if_le_vme.c revision 1.16 1 1.16 thorpej /* $NetBSD: if_le_vme.c,v 1.16 2002/10/02 05:04:27 thorpej Exp $ */
2 1.1 leo
3 1.1 leo /*-
4 1.9 leo * Copyright (c) 1998 maximum entropy. All rights reserved.
5 1.1 leo * Copyright (c) 1997 Leo Weppelman. All rights reserved.
6 1.1 leo * Copyright (c) 1995 Charles M. Hannum. All rights reserved.
7 1.1 leo * Copyright (c) 1992, 1993
8 1.1 leo * The Regents of the University of California. All rights reserved.
9 1.1 leo *
10 1.1 leo * This code is derived from software contributed to Berkeley by
11 1.1 leo * Ralph Campbell and Rick Macklem.
12 1.1 leo *
13 1.1 leo * Redistribution and use in source and binary forms, with or without
14 1.1 leo * modification, are permitted provided that the following conditions
15 1.1 leo * are met:
16 1.1 leo * 1. Redistributions of source code must retain the above copyright
17 1.1 leo * notice, this list of conditions and the following disclaimer.
18 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
19 1.1 leo * notice, this list of conditions and the following disclaimer in the
20 1.1 leo * documentation and/or other materials provided with the distribution.
21 1.1 leo * 3. All advertising materials mentioning features or use of this software
22 1.1 leo * must display the following acknowledgement:
23 1.1 leo * This product includes software developed by the University of
24 1.1 leo * California, Berkeley and its contributors.
25 1.1 leo * 4. Neither the name of the University nor the names of its contributors
26 1.1 leo * may be used to endorse or promote products derived from this software
27 1.1 leo * without specific prior written permission.
28 1.1 leo *
29 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 leo * SUCH DAMAGE.
40 1.1 leo *
41 1.1 leo * @(#)if_le.c 8.2 (Berkeley) 11/16/93
42 1.1 leo */
43 1.1 leo
44 1.5 jonathan #include "opt_inet.h"
45 1.1 leo #include "bpfilter.h"
46 1.1 leo
47 1.1 leo #include <sys/param.h>
48 1.1 leo #include <sys/systm.h>
49 1.1 leo #include <sys/mbuf.h>
50 1.1 leo #include <sys/syslog.h>
51 1.1 leo #include <sys/socket.h>
52 1.1 leo #include <sys/device.h>
53 1.1 leo
54 1.1 leo #include <net/if.h>
55 1.3 thorpej #include <net/if_media.h>
56 1.4 leo #include <net/if_ether.h>
57 1.1 leo
58 1.1 leo #ifdef INET
59 1.1 leo #include <netinet/in.h>
60 1.4 leo #include <netinet/if_inarp.h>
61 1.1 leo #endif
62 1.1 leo
63 1.1 leo #include <machine/cpu.h>
64 1.1 leo #include <machine/bus.h>
65 1.1 leo #include <machine/iomap.h>
66 1.1 leo #include <machine/scu.h>
67 1.1 leo
68 1.1 leo #include <atari/atari/device.h>
69 1.1 leo #include <atari/atari/intr.h>
70 1.1 leo
71 1.6 drochner #include <dev/ic/lancereg.h>
72 1.6 drochner #include <dev/ic/lancevar.h>
73 1.1 leo #include <dev/ic/am7990reg.h>
74 1.1 leo #include <dev/ic/am7990var.h>
75 1.1 leo
76 1.1 leo #include <atari/vme/vmevar.h>
77 1.1 leo #include <atari/vme/if_levar.h>
78 1.1 leo
79 1.7 leo /*
80 1.7 leo * All cards except BVME410 have 64KB RAM. However.... On the Riebl cards the
81 1.7 leo * area between the offsets 0xee70-0xeec0 is used to store config data.
82 1.7 leo */
83 1.1 leo struct le_addresses {
84 1.1 leo u_long reg_addr;
85 1.1 leo u_long mem_addr;
86 1.1 leo int irq;
87 1.7 leo int reg_size;
88 1.7 leo int mem_size;
89 1.8 leo int type_hint;
90 1.1 leo } lestd[] = {
91 1.8 leo { 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024,
92 1.8 leo LE_OLD_RIEBL|LE_NEW_RIEBL }, /* Riebl */
93 1.8 leo { 0xffcffff0, 0xffcf0000, 5, 16, 64*1024,
94 1.8 leo LE_PAM }, /* PAM */
95 1.8 leo { 0xfecffff0, 0xfecf0000, 5, 16, 64*1024,
96 1.8 leo LE_ROTHRON }, /* Rhotron */
97 1.8 leo { 0xfeff4100, 0xfe000000, 4, 8, VMECF_MEMSIZ_DEFAULT,
98 1.8 leo LE_BVME410 } /* BVME410 */
99 1.1 leo };
100 1.1 leo
101 1.1 leo #define NLESTD (sizeof(lestd) / sizeof(lestd[0]))
102 1.1 leo
103 1.1 leo /*
104 1.1 leo * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
105 1.1 leo * are the manufacturer id.
106 1.1 leo */
107 1.1 leo static u_char riebl_def_mac[] = {
108 1.1 leo 0x00, 0x00, 0x36, 0x04, 0x00, 0x00
109 1.1 leo };
110 1.1 leo
111 1.1 leo static int le_intr __P((struct le_softc *, int));
112 1.1 leo static void lepseudointr __P((struct le_softc *, void *));
113 1.1 leo static int le_vme_match __P((struct device *, struct cfdata *, void *));
114 1.1 leo static void le_vme_attach __P((struct device *, struct device *, void *));
115 1.1 leo static int probe_addresses __P((bus_space_tag_t *, bus_space_tag_t *,
116 1.1 leo bus_space_handle_t *, bus_space_handle_t *));
117 1.6 drochner static void riebl_skip_reserved_area __P((struct lance_softc *));
118 1.7 leo static int nm93c06_read __P((bus_space_tag_t, bus_space_handle_t, int));
119 1.9 leo static int bvme410_probe __P((bus_space_tag_t, bus_space_handle_t));
120 1.7 leo static int bvme410_mem_size __P((bus_space_tag_t, u_long));
121 1.7 leo static void bvme410_copytobuf __P((struct lance_softc *, void *, int, int));
122 1.7 leo static void bvme410_zerobuf __P((struct lance_softc *, int, int));
123 1.1 leo
124 1.16 thorpej CFATTACH_DECL(le_vme, sizeof(struct le_softc),
125 1.16 thorpej le_vme_match, le_vme_attach, NULL, NULL);
126 1.1 leo
127 1.12 mrg #if defined(_KERNEL_OPT)
128 1.6 drochner #include "opt_ddb.h"
129 1.6 drochner #endif
130 1.6 drochner
131 1.6 drochner #ifdef DDB
132 1.6 drochner #define integrate
133 1.6 drochner #define hide
134 1.6 drochner #else
135 1.6 drochner #define integrate static __inline
136 1.6 drochner #define hide static
137 1.6 drochner #endif
138 1.6 drochner
139 1.6 drochner hide void lewrcsr __P((struct lance_softc *, u_int16_t, u_int16_t));
140 1.6 drochner hide u_int16_t lerdcsr __P((struct lance_softc *, u_int16_t));
141 1.1 leo
142 1.1 leo hide void
143 1.1 leo lewrcsr(sc, port, val)
144 1.6 drochner struct lance_softc *sc;
145 1.1 leo u_int16_t port, val;
146 1.1 leo {
147 1.1 leo struct le_softc *lesc = (struct le_softc *)sc;
148 1.1 leo int s;
149 1.1 leo
150 1.1 leo s = splhigh();
151 1.1 leo bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
152 1.1 leo bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
153 1.1 leo splx(s);
154 1.1 leo }
155 1.1 leo
156 1.1 leo hide u_int16_t
157 1.1 leo lerdcsr(sc, port)
158 1.6 drochner struct lance_softc *sc;
159 1.1 leo u_int16_t port;
160 1.1 leo {
161 1.1 leo struct le_softc *lesc = (struct le_softc *)sc;
162 1.1 leo u_int16_t val;
163 1.1 leo int s;
164 1.1 leo
165 1.1 leo s = splhigh();
166 1.1 leo bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
167 1.1 leo val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
168 1.1 leo splx(s);
169 1.1 leo
170 1.1 leo return (val);
171 1.1 leo }
172 1.1 leo
173 1.1 leo static int
174 1.1 leo le_vme_match(parent, cfp, aux)
175 1.1 leo struct device *parent;
176 1.1 leo struct cfdata *cfp;
177 1.1 leo void *aux;
178 1.1 leo {
179 1.1 leo struct vme_attach_args *va = aux;
180 1.1 leo int i;
181 1.1 leo bus_space_tag_t iot;
182 1.1 leo bus_space_tag_t memt;
183 1.1 leo bus_space_handle_t ioh;
184 1.1 leo bus_space_handle_t memh;
185 1.1 leo
186 1.1 leo iot = va->va_iot;
187 1.1 leo memt = va->va_memt;
188 1.1 leo
189 1.1 leo for (i = 0; i < NLESTD; i++) {
190 1.1 leo struct le_addresses *le_ap = &lestd[i];
191 1.1 leo int found = 0;
192 1.1 leo
193 1.1 leo if ((va->va_iobase != IOBASEUNK)
194 1.1 leo && (va->va_iobase != le_ap->reg_addr))
195 1.1 leo continue;
196 1.1 leo
197 1.1 leo if ((va->va_maddr != MADDRUNK)
198 1.1 leo && (va->va_maddr != le_ap->mem_addr))
199 1.1 leo continue;
200 1.1 leo
201 1.1 leo if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
202 1.1 leo continue;
203 1.1 leo
204 1.7 leo if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0, &ioh)) {
205 1.1 leo printf("leprobe: cannot map io-area\n");
206 1.1 leo return (0);
207 1.1 leo }
208 1.7 leo if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
209 1.9 leo if (bvme410_probe(iot, ioh)) {
210 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
211 1.7 leo le_ap->mem_size = bvme410_mem_size(memt, le_ap->mem_addr);
212 1.7 leo }
213 1.7 leo }
214 1.7 leo if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
215 1.11 leo bus_space_unmap(iot, ioh, le_ap->reg_size);
216 1.7 leo continue;
217 1.7 leo }
218 1.7 leo
219 1.7 leo if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0, &memh)) {
220 1.11 leo bus_space_unmap(iot, ioh, le_ap->reg_size);
221 1.1 leo printf("leprobe: cannot map memory-area\n");
222 1.1 leo return (0);
223 1.1 leo }
224 1.1 leo found = probe_addresses(&iot, &memt, &ioh, &memh);
225 1.11 leo bus_space_unmap(iot, ioh, le_ap->reg_size);
226 1.11 leo bus_space_unmap(memt, memh, le_ap->mem_size);
227 1.1 leo
228 1.1 leo if (found) {
229 1.1 leo va->va_iobase = le_ap->reg_addr;
230 1.7 leo va->va_iosize = le_ap->reg_size;
231 1.1 leo va->va_maddr = le_ap->mem_addr;
232 1.7 leo va->va_msize = le_ap->mem_size;
233 1.8 leo va->va_aux = le_ap;
234 1.1 leo if (va->va_irq == IRQUNK)
235 1.1 leo va->va_irq = le_ap->irq;
236 1.1 leo return 1;
237 1.1 leo }
238 1.1 leo }
239 1.1 leo return (0);
240 1.1 leo }
241 1.1 leo
242 1.1 leo static int
243 1.1 leo probe_addresses(iot, memt, ioh, memh)
244 1.1 leo bus_space_tag_t *iot;
245 1.1 leo bus_space_tag_t *memt;
246 1.1 leo bus_space_handle_t *ioh;
247 1.1 leo bus_space_handle_t *memh;
248 1.1 leo {
249 1.1 leo /*
250 1.1 leo * Test accesibility of register and memory area
251 1.1 leo */
252 1.1 leo if(!bus_space_peek_2(*iot, *ioh, LER_RDP))
253 1.1 leo return 0;
254 1.1 leo if(!bus_space_peek_1(*memt, *memh, 0))
255 1.1 leo return 0;
256 1.1 leo
257 1.1 leo /*
258 1.1 leo * Test for writable memory
259 1.1 leo */
260 1.1 leo bus_space_write_2(*memt, *memh, 0, 0xa5a5);
261 1.1 leo if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
262 1.1 leo return 0;
263 1.1 leo
264 1.1 leo /*
265 1.1 leo * Test writability of selector port.
266 1.1 leo */
267 1.1 leo bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
268 1.1 leo if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
269 1.1 leo return 0;
270 1.1 leo
271 1.1 leo /*
272 1.1 leo * Do a small register test
273 1.1 leo */
274 1.1 leo bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
275 1.1 leo bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
276 1.1 leo if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
277 1.1 leo return 0;
278 1.1 leo
279 1.1 leo bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
280 1.1 leo if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
281 1.1 leo return 0;
282 1.1 leo
283 1.1 leo return 1;
284 1.1 leo }
285 1.1 leo
286 1.1 leo /*
287 1.1 leo * Interrupt mess. Because the card's interrupt is hardwired to either
288 1.1 leo * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
289 1.13 wiz * (it kills the serial at the least), we use a 2-level interrupt scheme. The
290 1.1 leo * card interrupt is routed to 'le_intr'. If the previous ipl was below
291 1.1 leo * splnet, just call the mi-function. If not, save the interrupt status,
292 1.1 leo * turn off card interrupts (the card is *very* persistent) and arrange
293 1.1 leo * for a softint 'callback' through 'lepseudointr'.
294 1.1 leo */
295 1.1 leo static int
296 1.1 leo le_intr(lesc, sr)
297 1.1 leo struct le_softc *lesc;
298 1.1 leo int sr;
299 1.1 leo {
300 1.6 drochner struct lance_softc *sc = &lesc->sc_am7990.lsc;
301 1.1 leo u_int16_t csr0;
302 1.1 leo
303 1.10 leo if ((sr & PSL_IPL) < (IPL_NET & PSL_IPL))
304 1.1 leo am7990_intr(sc);
305 1.1 leo else {
306 1.1 leo sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
307 1.1 leo lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
308 1.1 leo add_sicallback((si_farg)lepseudointr, lesc, sc);
309 1.1 leo }
310 1.1 leo return 1;
311 1.1 leo }
312 1.1 leo
313 1.1 leo
314 1.1 leo static void
315 1.1 leo lepseudointr(lesc, sc)
316 1.1 leo struct le_softc *lesc;
317 1.1 leo void *sc;
318 1.1 leo {
319 1.1 leo int s;
320 1.1 leo
321 1.1 leo s = splx(lesc->sc_splval);
322 1.1 leo am7990_intr(sc);
323 1.1 leo splx(s);
324 1.1 leo }
325 1.1 leo
326 1.1 leo static void
327 1.1 leo le_vme_attach(parent, self, aux)
328 1.1 leo struct device *parent, *self;
329 1.1 leo void *aux;
330 1.1 leo {
331 1.1 leo struct le_softc *lesc = (struct le_softc *)self;
332 1.6 drochner struct lance_softc *sc = &lesc->sc_am7990.lsc;
333 1.1 leo struct vme_attach_args *va = aux;
334 1.1 leo bus_space_handle_t ioh;
335 1.1 leo bus_space_handle_t memh;
336 1.8 leo struct le_addresses *le_ap;
337 1.1 leo int i;
338 1.1 leo
339 1.1 leo printf("\n%s: ", sc->sc_dev.dv_xname);
340 1.1 leo
341 1.1 leo if (bus_space_map(va->va_iot, va->va_iobase, va->va_iosize, 0, &ioh))
342 1.14 provos panic("leattach: cannot map io-area");
343 1.1 leo if (bus_space_map(va->va_memt, va->va_maddr, va->va_msize, 0, &memh))
344 1.14 provos panic("leattach: cannot map mem-area");
345 1.1 leo
346 1.1 leo lesc->sc_iot = va->va_iot;
347 1.1 leo lesc->sc_ioh = ioh;
348 1.1 leo lesc->sc_memt = va->va_memt;
349 1.1 leo lesc->sc_memh = memh;
350 1.1 leo lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
351 1.8 leo le_ap = (struct le_addresses *)va->va_aux;
352 1.1 leo
353 1.1 leo /*
354 1.1 leo * Go on to find board type
355 1.1 leo */
356 1.8 leo if ((le_ap->type_hint & LE_PAM)
357 1.8 leo && bus_space_peek_1(va->va_iot, ioh, LER_EEPROM)) {
358 1.1 leo printf("PAM card");
359 1.1 leo lesc->sc_type = LE_PAM;
360 1.1 leo bus_space_read_1(va->va_iot, ioh, LER_MEME);
361 1.1 leo }
362 1.8 leo else if((le_ap->type_hint & LE_BVME410)
363 1.9 leo && bvme410_probe(va->va_iot, ioh)) {
364 1.7 leo printf("BVME410");
365 1.7 leo lesc->sc_type = LE_BVME410;
366 1.7 leo }
367 1.8 leo else if (le_ap->type_hint & (LE_NEW_RIEBL|LE_OLD_RIEBL)) {
368 1.1 leo printf("Riebl card");
369 1.1 leo if(bus_space_read_4(va->va_memt, memh, RIEBL_MAGIC_ADDR)
370 1.1 leo == RIEBL_MAGIC)
371 1.1 leo lesc->sc_type = LE_NEW_RIEBL;
372 1.1 leo else {
373 1.1 leo printf("(without battery) ");
374 1.1 leo lesc->sc_type = LE_OLD_RIEBL;
375 1.1 leo }
376 1.1 leo }
377 1.8 leo else printf("le_vme_attach: Unsupported card!");
378 1.1 leo
379 1.7 leo switch (lesc->sc_type) {
380 1.7 leo case LE_BVME410:
381 1.7 leo sc->sc_copytodesc = bvme410_copytobuf;
382 1.7 leo sc->sc_copyfromdesc = lance_copyfrombuf_contig;
383 1.7 leo sc->sc_copytobuf = bvme410_copytobuf;
384 1.7 leo sc->sc_copyfrombuf = lance_copyfrombuf_contig;
385 1.7 leo sc->sc_zerobuf = bvme410_zerobuf;
386 1.7 leo break;
387 1.7 leo default:
388 1.7 leo sc->sc_copytodesc = lance_copytobuf_contig;
389 1.7 leo sc->sc_copyfromdesc = lance_copyfrombuf_contig;
390 1.7 leo sc->sc_copytobuf = lance_copytobuf_contig;
391 1.7 leo sc->sc_copyfrombuf = lance_copyfrombuf_contig;
392 1.7 leo sc->sc_zerobuf = lance_zerobuf_contig;
393 1.7 leo break;
394 1.7 leo }
395 1.1 leo
396 1.1 leo sc->sc_rdcsr = lerdcsr;
397 1.1 leo sc->sc_wrcsr = lewrcsr;
398 1.1 leo sc->sc_hwinit = NULL;
399 1.1 leo sc->sc_conf3 = LE_C3_BSWP;
400 1.1 leo sc->sc_addr = 0;
401 1.1 leo sc->sc_memsize = va->va_msize;
402 1.1 leo sc->sc_mem = (void *)memh; /* XXX */
403 1.1 leo
404 1.1 leo /*
405 1.1 leo * Get MAC address
406 1.1 leo */
407 1.1 leo switch (lesc->sc_type) {
408 1.1 leo case LE_OLD_RIEBL:
409 1.4 leo bcopy(riebl_def_mac, sc->sc_enaddr,
410 1.4 leo sizeof(sc->sc_enaddr));
411 1.1 leo break;
412 1.1 leo case LE_NEW_RIEBL:
413 1.4 leo for (i = 0; i < sizeof(sc->sc_enaddr); i++)
414 1.4 leo sc->sc_enaddr[i] =
415 1.1 leo bus_space_read_1(va->va_memt, memh, i + RIEBL_MAC_ADDR);
416 1.1 leo break;
417 1.1 leo case LE_PAM:
418 1.1 leo i = bus_space_read_1(va->va_iot, ioh, LER_EEPROM);
419 1.4 leo for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
420 1.4 leo sc->sc_enaddr[i] =
421 1.1 leo (bus_space_read_2(va->va_memt, memh, 2 * i) << 4) |
422 1.1 leo (bus_space_read_2(va->va_memt, memh, 2 * i + 1) & 0xf);
423 1.1 leo }
424 1.1 leo i = bus_space_read_1(va->va_iot, ioh, LER_MEME);
425 1.1 leo break;
426 1.7 leo case LE_BVME410:
427 1.7 leo for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
428 1.7 leo u_int16_t tmp;
429 1.7 leo
430 1.7 leo tmp = nm93c06_read(va->va_iot, ioh, i);
431 1.7 leo sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
432 1.7 leo sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
433 1.7 leo }
434 1.7 leo bus_space_write_2(va->va_iot, ioh, BVME410_BAR, 0x1); /* XXX */
435 1.1 leo }
436 1.1 leo
437 1.6 drochner am7990_config(&lesc->sc_am7990);
438 1.1 leo
439 1.1 leo if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
440 1.1 leo riebl_skip_reserved_area(sc);
441 1.1 leo
442 1.1 leo /*
443 1.1 leo * XXX: We always use uservector 64....
444 1.1 leo */
445 1.1 leo if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
446 1.1 leo (hw_ifun_t)le_intr, lesc)) == NULL) {
447 1.1 leo printf("le_vme_attach: Can't establish interrupt\n");
448 1.1 leo return;
449 1.1 leo }
450 1.1 leo
451 1.1 leo /*
452 1.1 leo * Notify the card of the vector
453 1.1 leo */
454 1.1 leo switch (lesc->sc_type) {
455 1.1 leo case LE_OLD_RIEBL:
456 1.1 leo case LE_NEW_RIEBL:
457 1.1 leo bus_space_write_2(va->va_memt, memh, RIEBL_IVEC_ADDR,
458 1.1 leo 64 + 64);
459 1.1 leo break;
460 1.1 leo case LE_PAM:
461 1.1 leo bus_space_write_1(va->va_iot, ioh, LER_IVEC, 64 + 64);
462 1.1 leo break;
463 1.7 leo case LE_BVME410:
464 1.7 leo bus_space_write_2(va->va_iot, ioh, BVME410_IVEC, 64 + 64);
465 1.7 leo break;
466 1.1 leo }
467 1.1 leo
468 1.1 leo /*
469 1.1 leo * Unmask the VME-interrupt we're on
470 1.1 leo */
471 1.1 leo if (machineid & ATARI_TT)
472 1.1 leo SCU->vme_mask |= 1 << va->va_irq;
473 1.1 leo }
474 1.1 leo
475 1.1 leo /*
476 1.1 leo * True if 'addr' containe within [start,len]
477 1.1 leo */
478 1.1 leo #define WITHIN(start, len, addr) \
479 1.1 leo ((addr >= start) && ((addr) <= ((start) + (len))))
480 1.1 leo static void
481 1.1 leo riebl_skip_reserved_area(sc)
482 1.6 drochner struct lance_softc *sc;
483 1.1 leo {
484 1.1 leo int offset = 0;
485 1.1 leo int i;
486 1.1 leo
487 1.1 leo for(i = 0; i < sc->sc_nrbuf; i++) {
488 1.1 leo if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START)
489 1.1 leo || WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
490 1.1 leo offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
491 1.1 leo }
492 1.1 leo sc->sc_rbufaddr[i] += offset;
493 1.1 leo }
494 1.1 leo
495 1.1 leo for(i = 0; i < sc->sc_ntbuf; i++) {
496 1.1 leo if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START)
497 1.1 leo || WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
498 1.1 leo offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
499 1.1 leo }
500 1.1 leo sc->sc_tbufaddr[i] += offset;
501 1.1 leo }
502 1.1 leo }
503 1.7 leo
504 1.7 leo static int
505 1.7 leo nm93c06_read(iot, ioh, nm93c06reg)
506 1.7 leo bus_space_tag_t iot;
507 1.7 leo bus_space_handle_t ioh;
508 1.7 leo int nm93c06reg;
509 1.7 leo {
510 1.7 leo int bar;
511 1.7 leo int shift;
512 1.7 leo int bits = 0x180 | (nm93c06reg & 0xf);
513 1.7 leo int data = 0;
514 1.7 leo
515 1.7 leo bar = 1<<BVME410_CS_SHIFT;
516 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
517 1.7 leo delay(1); /* tCSS = 1 us */
518 1.7 leo for (shift = 9; shift >= 0; shift--) {
519 1.7 leo if (((bits >> shift) & 1) == 1)
520 1.7 leo bar |= 1<<BVME410_DIN_SHIFT;
521 1.7 leo else
522 1.7 leo bar &= ~(1<<BVME410_DIN_SHIFT);
523 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
524 1.7 leo delay(1); /* tDIS = 0.4 us */
525 1.7 leo bar |= 1<<BVME410_CLK_SHIFT;
526 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
527 1.7 leo delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
528 1.7 leo bar &= ~(1<<BVME410_CLK_SHIFT);
529 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
530 1.7 leo delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
531 1.7 leo }
532 1.7 leo bar &= ~(1<<BVME410_DIN_SHIFT);
533 1.7 leo for (shift = 15; shift >= 0; shift--) {
534 1.7 leo delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
535 1.7 leo bar |= 1<<BVME410_CLK_SHIFT;
536 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
537 1.7 leo delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
538 1.7 leo data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
539 1.7 leo bar &= ~(1<<BVME410_CLK_SHIFT);
540 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
541 1.7 leo delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
542 1.7 leo }
543 1.7 leo bar &= ~(1<<BVME410_CS_SHIFT);
544 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
545 1.7 leo delay(1); /* tCS = 1 us */
546 1.7 leo return data;
547 1.7 leo }
548 1.7 leo
549 1.7 leo static int
550 1.9 leo bvme410_probe(iot, ioh)
551 1.9 leo bus_space_tag_t iot;
552 1.9 leo bus_space_handle_t ioh;
553 1.9 leo {
554 1.9 leo if (!bus_space_peek_2(iot, ioh, BVME410_IVEC))
555 1.9 leo return 0;
556 1.9 leo
557 1.9 leo bus_space_write_2(iot, ioh, BVME410_IVEC, 0x0000);
558 1.9 leo if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xff00)
559 1.9 leo return 0;
560 1.9 leo
561 1.9 leo bus_space_write_2(iot, ioh, BVME410_IVEC, 0xffff);
562 1.9 leo if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffff)
563 1.9 leo return 0;
564 1.9 leo
565 1.9 leo bus_space_write_2(iot, ioh, BVME410_IVEC, 0xa5a5);
566 1.9 leo if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffa5)
567 1.9 leo return 0;
568 1.9 leo
569 1.9 leo return 1;
570 1.9 leo }
571 1.9 leo
572 1.9 leo static int
573 1.7 leo bvme410_mem_size(memt, mem_addr)
574 1.7 leo bus_space_tag_t memt;
575 1.7 leo u_long mem_addr;
576 1.7 leo {
577 1.7 leo bus_space_handle_t memh;
578 1.7 leo int r;
579 1.7 leo
580 1.7 leo if (bus_space_map(memt, mem_addr, 256*1024, 0, &memh))
581 1.7 leo return VMECF_MEMSIZ_DEFAULT;
582 1.7 leo if (!bus_space_peek_1(memt, memh, 0)) {
583 1.11 leo bus_space_unmap(memt, memh, 256*1024);
584 1.7 leo return VMECF_MEMSIZ_DEFAULT;
585 1.7 leo }
586 1.7 leo bus_space_write_1(memt, memh, 0, 128);
587 1.7 leo bus_space_write_1(memt, memh, 64*1024, 32);
588 1.7 leo bus_space_write_1(memt, memh, 32*1024, 8);
589 1.7 leo r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
590 1.11 leo bus_space_unmap(memt, memh, 256*1024);
591 1.7 leo return r;
592 1.7 leo }
593 1.7 leo
594 1.7 leo /*
595 1.7 leo * Need to be careful when writing to the bvme410 dual port memory.
596 1.7 leo * Continue writing each byte until it reads back the same.
597 1.7 leo */
598 1.7 leo
599 1.7 leo static void
600 1.7 leo bvme410_copytobuf(sc, from, boff, len)
601 1.7 leo struct lance_softc *sc;
602 1.7 leo void *from;
603 1.7 leo int boff, len;
604 1.7 leo {
605 1.7 leo volatile char *buf = (volatile char *) sc->sc_mem;
606 1.7 leo char *f = (char *) from;
607 1.7 leo
608 1.7 leo for (buf += boff; len; buf++,f++,len--)
609 1.9 leo do {
610 1.9 leo *buf = *f;
611 1.9 leo } while (*buf != *f);
612 1.7 leo }
613 1.7 leo
614 1.7 leo static void
615 1.7 leo bvme410_zerobuf(sc, boff, len)
616 1.7 leo struct lance_softc *sc;
617 1.7 leo int boff, len;
618 1.7 leo {
619 1.7 leo volatile char *buf = (volatile char *)sc->sc_mem;
620 1.7 leo
621 1.7 leo for (buf += boff; len; buf++,len--)
622 1.9 leo do {
623 1.9 leo *buf = '\0';
624 1.9 leo } while (*buf != '\0');
625 1.7 leo }
626 1.7 leo
627