Home | History | Annotate | Line # | Download | only in vme
if_le_vme.c revision 1.22.74.1
      1  1.22.74.1       mjf /*	$NetBSD: if_le_vme.c,v 1.22.74.1 2008/06/02 13:21:58 mjf Exp $	*/
      2       1.18       agc 
      3       1.18       agc /*-
      4       1.20       wiz  * Copyright (c) 1998 maximum entropy.  All rights reserved.
      5       1.19       leo  * Copyright (c) 1997 Leo Weppelman.  All rights reserved.
      6       1.18       agc  * Copyright (c) 1992, 1993
      7       1.18       agc  *	The Regents of the University of California.  All rights reserved.
      8       1.18       agc  *
      9       1.18       agc  * This code is derived from software contributed to Berkeley by
     10       1.18       agc  * Ralph Campbell and Rick Macklem.
     11       1.18       agc  *
     12       1.18       agc  * Redistribution and use in source and binary forms, with or without
     13       1.18       agc  * modification, are permitted provided that the following conditions
     14       1.18       agc  * are met:
     15       1.18       agc  * 1. Redistributions of source code must retain the above copyright
     16       1.18       agc  *    notice, this list of conditions and the following disclaimer.
     17       1.18       agc  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.18       agc  *    notice, this list of conditions and the following disclaimer in the
     19       1.18       agc  *    documentation and/or other materials provided with the distribution.
     20       1.18       agc  * 3. Neither the name of the University nor the names of its contributors
     21       1.18       agc  *    may be used to endorse or promote products derived from this software
     22       1.18       agc  *    without specific prior written permission.
     23       1.18       agc  *
     24       1.18       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25       1.18       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26       1.18       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27       1.18       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28       1.18       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29       1.18       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30       1.18       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31       1.18       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32       1.18       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33       1.18       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34       1.18       agc  * SUCH DAMAGE.
     35       1.18       agc  *
     36       1.18       agc  *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
     37       1.18       agc  */
     38        1.1       leo 
     39        1.1       leo /*-
     40        1.1       leo  * Copyright (c) 1995 Charles M. Hannum.  All rights reserved.
     41        1.1       leo  *
     42        1.1       leo  * This code is derived from software contributed to Berkeley by
     43        1.1       leo  * Ralph Campbell and Rick Macklem.
     44        1.1       leo  *
     45        1.1       leo  * Redistribution and use in source and binary forms, with or without
     46        1.1       leo  * modification, are permitted provided that the following conditions
     47        1.1       leo  * are met:
     48        1.1       leo  * 1. Redistributions of source code must retain the above copyright
     49        1.1       leo  *    notice, this list of conditions and the following disclaimer.
     50        1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     51        1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     52        1.1       leo  *    documentation and/or other materials provided with the distribution.
     53        1.1       leo  * 3. All advertising materials mentioning features or use of this software
     54        1.1       leo  *    must display the following acknowledgement:
     55        1.1       leo  *	This product includes software developed by the University of
     56        1.1       leo  *	California, Berkeley and its contributors.
     57        1.1       leo  * 4. Neither the name of the University nor the names of its contributors
     58        1.1       leo  *    may be used to endorse or promote products derived from this software
     59        1.1       leo  *    without specific prior written permission.
     60        1.1       leo  *
     61        1.1       leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     62        1.1       leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63        1.1       leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64        1.1       leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     65        1.1       leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66        1.1       leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67        1.1       leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68        1.1       leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69        1.1       leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70        1.1       leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71        1.1       leo  * SUCH DAMAGE.
     72        1.1       leo  *
     73        1.1       leo  *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
     74        1.1       leo  */
     75       1.17     lukem 
     76       1.17     lukem #include <sys/cdefs.h>
     77  1.22.74.1       mjf __KERNEL_RCSID(0, "$NetBSD: if_le_vme.c,v 1.22.74.1 2008/06/02 13:21:58 mjf Exp $");
     78        1.1       leo 
     79        1.5  jonathan #include "opt_inet.h"
     80        1.1       leo #include "bpfilter.h"
     81        1.1       leo 
     82        1.1       leo #include <sys/param.h>
     83        1.1       leo #include <sys/systm.h>
     84        1.1       leo #include <sys/mbuf.h>
     85        1.1       leo #include <sys/syslog.h>
     86        1.1       leo #include <sys/socket.h>
     87        1.1       leo #include <sys/device.h>
     88        1.1       leo 
     89        1.1       leo #include <net/if.h>
     90        1.3   thorpej #include <net/if_media.h>
     91        1.4       leo #include <net/if_ether.h>
     92        1.1       leo 
     93        1.1       leo #ifdef INET
     94        1.1       leo #include <netinet/in.h>
     95        1.4       leo #include <netinet/if_inarp.h>
     96        1.1       leo #endif
     97        1.1       leo 
     98        1.1       leo #include <machine/cpu.h>
     99        1.1       leo #include <machine/bus.h>
    100        1.1       leo #include <machine/iomap.h>
    101        1.1       leo #include <machine/scu.h>
    102        1.1       leo 
    103        1.1       leo #include <atari/atari/device.h>
    104        1.1       leo #include <atari/atari/intr.h>
    105        1.1       leo 
    106        1.6  drochner #include <dev/ic/lancereg.h>
    107        1.6  drochner #include <dev/ic/lancevar.h>
    108        1.1       leo #include <dev/ic/am7990reg.h>
    109        1.1       leo #include <dev/ic/am7990var.h>
    110        1.1       leo 
    111        1.1       leo #include <atari/vme/vmevar.h>
    112        1.1       leo #include <atari/vme/if_levar.h>
    113        1.1       leo 
    114        1.7       leo /*
    115        1.7       leo  * All cards except BVME410 have 64KB RAM. However.... On the Riebl cards the
    116        1.7       leo  * area between the offsets 0xee70-0xeec0 is used to store config data.
    117        1.7       leo  */
    118        1.1       leo struct le_addresses {
    119        1.1       leo 	u_long	reg_addr;
    120        1.1       leo 	u_long	mem_addr;
    121        1.1       leo 	int	irq;
    122        1.7       leo 	int	reg_size;
    123        1.7       leo 	int	mem_size;
    124        1.8       leo 	int	type_hint;
    125        1.1       leo } lestd[] = {
    126        1.8       leo 	{ 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024,
    127        1.8       leo 				LE_OLD_RIEBL|LE_NEW_RIEBL }, /* Riebl	*/
    128        1.8       leo 	{ 0xffcffff0, 0xffcf0000,      5, 16, 64*1024,
    129        1.8       leo 				LE_PAM },		     /* PAM	*/
    130        1.8       leo 	{ 0xfecffff0, 0xfecf0000,      5, 16, 64*1024,
    131        1.8       leo 				LE_ROTHRON },		     /* Rhotron	*/
    132        1.8       leo 	{ 0xfeff4100, 0xfe000000,      4,  8, VMECF_MEMSIZ_DEFAULT,
    133        1.8       leo 				LE_BVME410 }		     /* BVME410 */
    134        1.1       leo };
    135        1.1       leo 
    136  1.22.74.1       mjf #define	NLESTD	__arraycount(lestd)
    137        1.1       leo 
    138        1.1       leo /*
    139        1.1       leo  * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
    140        1.1       leo  * are the manufacturer id.
    141        1.1       leo  */
    142        1.1       leo static u_char riebl_def_mac[] = {
    143        1.1       leo 	0x00, 0x00, 0x36, 0x04, 0x00, 0x00
    144        1.1       leo };
    145        1.1       leo 
    146  1.22.74.1       mjf static int le_intr(struct le_softc *, int);
    147  1.22.74.1       mjf static void lepseudointr(struct le_softc *, void *);
    148  1.22.74.1       mjf static int le_vme_match(device_t, cfdata_t, void *);
    149  1.22.74.1       mjf static void le_vme_attach(device_t, device_t, void *);
    150  1.22.74.1       mjf static int probe_addresses(bus_space_tag_t *, bus_space_tag_t *,
    151  1.22.74.1       mjf 			   bus_space_handle_t *, bus_space_handle_t *);
    152  1.22.74.1       mjf static void riebl_skip_reserved_area(struct lance_softc *);
    153  1.22.74.1       mjf static int nm93c06_read(bus_space_tag_t, bus_space_handle_t, int);
    154  1.22.74.1       mjf static int bvme410_probe(bus_space_tag_t, bus_space_handle_t);
    155  1.22.74.1       mjf static int bvme410_mem_size(bus_space_tag_t, u_long);
    156  1.22.74.1       mjf static void bvme410_copytobuf(struct lance_softc *, void *, int, int);
    157  1.22.74.1       mjf static void bvme410_zerobuf(struct lance_softc *, int, int);
    158        1.1       leo 
    159  1.22.74.1       mjf CFATTACH_DECL_NEW(le_vme, sizeof(struct le_softc),
    160       1.16   thorpej     le_vme_match, le_vme_attach, NULL, NULL);
    161        1.1       leo 
    162       1.12       mrg #if defined(_KERNEL_OPT)
    163        1.6  drochner #include "opt_ddb.h"
    164        1.6  drochner #endif
    165        1.6  drochner 
    166        1.6  drochner #ifdef DDB
    167        1.6  drochner #define	integrate
    168        1.6  drochner #define hide
    169        1.6  drochner #else
    170       1.22     perry #define	integrate	static inline
    171        1.6  drochner #define hide		static
    172        1.6  drochner #endif
    173        1.6  drochner 
    174  1.22.74.1       mjf hide void lewrcsr(struct lance_softc *, uint16_t, uint16_t);
    175  1.22.74.1       mjf hide uint16_t lerdcsr(struct lance_softc *, uint16_t);
    176        1.1       leo 
    177        1.1       leo hide void
    178  1.22.74.1       mjf lewrcsr(struct lance_softc *sc, uint16_t port, uint16_t val)
    179        1.1       leo {
    180        1.1       leo 	struct le_softc		*lesc = (struct le_softc *)sc;
    181        1.1       leo 	int			s;
    182        1.1       leo 
    183        1.1       leo 	s = splhigh();
    184        1.1       leo 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
    185        1.1       leo 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
    186        1.1       leo 	splx(s);
    187        1.1       leo }
    188        1.1       leo 
    189  1.22.74.1       mjf hide uint16_t
    190  1.22.74.1       mjf lerdcsr(struct lance_softc *sc, uint16_t port)
    191        1.1       leo {
    192        1.1       leo 	struct le_softc		*lesc = (struct le_softc *)sc;
    193  1.22.74.1       mjf 	uint16_t		val;
    194        1.1       leo 	int			s;
    195        1.1       leo 
    196        1.1       leo 	s = splhigh();
    197        1.1       leo 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
    198        1.1       leo 	val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
    199        1.1       leo 	splx(s);
    200        1.1       leo 
    201        1.1       leo 	return (val);
    202        1.1       leo }
    203        1.1       leo 
    204        1.1       leo static int
    205  1.22.74.1       mjf le_vme_match(device_t parent, cfdata_t cfp, void *aux)
    206        1.1       leo {
    207        1.1       leo 	struct vme_attach_args	*va = aux;
    208        1.1       leo 	int			i;
    209        1.1       leo 	bus_space_tag_t		iot;
    210        1.1       leo 	bus_space_tag_t		memt;
    211        1.1       leo 	bus_space_handle_t	ioh;
    212        1.1       leo 	bus_space_handle_t	memh;
    213        1.1       leo 
    214        1.1       leo 	iot  = va->va_iot;
    215        1.1       leo 	memt = va->va_memt;
    216        1.1       leo 
    217        1.1       leo 	for (i = 0; i < NLESTD; i++) {
    218        1.1       leo 		struct le_addresses	*le_ap = &lestd[i];
    219        1.1       leo 		int			found  = 0;
    220        1.1       leo 
    221        1.1       leo 		if ((va->va_iobase != IOBASEUNK)
    222        1.1       leo 		     && (va->va_iobase != le_ap->reg_addr))
    223        1.1       leo 			continue;
    224        1.1       leo 
    225        1.1       leo 		if ((va->va_maddr != MADDRUNK)
    226        1.1       leo 		     && (va->va_maddr != le_ap->mem_addr))
    227        1.1       leo 			continue;
    228        1.1       leo 
    229        1.1       leo 		if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
    230        1.1       leo 			continue;
    231        1.1       leo 
    232        1.7       leo 		if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0, &ioh)) {
    233  1.22.74.1       mjf 			aprint_error("leprobe: cannot map io-area\n");
    234        1.1       leo 			return (0);
    235        1.1       leo 		}
    236        1.7       leo 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
    237        1.9       leo 			if (bvme410_probe(iot, ioh)) {
    238        1.7       leo 				bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
    239        1.7       leo 				le_ap->mem_size = bvme410_mem_size(memt, le_ap->mem_addr);
    240        1.7       leo 			}
    241        1.7       leo 		}
    242        1.7       leo 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
    243       1.11       leo 			bus_space_unmap(iot, ioh, le_ap->reg_size);
    244        1.7       leo 			continue;
    245        1.7       leo 		}
    246        1.7       leo 
    247        1.7       leo 		if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0, &memh)) {
    248       1.11       leo 			bus_space_unmap(iot, ioh, le_ap->reg_size);
    249  1.22.74.1       mjf 			aprint_error("leprobe: cannot map memory-area\n");
    250        1.1       leo 			return (0);
    251        1.1       leo 		}
    252        1.1       leo 		found = probe_addresses(&iot, &memt, &ioh, &memh);
    253       1.11       leo 		bus_space_unmap(iot, ioh, le_ap->reg_size);
    254       1.11       leo 		bus_space_unmap(memt, memh, le_ap->mem_size);
    255        1.1       leo 
    256        1.1       leo 		if (found) {
    257        1.1       leo 			va->va_iobase = le_ap->reg_addr;
    258        1.7       leo 			va->va_iosize = le_ap->reg_size;
    259        1.1       leo 			va->va_maddr  = le_ap->mem_addr;
    260        1.7       leo 			va->va_msize  = le_ap->mem_size;
    261        1.8       leo 			va->va_aux    = le_ap;
    262        1.1       leo 			if (va->va_irq == IRQUNK)
    263        1.1       leo 				va->va_irq = le_ap->irq;
    264        1.1       leo 			return 1;
    265        1.1       leo 		}
    266        1.1       leo     }
    267        1.1       leo     return (0);
    268        1.1       leo }
    269        1.1       leo 
    270        1.1       leo static int
    271  1.22.74.1       mjf probe_addresses(bus_space_tag_t	*iot, bus_space_tag_t *memt,
    272  1.22.74.1       mjf     bus_space_handle_t *ioh, bus_space_handle_t *memh)
    273        1.1       leo {
    274  1.22.74.1       mjf 
    275        1.1       leo 	/*
    276        1.1       leo 	 * Test accesibility of register and memory area
    277        1.1       leo 	 */
    278  1.22.74.1       mjf 	if (!bus_space_peek_2(*iot, *ioh, LER_RDP))
    279        1.1       leo 		return 0;
    280  1.22.74.1       mjf 	if (!bus_space_peek_1(*memt, *memh, 0))
    281        1.1       leo 		return 0;
    282        1.1       leo 
    283        1.1       leo 	/*
    284        1.1       leo 	 * Test for writable memory
    285        1.1       leo 	 */
    286        1.1       leo 	bus_space_write_2(*memt, *memh, 0, 0xa5a5);
    287        1.1       leo 	if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
    288        1.1       leo 		return 0;
    289        1.1       leo 
    290        1.1       leo 	/*
    291        1.1       leo 	 * Test writability of selector port.
    292        1.1       leo 	 */
    293        1.1       leo 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
    294        1.1       leo 	if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
    295        1.1       leo 		return 0;
    296        1.1       leo 
    297        1.1       leo 	/*
    298        1.1       leo 	 * Do a small register test
    299        1.1       leo 	 */
    300        1.1       leo 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
    301        1.1       leo 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
    302        1.1       leo 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
    303        1.1       leo 		return 0;
    304        1.1       leo 
    305        1.1       leo 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
    306        1.1       leo 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
    307        1.1       leo 		return 0;
    308        1.1       leo 
    309        1.1       leo 	return 1;
    310        1.1       leo }
    311        1.1       leo 
    312        1.1       leo /*
    313        1.1       leo  * Interrupt mess. Because the card's interrupt is hardwired to either
    314        1.1       leo  * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
    315       1.13       wiz  * (it kills the serial at the least), we use a 2-level interrupt scheme. The
    316        1.1       leo  * card interrupt is routed to 'le_intr'. If the previous ipl was below
    317        1.1       leo  * splnet, just call the mi-function. If not, save the interrupt status,
    318        1.1       leo  * turn off card interrupts (the card is *very* persistent) and arrange
    319        1.1       leo  * for a softint 'callback' through 'lepseudointr'.
    320        1.1       leo  */
    321        1.1       leo static int
    322  1.22.74.1       mjf le_intr(struct le_softc *lesc, int sr)
    323        1.1       leo {
    324        1.6  drochner 	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
    325  1.22.74.1       mjf 	uint16_t		csr0;
    326        1.1       leo 
    327       1.10       leo 	if ((sr & PSL_IPL) < (IPL_NET & PSL_IPL))
    328        1.1       leo 		am7990_intr(sc);
    329        1.1       leo 	else {
    330        1.1       leo 		sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
    331        1.1       leo 		lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
    332        1.1       leo 		add_sicallback((si_farg)lepseudointr, lesc, sc);
    333        1.1       leo 	}
    334        1.1       leo 	return 1;
    335        1.1       leo }
    336        1.1       leo 
    337        1.1       leo 
    338        1.1       leo static void
    339  1.22.74.1       mjf lepseudointr(struct le_softc *lesc, void *sc)
    340        1.1       leo {
    341        1.1       leo 	int	s;
    342        1.1       leo 
    343        1.1       leo 	s = splx(lesc->sc_splval);
    344        1.1       leo 	am7990_intr(sc);
    345        1.1       leo 	splx(s);
    346        1.1       leo }
    347        1.1       leo 
    348        1.1       leo static void
    349  1.22.74.1       mjf le_vme_attach(device_t parent, device_t self, void *aux)
    350        1.1       leo {
    351  1.22.74.1       mjf 	struct le_softc		*lesc = device_private(self);
    352        1.6  drochner 	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
    353        1.1       leo 	struct vme_attach_args	*va = aux;
    354        1.1       leo 	bus_space_handle_t	ioh;
    355        1.1       leo 	bus_space_handle_t	memh;
    356        1.8       leo 	struct le_addresses	*le_ap;
    357        1.1       leo 	int			i;
    358        1.1       leo 
    359  1.22.74.1       mjf 	sc->sc_dev = self;
    360  1.22.74.1       mjf 	aprint_normal("\n%s: ", device_xname(self));
    361        1.1       leo 
    362        1.1       leo 	if (bus_space_map(va->va_iot, va->va_iobase, va->va_iosize, 0, &ioh))
    363       1.14    provos 		panic("leattach: cannot map io-area");
    364        1.1       leo 	if (bus_space_map(va->va_memt, va->va_maddr, va->va_msize, 0, &memh))
    365       1.14    provos 		panic("leattach: cannot map mem-area");
    366        1.1       leo 
    367        1.1       leo 	lesc->sc_iot    = va->va_iot;
    368        1.1       leo 	lesc->sc_ioh    = ioh;
    369        1.1       leo 	lesc->sc_memt   = va->va_memt;
    370        1.1       leo 	lesc->sc_memh   = memh;
    371        1.1       leo 	lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
    372        1.8       leo 	le_ap           = (struct le_addresses *)va->va_aux;
    373        1.1       leo 
    374        1.1       leo 	/*
    375        1.1       leo 	 * Go on to find board type
    376        1.1       leo 	 */
    377        1.8       leo 	if ((le_ap->type_hint & LE_PAM)
    378        1.8       leo 		&& bus_space_peek_1(va->va_iot, ioh, LER_EEPROM)) {
    379  1.22.74.1       mjf 		aprint_normal("PAM card");
    380        1.1       leo 		lesc->sc_type = LE_PAM;
    381        1.1       leo 		bus_space_read_1(va->va_iot, ioh, LER_MEME);
    382        1.1       leo 	}
    383        1.8       leo 	else if((le_ap->type_hint & LE_BVME410)
    384        1.9       leo 		&& bvme410_probe(va->va_iot, ioh)) {
    385  1.22.74.1       mjf 		aprint_normal("BVME410");
    386        1.7       leo 		lesc->sc_type = LE_BVME410;
    387        1.7       leo 	}
    388        1.8       leo 	else if (le_ap->type_hint & (LE_NEW_RIEBL|LE_OLD_RIEBL)) {
    389  1.22.74.1       mjf 		aprint_normal("Riebl card");
    390        1.1       leo 		if(bus_space_read_4(va->va_memt, memh, RIEBL_MAGIC_ADDR)
    391        1.1       leo 								== RIEBL_MAGIC)
    392        1.1       leo 			lesc->sc_type = LE_NEW_RIEBL;
    393        1.1       leo 		else {
    394  1.22.74.1       mjf 			aprint_normal("(without battery) ");
    395        1.1       leo 			lesc->sc_type = LE_OLD_RIEBL;
    396        1.1       leo 		}
    397        1.1       leo 	}
    398  1.22.74.1       mjf 	else
    399  1.22.74.1       mjf 		aprint_error("le_vme_attach: Unsupported card!");
    400        1.1       leo 
    401        1.7       leo 	switch (lesc->sc_type) {
    402        1.7       leo 	    case LE_BVME410:
    403        1.7       leo 		sc->sc_copytodesc   = bvme410_copytobuf;
    404        1.7       leo 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
    405        1.7       leo 		sc->sc_copytobuf    = bvme410_copytobuf;
    406        1.7       leo 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
    407        1.7       leo 		sc->sc_zerobuf      = bvme410_zerobuf;
    408        1.7       leo 		break;
    409        1.7       leo 	    default:
    410        1.7       leo 		sc->sc_copytodesc   = lance_copytobuf_contig;
    411        1.7       leo 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
    412        1.7       leo 		sc->sc_copytobuf    = lance_copytobuf_contig;
    413        1.7       leo 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
    414        1.7       leo 		sc->sc_zerobuf      = lance_zerobuf_contig;
    415        1.7       leo 		break;
    416        1.7       leo 	}
    417        1.1       leo 
    418        1.1       leo 	sc->sc_rdcsr   = lerdcsr;
    419        1.1       leo 	sc->sc_wrcsr   = lewrcsr;
    420        1.1       leo 	sc->sc_hwinit  = NULL;
    421        1.1       leo 	sc->sc_conf3   = LE_C3_BSWP;
    422        1.1       leo 	sc->sc_addr    = 0;
    423        1.1       leo 	sc->sc_memsize = va->va_msize;
    424        1.1       leo 	sc->sc_mem     = (void *)memh; /* XXX */
    425        1.1       leo 
    426        1.1       leo 	/*
    427        1.1       leo 	 * Get MAC address
    428        1.1       leo 	 */
    429        1.1       leo 	switch (lesc->sc_type) {
    430        1.1       leo 	    case LE_OLD_RIEBL:
    431        1.4       leo 		bcopy(riebl_def_mac, sc->sc_enaddr,
    432        1.4       leo 					sizeof(sc->sc_enaddr));
    433        1.1       leo 		break;
    434        1.1       leo 	    case LE_NEW_RIEBL:
    435        1.4       leo 		for (i = 0; i < sizeof(sc->sc_enaddr); i++)
    436        1.4       leo 		    sc->sc_enaddr[i] =
    437        1.1       leo 			bus_space_read_1(va->va_memt, memh, i + RIEBL_MAC_ADDR);
    438        1.1       leo 			break;
    439        1.1       leo 	    case LE_PAM:
    440        1.1       leo 		i = bus_space_read_1(va->va_iot, ioh, LER_EEPROM);
    441        1.4       leo 		for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
    442        1.4       leo 		    sc->sc_enaddr[i] =
    443        1.1       leo 			(bus_space_read_2(va->va_memt, memh, 2 * i) << 4) |
    444        1.1       leo 			(bus_space_read_2(va->va_memt, memh, 2 * i + 1) & 0xf);
    445        1.1       leo 		}
    446        1.1       leo 		i = bus_space_read_1(va->va_iot, ioh, LER_MEME);
    447        1.1       leo 		break;
    448        1.7       leo 	    case LE_BVME410:
    449        1.7       leo 		for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
    450  1.22.74.1       mjf 		    uint16_t tmp;
    451        1.7       leo 
    452        1.7       leo 		    tmp = nm93c06_read(va->va_iot, ioh, i);
    453        1.7       leo 		    sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
    454        1.7       leo 		    sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
    455        1.7       leo 		}
    456        1.7       leo 		bus_space_write_2(va->va_iot, ioh, BVME410_BAR, 0x1); /* XXX */
    457        1.1       leo 	}
    458        1.1       leo 
    459        1.6  drochner 	am7990_config(&lesc->sc_am7990);
    460        1.1       leo 
    461        1.1       leo 	if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
    462        1.1       leo 		riebl_skip_reserved_area(sc);
    463        1.1       leo 
    464        1.1       leo 	/*
    465        1.1       leo 	 * XXX: We always use uservector 64....
    466        1.1       leo 	 */
    467        1.1       leo 	if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
    468        1.1       leo 				(hw_ifun_t)le_intr, lesc)) == NULL) {
    469  1.22.74.1       mjf 		aprint_error("le_vme_attach: Can't establish interrupt\n");
    470        1.1       leo 		return;
    471        1.1       leo 	}
    472        1.1       leo 
    473        1.1       leo 	/*
    474        1.1       leo 	 * Notify the card of the vector
    475        1.1       leo 	 */
    476        1.1       leo 	switch (lesc->sc_type) {
    477        1.1       leo 		case LE_OLD_RIEBL:
    478        1.1       leo 		case LE_NEW_RIEBL:
    479        1.1       leo 			bus_space_write_2(va->va_memt, memh, RIEBL_IVEC_ADDR,
    480        1.1       leo 								64 + 64);
    481        1.1       leo 			break;
    482        1.1       leo 		case LE_PAM:
    483        1.1       leo 			bus_space_write_1(va->va_iot, ioh, LER_IVEC, 64 + 64);
    484        1.1       leo 			break;
    485        1.7       leo 		case LE_BVME410:
    486        1.7       leo 			bus_space_write_2(va->va_iot, ioh, BVME410_IVEC, 64 + 64);
    487        1.7       leo 			break;
    488        1.1       leo 	}
    489        1.1       leo 
    490        1.1       leo 	/*
    491        1.1       leo 	 * Unmask the VME-interrupt we're on
    492        1.1       leo 	 */
    493        1.1       leo 	if (machineid & ATARI_TT)
    494        1.1       leo 		SCU->vme_mask |= 1 << va->va_irq;
    495        1.1       leo }
    496        1.1       leo 
    497        1.1       leo /*
    498        1.1       leo  * True if 'addr' containe within [start,len]
    499        1.1       leo  */
    500        1.1       leo #define WITHIN(start, len, addr)	\
    501        1.1       leo 		((addr >= start) && ((addr) <= ((start) + (len))))
    502        1.1       leo static void
    503  1.22.74.1       mjf riebl_skip_reserved_area(struct lance_softc *sc)
    504        1.1       leo {
    505        1.1       leo 	int	offset = 0;
    506        1.1       leo 	int	i;
    507        1.1       leo 
    508        1.1       leo 	for(i = 0; i < sc->sc_nrbuf; i++) {
    509        1.1       leo 		if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START)
    510        1.1       leo 		    || WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
    511        1.1       leo 			offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
    512        1.1       leo 		}
    513        1.1       leo 		sc->sc_rbufaddr[i] += offset;
    514        1.1       leo 	}
    515        1.1       leo 
    516        1.1       leo 	for(i = 0; i < sc->sc_ntbuf; i++) {
    517        1.1       leo 		if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START)
    518        1.1       leo 		    || WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
    519        1.1       leo 			offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
    520        1.1       leo 		}
    521        1.1       leo 		sc->sc_tbufaddr[i] += offset;
    522        1.1       leo 	}
    523        1.1       leo }
    524        1.7       leo 
    525        1.7       leo static int
    526  1.22.74.1       mjf nm93c06_read(bus_space_tag_t iot, bus_space_handle_t ioh, int nm93c06reg)
    527        1.7       leo {
    528        1.7       leo 	int bar;
    529        1.7       leo 	int shift;
    530        1.7       leo 	int bits = 0x180 | (nm93c06reg & 0xf);
    531        1.7       leo 	int data = 0;
    532        1.7       leo 
    533  1.22.74.1       mjf 	bar = 1 << BVME410_CS_SHIFT;
    534        1.7       leo 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    535        1.7       leo 	delay(1); /* tCSS = 1 us */
    536        1.7       leo 	for (shift = 9; shift >= 0; shift--) {
    537        1.7       leo 		if (((bits >> shift) & 1) == 1)
    538  1.22.74.1       mjf 			bar |= 1 << BVME410_DIN_SHIFT;
    539        1.7       leo 		else
    540  1.22.74.1       mjf 			bar &= ~(1 << BVME410_DIN_SHIFT);
    541        1.7       leo 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    542        1.7       leo 		delay(1); /* tDIS = 0.4 us */
    543  1.22.74.1       mjf 		bar |= 1 << BVME410_CLK_SHIFT;
    544        1.7       leo 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    545        1.7       leo 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
    546  1.22.74.1       mjf 		bar &= ~(1 << BVME410_CLK_SHIFT);
    547        1.7       leo 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    548        1.7       leo 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
    549        1.7       leo 	}
    550  1.22.74.1       mjf 	bar &= ~(1 << BVME410_DIN_SHIFT);
    551        1.7       leo 	for (shift = 15; shift >= 0; shift--) {
    552        1.7       leo 		delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
    553  1.22.74.1       mjf 		bar |= 1 << BVME410_CLK_SHIFT;
    554        1.7       leo 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    555        1.7       leo 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
    556        1.7       leo 		data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
    557  1.22.74.1       mjf 		bar &= ~(1 << BVME410_CLK_SHIFT);
    558        1.7       leo 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    559        1.7       leo 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
    560        1.7       leo 	}
    561  1.22.74.1       mjf 	bar &= ~(1 << BVME410_CS_SHIFT);
    562        1.7       leo 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    563        1.7       leo 	delay(1); /* tCS = 1 us */
    564        1.7       leo 	return data;
    565        1.7       leo }
    566        1.7       leo 
    567        1.7       leo static int
    568  1.22.74.1       mjf bvme410_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
    569        1.9       leo {
    570  1.22.74.1       mjf 
    571        1.9       leo 	if (!bus_space_peek_2(iot, ioh, BVME410_IVEC))
    572        1.9       leo 		return 0;
    573        1.9       leo 
    574        1.9       leo 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0x0000);
    575        1.9       leo 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xff00)
    576        1.9       leo 		return 0;
    577        1.9       leo 
    578        1.9       leo 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xffff);
    579        1.9       leo 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffff)
    580        1.9       leo 		return 0;
    581        1.9       leo 
    582        1.9       leo 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xa5a5);
    583        1.9       leo 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffa5)
    584        1.9       leo 		return 0;
    585        1.9       leo 
    586        1.9       leo 	return 1;
    587        1.9       leo }
    588        1.9       leo 
    589        1.9       leo static int
    590  1.22.74.1       mjf bvme410_mem_size(bus_space_tag_t memt, u_long mem_addr)
    591        1.7       leo {
    592        1.7       leo 	bus_space_handle_t memh;
    593        1.7       leo 	int r;
    594        1.7       leo 
    595  1.22.74.1       mjf 	if (bus_space_map(memt, mem_addr, 256 * 1024, 0, &memh))
    596        1.7       leo 		return VMECF_MEMSIZ_DEFAULT;
    597        1.7       leo 	if (!bus_space_peek_1(memt, memh, 0)) {
    598  1.22.74.1       mjf 		bus_space_unmap(memt, memh, 256 * 1024);
    599        1.7       leo 		return VMECF_MEMSIZ_DEFAULT;
    600        1.7       leo 	}
    601        1.7       leo 	bus_space_write_1(memt, memh, 0, 128);
    602  1.22.74.1       mjf 	bus_space_write_1(memt, memh, 64 * 1024, 32);
    603  1.22.74.1       mjf 	bus_space_write_1(memt, memh, 32 * 1024, 8);
    604        1.7       leo 	r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
    605  1.22.74.1       mjf 	bus_space_unmap(memt, memh, 256 * 1024);
    606        1.7       leo 	return r;
    607        1.7       leo }
    608        1.7       leo 
    609        1.7       leo /*
    610        1.7       leo  * Need to be careful when writing to the bvme410 dual port memory.
    611        1.7       leo  * Continue writing each byte until it reads back the same.
    612        1.7       leo  */
    613        1.7       leo 
    614        1.7       leo static void
    615  1.22.74.1       mjf bvme410_copytobuf(struct lance_softc *sc, void *from, int boff, int len)
    616        1.7       leo {
    617  1.22.74.1       mjf 	volatile char *buf = (volatile char *)sc->sc_mem;
    618  1.22.74.1       mjf 	char *f = (char *)from;
    619        1.7       leo 
    620        1.7       leo 	for (buf += boff; len; buf++,f++,len--)
    621        1.9       leo 		do {
    622        1.9       leo  			*buf = *f;
    623        1.9       leo 		} while (*buf != *f);
    624        1.7       leo }
    625        1.7       leo 
    626        1.7       leo static void
    627  1.22.74.1       mjf bvme410_zerobuf(struct lance_softc *sc, int boff, int len)
    628        1.7       leo {
    629        1.7       leo 	volatile char *buf = (volatile char *)sc->sc_mem;
    630        1.7       leo 
    631        1.7       leo 	for (buf += boff; len; buf++,len--)
    632        1.9       leo 		do {
    633        1.9       leo  			*buf = '\0';
    634        1.9       leo 		} while (*buf != '\0');
    635        1.7       leo }
    636        1.7       leo 
    637