if_le_vme.c revision 1.22 1 1.22 perry /* $NetBSD: if_le_vme.c,v 1.22 2005/12/24 20:06:58 perry Exp $ */
2 1.18 agc
3 1.18 agc /*-
4 1.20 wiz * Copyright (c) 1998 maximum entropy. All rights reserved.
5 1.19 leo * Copyright (c) 1997 Leo Weppelman. All rights reserved.
6 1.18 agc * Copyright (c) 1992, 1993
7 1.18 agc * The Regents of the University of California. All rights reserved.
8 1.18 agc *
9 1.18 agc * This code is derived from software contributed to Berkeley by
10 1.18 agc * Ralph Campbell and Rick Macklem.
11 1.18 agc *
12 1.18 agc * Redistribution and use in source and binary forms, with or without
13 1.18 agc * modification, are permitted provided that the following conditions
14 1.18 agc * are met:
15 1.18 agc * 1. Redistributions of source code must retain the above copyright
16 1.18 agc * notice, this list of conditions and the following disclaimer.
17 1.18 agc * 2. Redistributions in binary form must reproduce the above copyright
18 1.18 agc * notice, this list of conditions and the following disclaimer in the
19 1.18 agc * documentation and/or other materials provided with the distribution.
20 1.18 agc * 3. Neither the name of the University nor the names of its contributors
21 1.18 agc * may be used to endorse or promote products derived from this software
22 1.18 agc * without specific prior written permission.
23 1.18 agc *
24 1.18 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.18 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.18 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.18 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.18 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.18 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.18 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.18 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.18 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.18 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.18 agc * SUCH DAMAGE.
35 1.18 agc *
36 1.18 agc * @(#)if_le.c 8.2 (Berkeley) 11/16/93
37 1.18 agc */
38 1.1 leo
39 1.1 leo /*-
40 1.1 leo * Copyright (c) 1995 Charles M. Hannum. All rights reserved.
41 1.1 leo *
42 1.1 leo * This code is derived from software contributed to Berkeley by
43 1.1 leo * Ralph Campbell and Rick Macklem.
44 1.1 leo *
45 1.1 leo * Redistribution and use in source and binary forms, with or without
46 1.1 leo * modification, are permitted provided that the following conditions
47 1.1 leo * are met:
48 1.1 leo * 1. Redistributions of source code must retain the above copyright
49 1.1 leo * notice, this list of conditions and the following disclaimer.
50 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
51 1.1 leo * notice, this list of conditions and the following disclaimer in the
52 1.1 leo * documentation and/or other materials provided with the distribution.
53 1.1 leo * 3. All advertising materials mentioning features or use of this software
54 1.1 leo * must display the following acknowledgement:
55 1.1 leo * This product includes software developed by the University of
56 1.1 leo * California, Berkeley and its contributors.
57 1.1 leo * 4. Neither the name of the University nor the names of its contributors
58 1.1 leo * may be used to endorse or promote products derived from this software
59 1.1 leo * without specific prior written permission.
60 1.1 leo *
61 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 1.1 leo * SUCH DAMAGE.
72 1.1 leo *
73 1.1 leo * @(#)if_le.c 8.2 (Berkeley) 11/16/93
74 1.1 leo */
75 1.17 lukem
76 1.17 lukem #include <sys/cdefs.h>
77 1.22 perry __KERNEL_RCSID(0, "$NetBSD: if_le_vme.c,v 1.22 2005/12/24 20:06:58 perry Exp $");
78 1.1 leo
79 1.5 jonathan #include "opt_inet.h"
80 1.1 leo #include "bpfilter.h"
81 1.1 leo
82 1.1 leo #include <sys/param.h>
83 1.1 leo #include <sys/systm.h>
84 1.1 leo #include <sys/mbuf.h>
85 1.1 leo #include <sys/syslog.h>
86 1.1 leo #include <sys/socket.h>
87 1.1 leo #include <sys/device.h>
88 1.1 leo
89 1.1 leo #include <net/if.h>
90 1.3 thorpej #include <net/if_media.h>
91 1.4 leo #include <net/if_ether.h>
92 1.1 leo
93 1.1 leo #ifdef INET
94 1.1 leo #include <netinet/in.h>
95 1.4 leo #include <netinet/if_inarp.h>
96 1.1 leo #endif
97 1.1 leo
98 1.1 leo #include <machine/cpu.h>
99 1.1 leo #include <machine/bus.h>
100 1.1 leo #include <machine/iomap.h>
101 1.1 leo #include <machine/scu.h>
102 1.1 leo
103 1.1 leo #include <atari/atari/device.h>
104 1.1 leo #include <atari/atari/intr.h>
105 1.1 leo
106 1.6 drochner #include <dev/ic/lancereg.h>
107 1.6 drochner #include <dev/ic/lancevar.h>
108 1.1 leo #include <dev/ic/am7990reg.h>
109 1.1 leo #include <dev/ic/am7990var.h>
110 1.1 leo
111 1.1 leo #include <atari/vme/vmevar.h>
112 1.1 leo #include <atari/vme/if_levar.h>
113 1.1 leo
114 1.7 leo /*
115 1.7 leo * All cards except BVME410 have 64KB RAM. However.... On the Riebl cards the
116 1.7 leo * area between the offsets 0xee70-0xeec0 is used to store config data.
117 1.7 leo */
118 1.1 leo struct le_addresses {
119 1.1 leo u_long reg_addr;
120 1.1 leo u_long mem_addr;
121 1.1 leo int irq;
122 1.7 leo int reg_size;
123 1.7 leo int mem_size;
124 1.8 leo int type_hint;
125 1.1 leo } lestd[] = {
126 1.8 leo { 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024,
127 1.8 leo LE_OLD_RIEBL|LE_NEW_RIEBL }, /* Riebl */
128 1.8 leo { 0xffcffff0, 0xffcf0000, 5, 16, 64*1024,
129 1.8 leo LE_PAM }, /* PAM */
130 1.8 leo { 0xfecffff0, 0xfecf0000, 5, 16, 64*1024,
131 1.8 leo LE_ROTHRON }, /* Rhotron */
132 1.8 leo { 0xfeff4100, 0xfe000000, 4, 8, VMECF_MEMSIZ_DEFAULT,
133 1.8 leo LE_BVME410 } /* BVME410 */
134 1.1 leo };
135 1.1 leo
136 1.1 leo #define NLESTD (sizeof(lestd) / sizeof(lestd[0]))
137 1.1 leo
138 1.1 leo /*
139 1.1 leo * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
140 1.1 leo * are the manufacturer id.
141 1.1 leo */
142 1.1 leo static u_char riebl_def_mac[] = {
143 1.1 leo 0x00, 0x00, 0x36, 0x04, 0x00, 0x00
144 1.1 leo };
145 1.1 leo
146 1.1 leo static int le_intr __P((struct le_softc *, int));
147 1.1 leo static void lepseudointr __P((struct le_softc *, void *));
148 1.1 leo static int le_vme_match __P((struct device *, struct cfdata *, void *));
149 1.1 leo static void le_vme_attach __P((struct device *, struct device *, void *));
150 1.1 leo static int probe_addresses __P((bus_space_tag_t *, bus_space_tag_t *,
151 1.1 leo bus_space_handle_t *, bus_space_handle_t *));
152 1.6 drochner static void riebl_skip_reserved_area __P((struct lance_softc *));
153 1.7 leo static int nm93c06_read __P((bus_space_tag_t, bus_space_handle_t, int));
154 1.9 leo static int bvme410_probe __P((bus_space_tag_t, bus_space_handle_t));
155 1.7 leo static int bvme410_mem_size __P((bus_space_tag_t, u_long));
156 1.7 leo static void bvme410_copytobuf __P((struct lance_softc *, void *, int, int));
157 1.7 leo static void bvme410_zerobuf __P((struct lance_softc *, int, int));
158 1.1 leo
159 1.16 thorpej CFATTACH_DECL(le_vme, sizeof(struct le_softc),
160 1.16 thorpej le_vme_match, le_vme_attach, NULL, NULL);
161 1.1 leo
162 1.12 mrg #if defined(_KERNEL_OPT)
163 1.6 drochner #include "opt_ddb.h"
164 1.6 drochner #endif
165 1.6 drochner
166 1.6 drochner #ifdef DDB
167 1.6 drochner #define integrate
168 1.6 drochner #define hide
169 1.6 drochner #else
170 1.22 perry #define integrate static inline
171 1.6 drochner #define hide static
172 1.6 drochner #endif
173 1.6 drochner
174 1.6 drochner hide void lewrcsr __P((struct lance_softc *, u_int16_t, u_int16_t));
175 1.6 drochner hide u_int16_t lerdcsr __P((struct lance_softc *, u_int16_t));
176 1.1 leo
177 1.1 leo hide void
178 1.1 leo lewrcsr(sc, port, val)
179 1.6 drochner struct lance_softc *sc;
180 1.1 leo u_int16_t port, val;
181 1.1 leo {
182 1.1 leo struct le_softc *lesc = (struct le_softc *)sc;
183 1.1 leo int s;
184 1.1 leo
185 1.1 leo s = splhigh();
186 1.1 leo bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
187 1.1 leo bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
188 1.1 leo splx(s);
189 1.1 leo }
190 1.1 leo
191 1.1 leo hide u_int16_t
192 1.1 leo lerdcsr(sc, port)
193 1.6 drochner struct lance_softc *sc;
194 1.1 leo u_int16_t port;
195 1.1 leo {
196 1.1 leo struct le_softc *lesc = (struct le_softc *)sc;
197 1.1 leo u_int16_t val;
198 1.1 leo int s;
199 1.1 leo
200 1.1 leo s = splhigh();
201 1.1 leo bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
202 1.1 leo val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
203 1.1 leo splx(s);
204 1.1 leo
205 1.1 leo return (val);
206 1.1 leo }
207 1.1 leo
208 1.1 leo static int
209 1.1 leo le_vme_match(parent, cfp, aux)
210 1.1 leo struct device *parent;
211 1.1 leo struct cfdata *cfp;
212 1.1 leo void *aux;
213 1.1 leo {
214 1.1 leo struct vme_attach_args *va = aux;
215 1.1 leo int i;
216 1.1 leo bus_space_tag_t iot;
217 1.1 leo bus_space_tag_t memt;
218 1.1 leo bus_space_handle_t ioh;
219 1.1 leo bus_space_handle_t memh;
220 1.1 leo
221 1.1 leo iot = va->va_iot;
222 1.1 leo memt = va->va_memt;
223 1.1 leo
224 1.1 leo for (i = 0; i < NLESTD; i++) {
225 1.1 leo struct le_addresses *le_ap = &lestd[i];
226 1.1 leo int found = 0;
227 1.1 leo
228 1.1 leo if ((va->va_iobase != IOBASEUNK)
229 1.1 leo && (va->va_iobase != le_ap->reg_addr))
230 1.1 leo continue;
231 1.1 leo
232 1.1 leo if ((va->va_maddr != MADDRUNK)
233 1.1 leo && (va->va_maddr != le_ap->mem_addr))
234 1.1 leo continue;
235 1.1 leo
236 1.1 leo if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
237 1.1 leo continue;
238 1.1 leo
239 1.7 leo if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0, &ioh)) {
240 1.1 leo printf("leprobe: cannot map io-area\n");
241 1.1 leo return (0);
242 1.1 leo }
243 1.7 leo if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
244 1.9 leo if (bvme410_probe(iot, ioh)) {
245 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
246 1.7 leo le_ap->mem_size = bvme410_mem_size(memt, le_ap->mem_addr);
247 1.7 leo }
248 1.7 leo }
249 1.7 leo if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
250 1.11 leo bus_space_unmap(iot, ioh, le_ap->reg_size);
251 1.7 leo continue;
252 1.7 leo }
253 1.7 leo
254 1.7 leo if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0, &memh)) {
255 1.11 leo bus_space_unmap(iot, ioh, le_ap->reg_size);
256 1.1 leo printf("leprobe: cannot map memory-area\n");
257 1.1 leo return (0);
258 1.1 leo }
259 1.1 leo found = probe_addresses(&iot, &memt, &ioh, &memh);
260 1.11 leo bus_space_unmap(iot, ioh, le_ap->reg_size);
261 1.11 leo bus_space_unmap(memt, memh, le_ap->mem_size);
262 1.1 leo
263 1.1 leo if (found) {
264 1.1 leo va->va_iobase = le_ap->reg_addr;
265 1.7 leo va->va_iosize = le_ap->reg_size;
266 1.1 leo va->va_maddr = le_ap->mem_addr;
267 1.7 leo va->va_msize = le_ap->mem_size;
268 1.8 leo va->va_aux = le_ap;
269 1.1 leo if (va->va_irq == IRQUNK)
270 1.1 leo va->va_irq = le_ap->irq;
271 1.1 leo return 1;
272 1.1 leo }
273 1.1 leo }
274 1.1 leo return (0);
275 1.1 leo }
276 1.1 leo
277 1.1 leo static int
278 1.1 leo probe_addresses(iot, memt, ioh, memh)
279 1.1 leo bus_space_tag_t *iot;
280 1.1 leo bus_space_tag_t *memt;
281 1.1 leo bus_space_handle_t *ioh;
282 1.1 leo bus_space_handle_t *memh;
283 1.1 leo {
284 1.1 leo /*
285 1.1 leo * Test accesibility of register and memory area
286 1.1 leo */
287 1.1 leo if(!bus_space_peek_2(*iot, *ioh, LER_RDP))
288 1.1 leo return 0;
289 1.1 leo if(!bus_space_peek_1(*memt, *memh, 0))
290 1.1 leo return 0;
291 1.1 leo
292 1.1 leo /*
293 1.1 leo * Test for writable memory
294 1.1 leo */
295 1.1 leo bus_space_write_2(*memt, *memh, 0, 0xa5a5);
296 1.1 leo if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
297 1.1 leo return 0;
298 1.1 leo
299 1.1 leo /*
300 1.1 leo * Test writability of selector port.
301 1.1 leo */
302 1.1 leo bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
303 1.1 leo if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
304 1.1 leo return 0;
305 1.1 leo
306 1.1 leo /*
307 1.1 leo * Do a small register test
308 1.1 leo */
309 1.1 leo bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
310 1.1 leo bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
311 1.1 leo if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
312 1.1 leo return 0;
313 1.1 leo
314 1.1 leo bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
315 1.1 leo if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
316 1.1 leo return 0;
317 1.1 leo
318 1.1 leo return 1;
319 1.1 leo }
320 1.1 leo
321 1.1 leo /*
322 1.1 leo * Interrupt mess. Because the card's interrupt is hardwired to either
323 1.1 leo * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
324 1.13 wiz * (it kills the serial at the least), we use a 2-level interrupt scheme. The
325 1.1 leo * card interrupt is routed to 'le_intr'. If the previous ipl was below
326 1.1 leo * splnet, just call the mi-function. If not, save the interrupt status,
327 1.1 leo * turn off card interrupts (the card is *very* persistent) and arrange
328 1.1 leo * for a softint 'callback' through 'lepseudointr'.
329 1.1 leo */
330 1.1 leo static int
331 1.1 leo le_intr(lesc, sr)
332 1.1 leo struct le_softc *lesc;
333 1.1 leo int sr;
334 1.1 leo {
335 1.6 drochner struct lance_softc *sc = &lesc->sc_am7990.lsc;
336 1.1 leo u_int16_t csr0;
337 1.1 leo
338 1.10 leo if ((sr & PSL_IPL) < (IPL_NET & PSL_IPL))
339 1.1 leo am7990_intr(sc);
340 1.1 leo else {
341 1.1 leo sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
342 1.1 leo lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
343 1.1 leo add_sicallback((si_farg)lepseudointr, lesc, sc);
344 1.1 leo }
345 1.1 leo return 1;
346 1.1 leo }
347 1.1 leo
348 1.1 leo
349 1.1 leo static void
350 1.1 leo lepseudointr(lesc, sc)
351 1.1 leo struct le_softc *lesc;
352 1.1 leo void *sc;
353 1.1 leo {
354 1.1 leo int s;
355 1.1 leo
356 1.1 leo s = splx(lesc->sc_splval);
357 1.1 leo am7990_intr(sc);
358 1.1 leo splx(s);
359 1.1 leo }
360 1.1 leo
361 1.1 leo static void
362 1.1 leo le_vme_attach(parent, self, aux)
363 1.1 leo struct device *parent, *self;
364 1.1 leo void *aux;
365 1.1 leo {
366 1.1 leo struct le_softc *lesc = (struct le_softc *)self;
367 1.6 drochner struct lance_softc *sc = &lesc->sc_am7990.lsc;
368 1.1 leo struct vme_attach_args *va = aux;
369 1.1 leo bus_space_handle_t ioh;
370 1.1 leo bus_space_handle_t memh;
371 1.8 leo struct le_addresses *le_ap;
372 1.1 leo int i;
373 1.1 leo
374 1.1 leo printf("\n%s: ", sc->sc_dev.dv_xname);
375 1.1 leo
376 1.1 leo if (bus_space_map(va->va_iot, va->va_iobase, va->va_iosize, 0, &ioh))
377 1.14 provos panic("leattach: cannot map io-area");
378 1.1 leo if (bus_space_map(va->va_memt, va->va_maddr, va->va_msize, 0, &memh))
379 1.14 provos panic("leattach: cannot map mem-area");
380 1.1 leo
381 1.1 leo lesc->sc_iot = va->va_iot;
382 1.1 leo lesc->sc_ioh = ioh;
383 1.1 leo lesc->sc_memt = va->va_memt;
384 1.1 leo lesc->sc_memh = memh;
385 1.1 leo lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
386 1.8 leo le_ap = (struct le_addresses *)va->va_aux;
387 1.1 leo
388 1.1 leo /*
389 1.1 leo * Go on to find board type
390 1.1 leo */
391 1.8 leo if ((le_ap->type_hint & LE_PAM)
392 1.8 leo && bus_space_peek_1(va->va_iot, ioh, LER_EEPROM)) {
393 1.1 leo printf("PAM card");
394 1.1 leo lesc->sc_type = LE_PAM;
395 1.1 leo bus_space_read_1(va->va_iot, ioh, LER_MEME);
396 1.1 leo }
397 1.8 leo else if((le_ap->type_hint & LE_BVME410)
398 1.9 leo && bvme410_probe(va->va_iot, ioh)) {
399 1.7 leo printf("BVME410");
400 1.7 leo lesc->sc_type = LE_BVME410;
401 1.7 leo }
402 1.8 leo else if (le_ap->type_hint & (LE_NEW_RIEBL|LE_OLD_RIEBL)) {
403 1.1 leo printf("Riebl card");
404 1.1 leo if(bus_space_read_4(va->va_memt, memh, RIEBL_MAGIC_ADDR)
405 1.1 leo == RIEBL_MAGIC)
406 1.1 leo lesc->sc_type = LE_NEW_RIEBL;
407 1.1 leo else {
408 1.1 leo printf("(without battery) ");
409 1.1 leo lesc->sc_type = LE_OLD_RIEBL;
410 1.1 leo }
411 1.1 leo }
412 1.8 leo else printf("le_vme_attach: Unsupported card!");
413 1.1 leo
414 1.7 leo switch (lesc->sc_type) {
415 1.7 leo case LE_BVME410:
416 1.7 leo sc->sc_copytodesc = bvme410_copytobuf;
417 1.7 leo sc->sc_copyfromdesc = lance_copyfrombuf_contig;
418 1.7 leo sc->sc_copytobuf = bvme410_copytobuf;
419 1.7 leo sc->sc_copyfrombuf = lance_copyfrombuf_contig;
420 1.7 leo sc->sc_zerobuf = bvme410_zerobuf;
421 1.7 leo break;
422 1.7 leo default:
423 1.7 leo sc->sc_copytodesc = lance_copytobuf_contig;
424 1.7 leo sc->sc_copyfromdesc = lance_copyfrombuf_contig;
425 1.7 leo sc->sc_copytobuf = lance_copytobuf_contig;
426 1.7 leo sc->sc_copyfrombuf = lance_copyfrombuf_contig;
427 1.7 leo sc->sc_zerobuf = lance_zerobuf_contig;
428 1.7 leo break;
429 1.7 leo }
430 1.1 leo
431 1.1 leo sc->sc_rdcsr = lerdcsr;
432 1.1 leo sc->sc_wrcsr = lewrcsr;
433 1.1 leo sc->sc_hwinit = NULL;
434 1.1 leo sc->sc_conf3 = LE_C3_BSWP;
435 1.1 leo sc->sc_addr = 0;
436 1.1 leo sc->sc_memsize = va->va_msize;
437 1.1 leo sc->sc_mem = (void *)memh; /* XXX */
438 1.1 leo
439 1.1 leo /*
440 1.1 leo * Get MAC address
441 1.1 leo */
442 1.1 leo switch (lesc->sc_type) {
443 1.1 leo case LE_OLD_RIEBL:
444 1.4 leo bcopy(riebl_def_mac, sc->sc_enaddr,
445 1.4 leo sizeof(sc->sc_enaddr));
446 1.1 leo break;
447 1.1 leo case LE_NEW_RIEBL:
448 1.4 leo for (i = 0; i < sizeof(sc->sc_enaddr); i++)
449 1.4 leo sc->sc_enaddr[i] =
450 1.1 leo bus_space_read_1(va->va_memt, memh, i + RIEBL_MAC_ADDR);
451 1.1 leo break;
452 1.1 leo case LE_PAM:
453 1.1 leo i = bus_space_read_1(va->va_iot, ioh, LER_EEPROM);
454 1.4 leo for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
455 1.4 leo sc->sc_enaddr[i] =
456 1.1 leo (bus_space_read_2(va->va_memt, memh, 2 * i) << 4) |
457 1.1 leo (bus_space_read_2(va->va_memt, memh, 2 * i + 1) & 0xf);
458 1.1 leo }
459 1.1 leo i = bus_space_read_1(va->va_iot, ioh, LER_MEME);
460 1.1 leo break;
461 1.7 leo case LE_BVME410:
462 1.7 leo for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
463 1.7 leo u_int16_t tmp;
464 1.7 leo
465 1.7 leo tmp = nm93c06_read(va->va_iot, ioh, i);
466 1.7 leo sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
467 1.7 leo sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
468 1.7 leo }
469 1.7 leo bus_space_write_2(va->va_iot, ioh, BVME410_BAR, 0x1); /* XXX */
470 1.1 leo }
471 1.1 leo
472 1.6 drochner am7990_config(&lesc->sc_am7990);
473 1.1 leo
474 1.1 leo if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
475 1.1 leo riebl_skip_reserved_area(sc);
476 1.1 leo
477 1.1 leo /*
478 1.1 leo * XXX: We always use uservector 64....
479 1.1 leo */
480 1.1 leo if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
481 1.1 leo (hw_ifun_t)le_intr, lesc)) == NULL) {
482 1.1 leo printf("le_vme_attach: Can't establish interrupt\n");
483 1.1 leo return;
484 1.1 leo }
485 1.1 leo
486 1.1 leo /*
487 1.1 leo * Notify the card of the vector
488 1.1 leo */
489 1.1 leo switch (lesc->sc_type) {
490 1.1 leo case LE_OLD_RIEBL:
491 1.1 leo case LE_NEW_RIEBL:
492 1.1 leo bus_space_write_2(va->va_memt, memh, RIEBL_IVEC_ADDR,
493 1.1 leo 64 + 64);
494 1.1 leo break;
495 1.1 leo case LE_PAM:
496 1.1 leo bus_space_write_1(va->va_iot, ioh, LER_IVEC, 64 + 64);
497 1.1 leo break;
498 1.7 leo case LE_BVME410:
499 1.7 leo bus_space_write_2(va->va_iot, ioh, BVME410_IVEC, 64 + 64);
500 1.7 leo break;
501 1.1 leo }
502 1.1 leo
503 1.1 leo /*
504 1.1 leo * Unmask the VME-interrupt we're on
505 1.1 leo */
506 1.1 leo if (machineid & ATARI_TT)
507 1.1 leo SCU->vme_mask |= 1 << va->va_irq;
508 1.1 leo }
509 1.1 leo
510 1.1 leo /*
511 1.1 leo * True if 'addr' containe within [start,len]
512 1.1 leo */
513 1.1 leo #define WITHIN(start, len, addr) \
514 1.1 leo ((addr >= start) && ((addr) <= ((start) + (len))))
515 1.1 leo static void
516 1.1 leo riebl_skip_reserved_area(sc)
517 1.6 drochner struct lance_softc *sc;
518 1.1 leo {
519 1.1 leo int offset = 0;
520 1.1 leo int i;
521 1.1 leo
522 1.1 leo for(i = 0; i < sc->sc_nrbuf; i++) {
523 1.1 leo if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START)
524 1.1 leo || WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
525 1.1 leo offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
526 1.1 leo }
527 1.1 leo sc->sc_rbufaddr[i] += offset;
528 1.1 leo }
529 1.1 leo
530 1.1 leo for(i = 0; i < sc->sc_ntbuf; i++) {
531 1.1 leo if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START)
532 1.1 leo || WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
533 1.1 leo offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
534 1.1 leo }
535 1.1 leo sc->sc_tbufaddr[i] += offset;
536 1.1 leo }
537 1.1 leo }
538 1.7 leo
539 1.7 leo static int
540 1.7 leo nm93c06_read(iot, ioh, nm93c06reg)
541 1.7 leo bus_space_tag_t iot;
542 1.7 leo bus_space_handle_t ioh;
543 1.7 leo int nm93c06reg;
544 1.7 leo {
545 1.7 leo int bar;
546 1.7 leo int shift;
547 1.7 leo int bits = 0x180 | (nm93c06reg & 0xf);
548 1.7 leo int data = 0;
549 1.7 leo
550 1.7 leo bar = 1<<BVME410_CS_SHIFT;
551 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
552 1.7 leo delay(1); /* tCSS = 1 us */
553 1.7 leo for (shift = 9; shift >= 0; shift--) {
554 1.7 leo if (((bits >> shift) & 1) == 1)
555 1.7 leo bar |= 1<<BVME410_DIN_SHIFT;
556 1.7 leo else
557 1.7 leo bar &= ~(1<<BVME410_DIN_SHIFT);
558 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
559 1.7 leo delay(1); /* tDIS = 0.4 us */
560 1.7 leo bar |= 1<<BVME410_CLK_SHIFT;
561 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
562 1.7 leo delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
563 1.7 leo bar &= ~(1<<BVME410_CLK_SHIFT);
564 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
565 1.7 leo delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
566 1.7 leo }
567 1.7 leo bar &= ~(1<<BVME410_DIN_SHIFT);
568 1.7 leo for (shift = 15; shift >= 0; shift--) {
569 1.7 leo delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
570 1.7 leo bar |= 1<<BVME410_CLK_SHIFT;
571 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
572 1.7 leo delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
573 1.7 leo data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
574 1.7 leo bar &= ~(1<<BVME410_CLK_SHIFT);
575 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
576 1.7 leo delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
577 1.7 leo }
578 1.7 leo bar &= ~(1<<BVME410_CS_SHIFT);
579 1.7 leo bus_space_write_2(iot, ioh, BVME410_BAR, bar);
580 1.7 leo delay(1); /* tCS = 1 us */
581 1.7 leo return data;
582 1.7 leo }
583 1.7 leo
584 1.7 leo static int
585 1.9 leo bvme410_probe(iot, ioh)
586 1.9 leo bus_space_tag_t iot;
587 1.9 leo bus_space_handle_t ioh;
588 1.9 leo {
589 1.9 leo if (!bus_space_peek_2(iot, ioh, BVME410_IVEC))
590 1.9 leo return 0;
591 1.9 leo
592 1.9 leo bus_space_write_2(iot, ioh, BVME410_IVEC, 0x0000);
593 1.9 leo if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xff00)
594 1.9 leo return 0;
595 1.9 leo
596 1.9 leo bus_space_write_2(iot, ioh, BVME410_IVEC, 0xffff);
597 1.9 leo if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffff)
598 1.9 leo return 0;
599 1.9 leo
600 1.9 leo bus_space_write_2(iot, ioh, BVME410_IVEC, 0xa5a5);
601 1.9 leo if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffa5)
602 1.9 leo return 0;
603 1.9 leo
604 1.9 leo return 1;
605 1.9 leo }
606 1.9 leo
607 1.9 leo static int
608 1.7 leo bvme410_mem_size(memt, mem_addr)
609 1.7 leo bus_space_tag_t memt;
610 1.7 leo u_long mem_addr;
611 1.7 leo {
612 1.7 leo bus_space_handle_t memh;
613 1.7 leo int r;
614 1.7 leo
615 1.7 leo if (bus_space_map(memt, mem_addr, 256*1024, 0, &memh))
616 1.7 leo return VMECF_MEMSIZ_DEFAULT;
617 1.7 leo if (!bus_space_peek_1(memt, memh, 0)) {
618 1.11 leo bus_space_unmap(memt, memh, 256*1024);
619 1.7 leo return VMECF_MEMSIZ_DEFAULT;
620 1.7 leo }
621 1.7 leo bus_space_write_1(memt, memh, 0, 128);
622 1.7 leo bus_space_write_1(memt, memh, 64*1024, 32);
623 1.7 leo bus_space_write_1(memt, memh, 32*1024, 8);
624 1.7 leo r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
625 1.11 leo bus_space_unmap(memt, memh, 256*1024);
626 1.7 leo return r;
627 1.7 leo }
628 1.7 leo
629 1.7 leo /*
630 1.7 leo * Need to be careful when writing to the bvme410 dual port memory.
631 1.7 leo * Continue writing each byte until it reads back the same.
632 1.7 leo */
633 1.7 leo
634 1.7 leo static void
635 1.7 leo bvme410_copytobuf(sc, from, boff, len)
636 1.7 leo struct lance_softc *sc;
637 1.7 leo void *from;
638 1.7 leo int boff, len;
639 1.7 leo {
640 1.7 leo volatile char *buf = (volatile char *) sc->sc_mem;
641 1.7 leo char *f = (char *) from;
642 1.7 leo
643 1.7 leo for (buf += boff; len; buf++,f++,len--)
644 1.9 leo do {
645 1.9 leo *buf = *f;
646 1.9 leo } while (*buf != *f);
647 1.7 leo }
648 1.7 leo
649 1.7 leo static void
650 1.7 leo bvme410_zerobuf(sc, boff, len)
651 1.7 leo struct lance_softc *sc;
652 1.7 leo int boff, len;
653 1.7 leo {
654 1.7 leo volatile char *buf = (volatile char *)sc->sc_mem;
655 1.7 leo
656 1.7 leo for (buf += boff; len; buf++,len--)
657 1.9 leo do {
658 1.9 leo *buf = '\0';
659 1.9 leo } while (*buf != '\0');
660 1.7 leo }
661 1.7 leo
662