if_le_vme.c revision 1.1 1 1.1 leo /* $NetBSD */
2 1.1 leo
3 1.1 leo /*-
4 1.1 leo * Copyright (c) 1997 Leo Weppelman. All rights reserved.
5 1.1 leo * Copyright (c) 1995 Charles M. Hannum. All rights reserved.
6 1.1 leo * Copyright (c) 1992, 1993
7 1.1 leo * The Regents of the University of California. All rights reserved.
8 1.1 leo *
9 1.1 leo * This code is derived from software contributed to Berkeley by
10 1.1 leo * Ralph Campbell and Rick Macklem.
11 1.1 leo *
12 1.1 leo * Redistribution and use in source and binary forms, with or without
13 1.1 leo * modification, are permitted provided that the following conditions
14 1.1 leo * are met:
15 1.1 leo * 1. Redistributions of source code must retain the above copyright
16 1.1 leo * notice, this list of conditions and the following disclaimer.
17 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 leo * notice, this list of conditions and the following disclaimer in the
19 1.1 leo * documentation and/or other materials provided with the distribution.
20 1.1 leo * 3. All advertising materials mentioning features or use of this software
21 1.1 leo * must display the following acknowledgement:
22 1.1 leo * This product includes software developed by the University of
23 1.1 leo * California, Berkeley and its contributors.
24 1.1 leo * 4. Neither the name of the University nor the names of its contributors
25 1.1 leo * may be used to endorse or promote products derived from this software
26 1.1 leo * without specific prior written permission.
27 1.1 leo *
28 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 leo * SUCH DAMAGE.
39 1.1 leo *
40 1.1 leo * @(#)if_le.c 8.2 (Berkeley) 11/16/93
41 1.1 leo */
42 1.1 leo
43 1.1 leo #include "bpfilter.h"
44 1.1 leo
45 1.1 leo #include <sys/param.h>
46 1.1 leo #include <sys/systm.h>
47 1.1 leo #include <sys/mbuf.h>
48 1.1 leo #include <sys/syslog.h>
49 1.1 leo #include <sys/socket.h>
50 1.1 leo #include <sys/device.h>
51 1.1 leo
52 1.1 leo #include <net/if.h>
53 1.1 leo
54 1.1 leo #ifdef INET
55 1.1 leo #include <netinet/in.h>
56 1.1 leo #include <netinet/if_ether.h>
57 1.1 leo #endif
58 1.1 leo
59 1.1 leo #include <machine/cpu.h>
60 1.1 leo #include <machine/bus.h>
61 1.1 leo #include <machine/iomap.h>
62 1.1 leo #include <machine/scu.h>
63 1.1 leo
64 1.1 leo #include <atari/atari/device.h>
65 1.1 leo #include <atari/atari/intr.h>
66 1.1 leo
67 1.1 leo #include <dev/ic/am7990reg.h>
68 1.1 leo #include <dev/ic/am7990var.h>
69 1.1 leo
70 1.1 leo #include <atari/vme/vmevar.h>
71 1.1 leo #include <atari/vme/if_levar.h>
72 1.1 leo
73 1.1 leo struct le_addresses {
74 1.1 leo u_long reg_addr;
75 1.1 leo u_long mem_addr;
76 1.1 leo int irq;
77 1.1 leo } lestd[] = {
78 1.1 leo { 0xfe00fff0, 0xfe010000, IRQUNK }, /* Riebl VME */
79 1.1 leo { 0xffcffff0, 0xffcf0000, 5 }, /* PAM VME */
80 1.1 leo { 0xfecffff0, 0xfecf0000, 5 } /* Rhotron VME */
81 1.1 leo };
82 1.1 leo
83 1.1 leo #define NLESTD (sizeof(lestd) / sizeof(lestd[0]))
84 1.1 leo
85 1.1 leo /*
86 1.1 leo * All cards have 64KB RAM. However.... On the Riebl cards the area
87 1.1 leo * between the offsets 0xee70-0xeec0 is used to store config data.
88 1.1 leo */
89 1.1 leo #define MEMSIZE (64*1024)
90 1.1 leo
91 1.1 leo /*
92 1.1 leo * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
93 1.1 leo * are the manufacturer id.
94 1.1 leo */
95 1.1 leo static u_char riebl_def_mac[] = {
96 1.1 leo 0x00, 0x00, 0x36, 0x04, 0x00, 0x00
97 1.1 leo };
98 1.1 leo
99 1.1 leo static int le_intr __P((struct le_softc *, int));
100 1.1 leo static void lepseudointr __P((struct le_softc *, void *));
101 1.1 leo static int le_vme_match __P((struct device *, struct cfdata *, void *));
102 1.1 leo static void le_vme_attach __P((struct device *, struct device *, void *));
103 1.1 leo static int probe_addresses __P((bus_space_tag_t *, bus_space_tag_t *,
104 1.1 leo bus_space_handle_t *, bus_space_handle_t *));
105 1.1 leo static void riebl_skip_reserved_area __P((struct am7990_softc *));
106 1.1 leo
107 1.1 leo struct cfattach le_vme_ca = {
108 1.1 leo sizeof(struct le_softc), le_vme_match, le_vme_attach
109 1.1 leo };
110 1.1 leo
111 1.1 leo hide void lewrcsr __P((struct am7990_softc *, u_int16_t, u_int16_t));
112 1.1 leo hide u_int16_t lerdcsr __P((struct am7990_softc *, u_int16_t));
113 1.1 leo
114 1.1 leo hide void
115 1.1 leo lewrcsr(sc, port, val)
116 1.1 leo struct am7990_softc *sc;
117 1.1 leo u_int16_t port, val;
118 1.1 leo {
119 1.1 leo struct le_softc *lesc = (struct le_softc *)sc;
120 1.1 leo int s;
121 1.1 leo
122 1.1 leo s = splhigh();
123 1.1 leo bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
124 1.1 leo bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
125 1.1 leo splx(s);
126 1.1 leo }
127 1.1 leo
128 1.1 leo hide u_int16_t
129 1.1 leo lerdcsr(sc, port)
130 1.1 leo struct am7990_softc *sc;
131 1.1 leo u_int16_t port;
132 1.1 leo {
133 1.1 leo struct le_softc *lesc = (struct le_softc *)sc;
134 1.1 leo u_int16_t val;
135 1.1 leo int s;
136 1.1 leo
137 1.1 leo s = splhigh();
138 1.1 leo bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
139 1.1 leo val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
140 1.1 leo splx(s);
141 1.1 leo
142 1.1 leo return (val);
143 1.1 leo }
144 1.1 leo
145 1.1 leo static int
146 1.1 leo le_vme_match(parent, cfp, aux)
147 1.1 leo struct device *parent;
148 1.1 leo struct cfdata *cfp;
149 1.1 leo void *aux;
150 1.1 leo {
151 1.1 leo struct vme_attach_args *va = aux;
152 1.1 leo int i;
153 1.1 leo bus_space_tag_t iot;
154 1.1 leo bus_space_tag_t memt;
155 1.1 leo bus_space_handle_t ioh;
156 1.1 leo bus_space_handle_t memh;
157 1.1 leo
158 1.1 leo iot = va->va_iot;
159 1.1 leo memt = va->va_memt;
160 1.1 leo
161 1.1 leo for (i = 0; i < NLESTD; i++) {
162 1.1 leo struct le_addresses *le_ap = &lestd[i];
163 1.1 leo int found = 0;
164 1.1 leo
165 1.1 leo if ((va->va_iobase != IOBASEUNK)
166 1.1 leo && (va->va_iobase != le_ap->reg_addr))
167 1.1 leo continue;
168 1.1 leo
169 1.1 leo if ((va->va_maddr != MADDRUNK)
170 1.1 leo && (va->va_maddr != le_ap->mem_addr))
171 1.1 leo continue;
172 1.1 leo
173 1.1 leo if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
174 1.1 leo continue;
175 1.1 leo
176 1.1 leo if (bus_space_map(iot, le_ap->reg_addr, 16, 0, &ioh)) {
177 1.1 leo printf("leprobe: cannot map io-area\n");
178 1.1 leo return (0);
179 1.1 leo }
180 1.1 leo if (bus_space_map(memt, le_ap->mem_addr, MEMSIZE, 0, &memh)) {
181 1.1 leo bus_space_unmap(iot, (caddr_t)le_ap->reg_addr, 16);
182 1.1 leo printf("leprobe: cannot map memory-area\n");
183 1.1 leo return (0);
184 1.1 leo }
185 1.1 leo found = probe_addresses(&iot, &memt, &ioh, &memh);
186 1.1 leo bus_space_unmap(iot, (caddr_t)le_ap->reg_addr, 16);
187 1.1 leo bus_space_unmap(memt, (caddr_t)le_ap->mem_addr, 8*NBPG);
188 1.1 leo
189 1.1 leo if (found) {
190 1.1 leo va->va_iobase = le_ap->reg_addr;
191 1.1 leo va->va_iosize = 16;
192 1.1 leo va->va_maddr = le_ap->mem_addr;
193 1.1 leo va->va_msize = MEMSIZE;
194 1.1 leo if (va->va_irq == IRQUNK)
195 1.1 leo va->va_irq = le_ap->irq;
196 1.1 leo return 1;
197 1.1 leo }
198 1.1 leo }
199 1.1 leo return (0);
200 1.1 leo }
201 1.1 leo
202 1.1 leo static int
203 1.1 leo probe_addresses(iot, memt, ioh, memh)
204 1.1 leo bus_space_tag_t *iot;
205 1.1 leo bus_space_tag_t *memt;
206 1.1 leo bus_space_handle_t *ioh;
207 1.1 leo bus_space_handle_t *memh;
208 1.1 leo {
209 1.1 leo /*
210 1.1 leo * Test accesibility of register and memory area
211 1.1 leo */
212 1.1 leo if(!bus_space_peek_2(*iot, *ioh, LER_RDP))
213 1.1 leo return 0;
214 1.1 leo if(!bus_space_peek_1(*memt, *memh, 0))
215 1.1 leo return 0;
216 1.1 leo
217 1.1 leo /*
218 1.1 leo * Test for writable memory
219 1.1 leo */
220 1.1 leo bus_space_write_2(*memt, *memh, 0, 0xa5a5);
221 1.1 leo if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
222 1.1 leo return 0;
223 1.1 leo
224 1.1 leo /*
225 1.1 leo * Test writability of selector port.
226 1.1 leo */
227 1.1 leo bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
228 1.1 leo if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
229 1.1 leo return 0;
230 1.1 leo
231 1.1 leo /*
232 1.1 leo * Do a small register test
233 1.1 leo */
234 1.1 leo bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
235 1.1 leo bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
236 1.1 leo if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
237 1.1 leo return 0;
238 1.1 leo
239 1.1 leo bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
240 1.1 leo if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
241 1.1 leo return 0;
242 1.1 leo
243 1.1 leo return 1;
244 1.1 leo }
245 1.1 leo
246 1.1 leo /*
247 1.1 leo * Interrupt mess. Because the card's interrupt is hardwired to either
248 1.1 leo * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
249 1.1 leo * (it kills the serial at the least), we use a 2-level interrupt sceme. The
250 1.1 leo * card interrupt is routed to 'le_intr'. If the previous ipl was below
251 1.1 leo * splnet, just call the mi-function. If not, save the interrupt status,
252 1.1 leo * turn off card interrupts (the card is *very* persistent) and arrange
253 1.1 leo * for a softint 'callback' through 'lepseudointr'.
254 1.1 leo */
255 1.1 leo static int
256 1.1 leo le_intr(lesc, sr)
257 1.1 leo struct le_softc *lesc;
258 1.1 leo int sr;
259 1.1 leo {
260 1.1 leo struct am7990_softc *sc = &lesc->sc_am7990;
261 1.1 leo u_int16_t csr0;
262 1.1 leo
263 1.1 leo if ((sr & PSL_IPL) < IPL_NET)
264 1.1 leo am7990_intr(sc);
265 1.1 leo else {
266 1.1 leo sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
267 1.1 leo lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
268 1.1 leo add_sicallback((si_farg)lepseudointr, lesc, sc);
269 1.1 leo }
270 1.1 leo return 1;
271 1.1 leo }
272 1.1 leo
273 1.1 leo
274 1.1 leo static void
275 1.1 leo lepseudointr(lesc, sc)
276 1.1 leo struct le_softc *lesc;
277 1.1 leo void *sc;
278 1.1 leo {
279 1.1 leo int s;
280 1.1 leo
281 1.1 leo s = splx(lesc->sc_splval);
282 1.1 leo am7990_intr(sc);
283 1.1 leo splx(s);
284 1.1 leo }
285 1.1 leo
286 1.1 leo static void
287 1.1 leo le_vme_attach(parent, self, aux)
288 1.1 leo struct device *parent, *self;
289 1.1 leo void *aux;
290 1.1 leo {
291 1.1 leo struct le_softc *lesc = (struct le_softc *)self;
292 1.1 leo struct am7990_softc *sc = &lesc->sc_am7990;
293 1.1 leo struct vme_attach_args *va = aux;
294 1.1 leo bus_space_handle_t ioh;
295 1.1 leo bus_space_handle_t memh;
296 1.1 leo int i;
297 1.1 leo
298 1.1 leo printf("\n%s: ", sc->sc_dev.dv_xname);
299 1.1 leo
300 1.1 leo if (bus_space_map(va->va_iot, va->va_iobase, va->va_iosize, 0, &ioh))
301 1.1 leo panic("leattach: cannot map io-area\n");
302 1.1 leo if (bus_space_map(va->va_memt, va->va_maddr, va->va_msize, 0, &memh))
303 1.1 leo panic("leattach: cannot map mem-area\n");
304 1.1 leo
305 1.1 leo lesc->sc_iot = va->va_iot;
306 1.1 leo lesc->sc_ioh = ioh;
307 1.1 leo lesc->sc_memt = va->va_memt;
308 1.1 leo lesc->sc_memh = memh;
309 1.1 leo lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
310 1.1 leo
311 1.1 leo /*
312 1.1 leo * Go on to find board type
313 1.1 leo */
314 1.1 leo if (bus_space_peek_1(va->va_iot, ioh, LER_EEPROM)) {
315 1.1 leo printf("PAM card");
316 1.1 leo lesc->sc_type = LE_PAM;
317 1.1 leo bus_space_read_1(va->va_iot, ioh, LER_MEME);
318 1.1 leo }
319 1.1 leo else {
320 1.1 leo printf("Riebl card");
321 1.1 leo if(bus_space_read_4(va->va_memt, memh, RIEBL_MAGIC_ADDR)
322 1.1 leo == RIEBL_MAGIC)
323 1.1 leo lesc->sc_type = LE_NEW_RIEBL;
324 1.1 leo else {
325 1.1 leo printf("(without battery) ");
326 1.1 leo lesc->sc_type = LE_OLD_RIEBL;
327 1.1 leo }
328 1.1 leo }
329 1.1 leo
330 1.1 leo sc->sc_copytodesc = am7990_copytobuf_contig;
331 1.1 leo sc->sc_copyfromdesc = am7990_copyfrombuf_contig;
332 1.1 leo sc->sc_copytobuf = am7990_copytobuf_contig;
333 1.1 leo sc->sc_copyfrombuf = am7990_copyfrombuf_contig;
334 1.1 leo sc->sc_zerobuf = am7990_zerobuf_contig;
335 1.1 leo
336 1.1 leo sc->sc_rdcsr = lerdcsr;
337 1.1 leo sc->sc_wrcsr = lewrcsr;
338 1.1 leo sc->sc_hwinit = NULL;
339 1.1 leo sc->sc_conf3 = LE_C3_BSWP;
340 1.1 leo sc->sc_addr = 0;
341 1.1 leo sc->sc_memsize = va->va_msize;
342 1.1 leo sc->sc_mem = (void *)memh; /* XXX */
343 1.1 leo
344 1.1 leo /*
345 1.1 leo * Get MAC address
346 1.1 leo */
347 1.1 leo switch (lesc->sc_type) {
348 1.1 leo case LE_OLD_RIEBL:
349 1.1 leo bcopy(riebl_def_mac, sc->sc_arpcom.ac_enaddr,
350 1.1 leo sizeof(sc->sc_arpcom.ac_enaddr));
351 1.1 leo break;
352 1.1 leo case LE_NEW_RIEBL:
353 1.1 leo for (i = 0; i < sizeof(sc->sc_arpcom.ac_enaddr); i++)
354 1.1 leo sc->sc_arpcom.ac_enaddr[i] =
355 1.1 leo bus_space_read_1(va->va_memt, memh, i + RIEBL_MAC_ADDR);
356 1.1 leo break;
357 1.1 leo case LE_PAM:
358 1.1 leo i = bus_space_read_1(va->va_iot, ioh, LER_EEPROM);
359 1.1 leo for (i = 0; i < sizeof(sc->sc_arpcom.ac_enaddr); i++) {
360 1.1 leo sc->sc_arpcom.ac_enaddr[i] =
361 1.1 leo (bus_space_read_2(va->va_memt, memh, 2 * i) << 4) |
362 1.1 leo (bus_space_read_2(va->va_memt, memh, 2 * i + 1) & 0xf);
363 1.1 leo }
364 1.1 leo i = bus_space_read_1(va->va_iot, ioh, LER_MEME);
365 1.1 leo break;
366 1.1 leo }
367 1.1 leo
368 1.1 leo am7990_config(sc);
369 1.1 leo
370 1.1 leo if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
371 1.1 leo riebl_skip_reserved_area(sc);
372 1.1 leo
373 1.1 leo /*
374 1.1 leo * XXX: We always use uservector 64....
375 1.1 leo */
376 1.1 leo if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
377 1.1 leo (hw_ifun_t)le_intr, lesc)) == NULL) {
378 1.1 leo printf("le_vme_attach: Can't establish interrupt\n");
379 1.1 leo return;
380 1.1 leo }
381 1.1 leo
382 1.1 leo /*
383 1.1 leo * Notify the card of the vector
384 1.1 leo */
385 1.1 leo switch (lesc->sc_type) {
386 1.1 leo case LE_OLD_RIEBL:
387 1.1 leo case LE_NEW_RIEBL:
388 1.1 leo bus_space_write_2(va->va_memt, memh, RIEBL_IVEC_ADDR,
389 1.1 leo 64 + 64);
390 1.1 leo break;
391 1.1 leo case LE_PAM:
392 1.1 leo bus_space_write_1(va->va_iot, ioh, LER_IVEC, 64 + 64);
393 1.1 leo break;
394 1.1 leo }
395 1.1 leo
396 1.1 leo /*
397 1.1 leo * Unmask the VME-interrupt we're on
398 1.1 leo */
399 1.1 leo if (machineid & ATARI_TT)
400 1.1 leo SCU->vme_mask |= 1 << va->va_irq;
401 1.1 leo }
402 1.1 leo
403 1.1 leo /*
404 1.1 leo * True if 'addr' containe within [start,len]
405 1.1 leo */
406 1.1 leo #define WITHIN(start, len, addr) \
407 1.1 leo ((addr >= start) && ((addr) <= ((start) + (len))))
408 1.1 leo static void
409 1.1 leo riebl_skip_reserved_area(sc)
410 1.1 leo struct am7990_softc *sc;
411 1.1 leo {
412 1.1 leo int offset = 0;
413 1.1 leo int i;
414 1.1 leo
415 1.1 leo for(i = 0; i < sc->sc_nrbuf; i++) {
416 1.1 leo if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START)
417 1.1 leo || WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
418 1.1 leo offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
419 1.1 leo }
420 1.1 leo sc->sc_rbufaddr[i] += offset;
421 1.1 leo }
422 1.1 leo
423 1.1 leo for(i = 0; i < sc->sc_ntbuf; i++) {
424 1.1 leo if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START)
425 1.1 leo || WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
426 1.1 leo offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
427 1.1 leo }
428 1.1 leo sc->sc_tbufaddr[i] += offset;
429 1.1 leo }
430 1.1 leo }
431