
    829 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    830 			tp->t_termios.c_cflag |= CLOCAL;
    831 		}
    832 		if(userbits & TIOCFLAG_CRTSCTS) {
    833 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
    834 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
    835 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    836 			cs->cs_preg[3] |= ZSWR3_HFC;
    837 			cs->cs_creg[3] |= ZSWR3_HFC;
    838 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    839 			tp->t_termios.c_cflag |= CRTSCTS;
    840 		}
    841 		else {
    842 			/* no mdmbuf, so we must want software flow control */
    843 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
    844 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
    845 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
    846 			cs->cs_preg[3] &= ~ZSWR3_HFC;
    847 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    848 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
    849 			tp->t_termios.c_cflag &= ~CRTSCTS;
    850 		}
    851 		splx(s);
    852 		break;
    853 	}
    854 	case TIOCSDTR:
    855 		zs_modem(cs, ZSWR5_DTR, DMBIS);
    856 		break;
    857 	case TIOCCDTR:
    858 		zs_modem(cs, ZSWR5_DTR, DMBIC);
    859 		break;
    860 	case TIOCMGET:
    861 		zs_modem(cs, 0, DMGET);
    862 		break;
    863 	case TIOCMSET:
    864 	case TIOCMBIS:
    865 	case TIOCMBIC:
    866 	default:
    867 		return (ENOTTY);
    868 	}
    869 	return (0);
    870 }
    871 
    872 /*
    873  * Start or restart transmission.
    874  */
    875 static void
    876 zsstart(tp)
    877 register struct tty *tp;
    878 {
    879 	register struct zs_chanstate	*cs;
    880 	register int			s, nch;
    881 		 int			unit = ZS_UNIT(tp->t_dev);
    882 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    883 
    884 	cs = &zi->zi_cs[unit & 1];
    885 	s  = spltty();
    886 
    887 	/*
    888 	 * If currently active or delaying, no need to do anything.
    889 	 */
    890 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
    891 		goto out;
    892 
    893 	/*
    894 	 * If there are sleepers, and output has drained below low
    895 	 * water mark, awaken.
    896 	 */
    897 	if(tp->t_outq.c_cc <= tp->t_lowat) {
    898 		if(tp->t_state & TS_ASLEEP) {
    899 			tp->t_state &= ~TS_ASLEEP;
    900 			wakeup((caddr_t)&tp->t_outq);
    901 		}
    902 		selwakeup(&tp->t_wsel);
    903 	}
    904 
    905 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
    906 	if(nch) {
    907 		register char *p = tp->t_outq.c_cf;
    908 
    909 		/* mark busy, enable tx done interrupts, & send first byte */
    910 		tp->t_state |= TS_BUSY;
    911 		(void) splzs();
    912 		cs->cs_preg[1] |= ZSWR1_TIE;
    913 		cs->cs_creg[1] |= ZSWR1_TIE;
    914 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    915 		cs->cs_zc->zc_data = *p;
    916 		cs->cs_tba = p + 1;
    917 		cs->cs_tbc = nch - 1;
    918 	} else {
    919 		/*
    920 		 * Nothing to send, turn off transmit done interrupts.
    921 		 * This is useful if something is doing polled output.
    922 		 */
    923 		(void) splzs();
    924 		cs->cs_preg[1] &= ~ZSWR1_TIE;
    925 		cs->cs_creg[1] &= ~ZSWR1_TIE;
    926 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
    927 	}
    928 out:
    929 	splx(s);
    930 }
    931 
    932 /*
    933  * Stop output, e.g., for ^S or output flush.
    934  */
    935 void
    936 zsstop(tp, flag)
    937 register struct tty	*tp;
    938 	 int		flag;
    939 {
    940 	register struct zs_chanstate	*cs;
    941 	register int			s, unit = ZS_UNIT(tp->t_dev);
    942 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    943 
    944 	cs = &zi->zi_cs[unit & 1];
    945 	s  = splzs();
    946 	if(tp->t_state & TS_BUSY) {
    947 		/*
    948 		 * Device is transmitting; must stop it.
    949 		 */
    950 		cs->cs_tbc = 0;
    951 		if ((tp->t_state & TS_TTSTOP) == 0)
    952 			tp->t_state |= TS_FLUSH;
    953 	}
    954 	splx(s);
    955 }
    956 
    957 /*
    958  * Set ZS tty parameters from termios.
    959  *
    960  * This routine makes use of the fact that only registers
    961  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
    962  */
    963 static int
    964 zsparam(tp, t)
    965 register struct tty	*tp;
    966 register struct termios	*t;
    967 {
    968 		 int			unit = ZS_UNIT(tp->t_dev);
    969 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
    970 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
    971 		 int			cdiv, clkm, brgm, tcon;
    972 	register int			tmp, tmp5, cflag, s;
    973 
    974 	tmp  = t->c_ospeed;
    975 	tmp5 = t->c_ispeed;
    976 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
    977 		return(EINVAL);
    978 	if(tmp == 0) {
    979 		/* stty 0 => drop DTR and RTS */
    980 		zs_modem(cs, 0, DMSET);
    981 		return(0);
    982 	}
    983 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
    984 	if (tmp < 0)
    985 		return(EINVAL);
    986 	tp->t_ispeed = tp->t_ospeed = tmp;
    987 
    988 	cflag = tp->t_cflag = t->c_cflag;
    989 	if (cflag & CSTOPB)
    990 		cdiv |= ZSWR4_TWOSB;
    991 	else
    992 		cdiv |= ZSWR4_ONESB;
    993 	if (!(cflag & PARODD))
    994 		cdiv |= ZSWR4_EVENP;
    995 	if (cflag & PARENB)
    996 		cdiv |= ZSWR4_PARENB;
    997 
    998 	switch(cflag & CSIZE) {
    999 	case CS5:
   1000 		tmp  = ZSWR3_RX_5;
   1001 		tmp5 = ZSWR5_TX_5;
   1002 		break;
   1003 	case CS6:
   1004 		tmp  = ZSWR3_RX_6;
   1005 		tmp5 = ZSWR5_TX_6;
   1006 		break;
   1007 	case CS7:
   1008 		tmp  = ZSWR3_RX_7;
   1009 		tmp5 = ZSWR5_TX_7;
   1010 		break;
   1011 	case CS8:
   1012 	default:
   1013 		tmp  = ZSWR3_RX_8;
   1014 		tmp5 = ZSWR5_TX_8;
   1015 		break;
   1016 	}
   1017 	tmp  |= ZSWR3_RX_ENABLE;
   1018 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1019 
   1020 	/*
   1021 	 * Block interrupts so that state will not
   1022 	 * be altered until we are done setting it up.
   1023 	 */
   1024 	s = splzs();
   1025 	cs->cs_preg[4]  = cdiv;
   1026 	cs->cs_preg[11] = clkm;
   1027 	cs->cs_preg[12] = tcon;
   1028 	cs->cs_preg[13] = tcon >> 8;
   1029 	cs->cs_preg[14] = brgm;
   1030 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1031 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
   1032 	cs->cs_preg[10] = ZSWR10_NRZ;
   1033 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1034 
   1035 	/*
   1036 	 * Output hardware flow control on the chip is horrendous: if
   1037 	 * carrier detect drops, the receiver is disabled.  Hence we
   1038 	 * can only do this when the carrier is on.
   1039 	 */
   1040 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1041 		tmp |= ZSWR3_HFC;
   1042 	cs->cs_preg[3] = tmp;
   1043 	cs->cs_preg[5] = tmp5;
   1044 
   1045 	/*
   1046 	 * If nothing is being transmitted, set up new current values,
   1047 	 * else mark them as pending.
   1048 	 */
   1049 	if(cs->cs_heldchange == 0) {
   1050 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1051 			cs->cs_heldtbc = cs->cs_tbc;
   1052 			cs->cs_tbc = 0;
   1053 			cs->cs_heldchange = 1;
   1054 		} else {
   1055 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1056 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1057 		}
   1058 	}
   1059 	splx(s);
   1060 	return (0);
   1061 }
   1062 
   1063 /*
   1064  * search for the best matching baudrate
   1065  */
   1066 static int
   1067 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
   1068 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
   1069 {
   1070 	int	bestdiff, bestbps, source;
   1071 
   1072 	unit = (unit & 1) << 2;
   1073 	for (source = 0; source < 4; ++source) {
   1074 		long	freq = zs_frequencies[unit + source];
   1075 		int	diff, bps, div, clkm, brgm, tcon;
   1076 		switch (source) {
   1077 			case 0:	/* BRgen, PCLK */
   1078 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
   1079 				break;
   1080 			case 1:	/* BRgen, RTxC */
   1081 				brgm = ZSWR14_BAUD_ENA;
   1082 				break;
   1083 			case 2: /* RTxC */
   1084 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
   1085 				break;
   1086 			case 3: /* TRxC */
   1087 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
   1088 				break;
   1089 		}
   1090 		switch (source) {
   1091 			case 0:
   1092 			case 1:
   1093 				div  = ZSWR4_CLK_X16;
   1094 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
   1095 				tcon = BPS_TO_TCONST(freq, wanted);
   1096 				if (tcon < 0)
   1097 					tcon = 0;
   1098 				bps  = TCONST_TO_BPS(freq, tcon);
   1099 				break;
   1100 			case 2:
   1101 			case 3:
   1102 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
   1103 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
   1104 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
   1105 
   1106 				if (d1 < d2 && d1 < d3) {
   1107 					div = ZSWR4_CLK_X16;
   1108 					bps = b1;
   1109 				} else if (d2 < d3 && d2 < d1) {
   1110 					div = ZSWR4_CLK_X32;
   1111 					bps = b2;
   1112 				} else {
   1113 					div = ZSWR4_CLK_X64;
   1114 					bps = b3;
   1115 				}
   1116 				brgm = tcon = 0;
   1117 				break;
   1118 			}
   1119 		}
   1120 		diff = abs(bps - wanted);
   1121 		if (!source || diff < bestdiff) {
   1122 			*divisor   = div;
   1123 			*clockmode = clkm;
   1124 			*brgenmode = brgm;
   1125 			*timeconst = tcon;
   1126 			bestbps    = bps;
   1127 			bestdiff   = diff;
   1128 			if (diff == 0)
   1129 				break;
   1130 		}
   1131 	}
   1132 	/* Allow deviations upto 5% */
   1133 	if (20 * bestdiff > wanted)
   1134 		return -1;
   1135 	return bestbps;
   1136 }
   1137 
   1138 /*
   1139  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1140  * in transmission, the change is deferred.
   1141  */
   1142 static int
   1143 zs_modem(cs, bits, how)
   1144 struct zs_chanstate	*cs;
   1145 int			bits, how;
   1146 {
   1147 	int s, mbits;
   1148 
   1149 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
   1150 
   1151 	s = splzs();
   1152 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
   1153 
   1154 	switch(how) {
   1155 		case DMSET:
   1156 				mbits  = bits;
   1157 				break;
   1158 		case DMBIS:
   1159 				mbits |= bits;
   1160 				break;
   1161 		case DMBIC:
   1162 				mbits &= ~bits;
   1163 				break;
   1164 		case DMGET:
   1165 				splx(s);
   1166 				return(mbits);
   1167 	}
   1168 
   1169 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
   1170 	if(cs->cs_heldchange == 0) {
   1171 		if(cs->cs_ttyp->t_state & TS_BUSY) {
   1172 			cs->cs_heldtbc = cs->cs_tbc;
   1173 			cs->cs_tbc = 0;
   1174 			cs->cs_heldchange = 1;
   1175 		}
   1176 		else {
   1177 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1178 		}
   1179 	}
   1180 	splx(s);
   1181 	return(0);
   1182 }
   1183 
   1184 /*
   1185  * Write the given register set to the given zs channel in the proper order.
   1186  * The channel must not be transmitting at the time.  The receiver will
   1187  * be disabled for the time it takes to write all the registers.
   1188  */
   1189 static void
   1190 zs_loadchannelregs(zc, reg)
   1191 volatile struct zschan	*zc;
   1192 u_char			*reg;
   1193 {
   1194 	int i;
   1195 
   1196 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1197 	i = zc->zc_data;		/* drain fifo */
   1198 	i = zc->zc_data;
   1199 	i = zc->zc_data;
   1200 	ZS_WRITE(zc,  4, reg[4]);
   1201 	ZS_WRITE(zc, 10, reg[10]);
   1202 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
   1203 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
   1204 	ZS_WRITE(zc,  1, reg[1]);
   1205 	ZS_WRITE(zc,  9, reg[9]);
   1206 	ZS_WRITE(zc, 11, reg[11]);
   1207 	ZS_WRITE(zc, 12, reg[12]);
   1208 	ZS_WRITE(zc, 13, reg[13]);
   1209 	ZS_WRITE(zc, 14, reg[14]);
   1210 	ZS_WRITE(zc, 15, reg[15]);
   1211 	ZS_WRITE(zc,  3, reg[3]);
   1212 	ZS_WRITE(zc,  5, reg[5]);
   1213 }
   1214 #endif /* NZS > 1 */
   1215