Home | History | Annotate | Line # | Download | only in dev
zsvar.h revision 1.4
      1  1.3      jtc /*	$NetBSD: zsvar.h,v 1.4 1995/12/25 14:16:51 leo Exp $	*/
      2  1.1      leo 
      3  1.1      leo /*
      4  1.1      leo  * Copyright (c) 1995 Leo Weppelman (Atari modifications)
      5  1.1      leo  * Copyright (c) 1992, 1993
      6  1.1      leo  *	The Regents of the University of California.  All rights reserved.
      7  1.1      leo  *
      8  1.1      leo  * This software was developed by the Computer Systems Engineering group
      9  1.1      leo  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     10  1.1      leo  * contributed to Berkeley.
     11  1.1      leo  *
     12  1.1      leo  * All advertising materials mentioning features or use of this software
     13  1.1      leo  * must display the following acknowledgement:
     14  1.1      leo  *	This product includes software developed by the University of
     15  1.1      leo  *	California, Lawrence Berkeley Laboratory.
     16  1.1      leo  *
     17  1.1      leo  * Redistribution and use in source and binary forms, with or without
     18  1.1      leo  * modification, are permitted provided that the following conditions
     19  1.1      leo  * are met:
     20  1.1      leo  * 1. Redistributions of source code must retain the above copyright
     21  1.1      leo  *    notice, this list of conditions and the following disclaimer.
     22  1.1      leo  * 2. Redistributions in binary form must reproduce the above copyright
     23  1.1      leo  *    notice, this list of conditions and the following disclaimer in the
     24  1.1      leo  *    documentation and/or other materials provided with the distribution.
     25  1.1      leo  * 3. All advertising materials mentioning features or use of this software
     26  1.1      leo  *    must display the following acknowledgement:
     27  1.1      leo  *	This product includes software developed by the University of
     28  1.1      leo  *	California, Berkeley and its contributors.
     29  1.1      leo  * 4. Neither the name of the University nor the names of its contributors
     30  1.1      leo  *    may be used to endorse or promote products derived from this software
     31  1.1      leo  *    without specific prior written permission.
     32  1.1      leo  *
     33  1.1      leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     34  1.1      leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     35  1.1      leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     36  1.1      leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     37  1.1      leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     38  1.1      leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     39  1.1      leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     40  1.1      leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     41  1.1      leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     42  1.1      leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     43  1.1      leo  * SUCH DAMAGE.
     44  1.1      leo  *
     45  1.1      leo  *	@(#)zsvar.h	8.1 (Berkeley) 6/11/93
     46  1.1      leo  */
     47  1.1      leo 
     48  1.1      leo /*
     49  1.1      leo  * Software state, per zs channel.
     50  1.1      leo  *
     51  1.1      leo  * The zs chip has insufficient buffering, so we provide a software
     52  1.1      leo  * buffer using a two-level interrupt scheme.  The hardware (high priority)
     53  1.1      leo  * interrupt simply grabs the `cause' of the interrupt and stuffs it into
     54  1.1      leo  * a ring buffer.  It then schedules a software interrupt; the latter
     55  1.1      leo  * empties the ring as fast as it can, hoping to avoid overflow.
     56  1.1      leo  *
     57  1.1      leo  * Interrupts can happen because of:
     58  1.1      leo  *	- received data;
     59  1.1      leo  *	- transmit pseudo-DMA done; and
     60  1.1      leo  *	- status change.
     61  1.1      leo  * These are all stored together in the (single) ring.  The size of the
     62  1.1      leo  * ring is a power of two, to make % operations fast.  Since we need two
     63  1.1      leo  * bits to distinguish the interrupt type, and up to 16 for the received
     64  1.1      leo  * data plus RR1 status, we use 32 bits per ring entry.
     65  1.1      leo  *
     66  1.1      leo  * When the value is a character + RR1 status, the character is in the
     67  1.1      leo  * upper 8 bits of the RR1 status.
     68  1.1      leo  */
     69  1.3      jtc #define ZLRB_RING_SIZE		4096		/* ZS line ring buffer size */
     70  1.3      jtc #define	ZLRB_RING_MASK		4095		/* mask for same */
     71  1.1      leo 
     72  1.1      leo /* 0 is reserved (means "no interrupt") */
     73  1.1      leo #define	ZRING_RINT		1		/* receive data interrupt */
     74  1.1      leo #define	ZRING_XINT		2		/* transmit done interrupt */
     75  1.1      leo #define	ZRING_SINT		3		/* status change interrupt */
     76  1.1      leo 
     77  1.1      leo #define	ZRING_TYPE(x)		((x) & 3)
     78  1.1      leo #define	ZRING_VALUE(x)		((x) >> 8)
     79  1.1      leo #define	ZRING_MAKE(t, v)	((t) | (v) << 8)
     80  1.1      leo 
     81  1.1      leo struct zs_chanstate {
     82  1.1      leo 	struct	zs_chanstate	*cs_next;	/* linked list for zshard() */
     83  1.1      leo 	volatile struct zschan	*cs_zc;		/* points to hardware regs */
     84  1.1      leo 	int			cs_unit;	/* unit number */
     85  1.1      leo 	struct	tty		*cs_ttyp;	/* ### */
     86  1.1      leo 
     87  1.1      leo 	/*
     88  1.1      leo 	 * We must keep a copy of the write registers as they are
     89  1.1      leo 	 * mostly write-only and we sometimes need to set and clear
     90  1.1      leo 	 * individual bits (e.g., in WR3).  Not all of these are
     91  1.1      leo 	 * needed but 16 bytes is cheap and this makes the addressing
     92  1.1      leo 	 * simpler.  Unfortunately, we can only write to some registers
     93  1.1      leo 	 * when the chip is not actually transmitting, so whenever
     94  1.1      leo 	 * we are expecting a `transmit done' interrupt the preg array
     95  1.1      leo 	 * is allowed to `get ahead' of the current values.  In a
     96  1.1      leo 	 * few places we must change the current value of a register,
     97  1.1      leo 	 * rather than (or in addition to) the pending value; for these
     98  1.1      leo 	 * cs_creg[] contains the current value.
     99  1.1      leo 	 */
    100  1.1      leo 	u_char	cs_creg[16];		/* current values */
    101  1.1      leo 	u_char	cs_preg[16];		/* pending values */
    102  1.1      leo 	u_char	cs_heldchange;		/* change pending (creg != preg) */
    103  1.1      leo 	u_char	cs_rr0;			/* last rr0 processed */
    104  1.1      leo 
    105  1.1      leo 	/* pure software data, per channel */
    106  1.1      leo 	char	cs_softcar;		/* software carrier */
    107  1.1      leo 	char	cs_xxx;			/* (spare) */
    108  1.1      leo 
    109  1.1      leo 	/*
    110  1.1      leo 	 * The transmit byte count and address are used for pseudo-DMA
    111  1.1      leo 	 * output in the hardware interrupt code.  PDMA can be suspended
    112  1.1      leo 	 * to get pending changes done; heldtbc is used for this.  It can
    113  1.1      leo 	 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
    114  1.1      leo 	 */
    115  1.1      leo 	int	cs_tbc;			/* transmit byte count */
    116  1.1      leo 	caddr_t	cs_tba;			/* transmit buffer address */
    117  1.1      leo 	int	cs_heldtbc;		/* held tbc while xmission stopped */
    118  1.1      leo 
    119  1.1      leo 	/*
    120  1.1      leo 	 * Printing an overrun error message often takes long enough to
    121  1.1      leo 	 * cause another overrun, so we only print one per second.
    122  1.1      leo 	 */
    123  1.1      leo 	long	cs_rotime;		/* time of last ring overrun */
    124  1.1      leo 	long	cs_fotime;		/* time of last fifo overrun */
    125  1.1      leo 
    126  1.1      leo 	/*
    127  1.1      leo 	 * The ring buffer.
    128  1.1      leo 	 */
    129  1.1      leo 	u_int		cs_rbget;	/* ring buffer `get' index	*/
    130  1.1      leo 	volatile u_int	cs_rbput;	/* ring buffer `put' index	*/
    131  1.4      leo 	int		*cs_rbuf;	/* type, value pairs	*/
    132  1.1      leo };
    133  1.2  mycroft 
    134  1.2  mycroft #define	ZS_CHAN_A	0
    135  1.2  mycroft #define	ZS_CHAN_B	1
    136  1.1      leo 
    137  1.1      leo /*
    138  1.1      leo  * Macros to read and write individual registers (except 0) in a channel.
    139  1.1      leo  */
    140  1.1      leo #define	ZS_READ(c, r)		((c)->zc_csr = (r), (c)->zc_csr)
    141  1.1      leo #define	ZS_WRITE(c, r, v)	((c)->zc_csr = (r), (c)->zc_csr = (v))
    142  1.1      leo 
    143  1.1      leo /*
    144  1.1      leo  * Split minor into unit & flag nibble.
    145  1.1      leo  */
    146  1.1      leo #define	ZS_UNIT(dev)		((minor(dev) >> 4) & 0xf)
    147  1.1      leo #define	ZS_FLAGS(dev)		(minor(dev) & 0xf)
    148