Home | History | Annotate | Line # | Download | only in vme
if_le_vme.c revision 1.16
      1 /*	$NetBSD: if_le_vme.c,v 1.16 2002/10/02 05:04:27 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 maximum entropy.  All rights reserved.
      5  * Copyright (c) 1997 Leo Weppelman.  All rights reserved.
      6  * Copyright (c) 1995 Charles M. Hannum.  All rights reserved.
      7  * Copyright (c) 1992, 1993
      8  *	The Regents of the University of California.  All rights reserved.
      9  *
     10  * This code is derived from software contributed to Berkeley by
     11  * Ralph Campbell and Rick Macklem.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *	This product includes software developed by the University of
     24  *	California, Berkeley and its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
     42  */
     43 
     44 #include "opt_inet.h"
     45 #include "bpfilter.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/mbuf.h>
     50 #include <sys/syslog.h>
     51 #include <sys/socket.h>
     52 #include <sys/device.h>
     53 
     54 #include <net/if.h>
     55 #include <net/if_media.h>
     56 #include <net/if_ether.h>
     57 
     58 #ifdef INET
     59 #include <netinet/in.h>
     60 #include <netinet/if_inarp.h>
     61 #endif
     62 
     63 #include <machine/cpu.h>
     64 #include <machine/bus.h>
     65 #include <machine/iomap.h>
     66 #include <machine/scu.h>
     67 
     68 #include <atari/atari/device.h>
     69 #include <atari/atari/intr.h>
     70 
     71 #include <dev/ic/lancereg.h>
     72 #include <dev/ic/lancevar.h>
     73 #include <dev/ic/am7990reg.h>
     74 #include <dev/ic/am7990var.h>
     75 
     76 #include <atari/vme/vmevar.h>
     77 #include <atari/vme/if_levar.h>
     78 
     79 /*
     80  * All cards except BVME410 have 64KB RAM. However.... On the Riebl cards the
     81  * area between the offsets 0xee70-0xeec0 is used to store config data.
     82  */
     83 struct le_addresses {
     84 	u_long	reg_addr;
     85 	u_long	mem_addr;
     86 	int	irq;
     87 	int	reg_size;
     88 	int	mem_size;
     89 	int	type_hint;
     90 } lestd[] = {
     91 	{ 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024,
     92 				LE_OLD_RIEBL|LE_NEW_RIEBL }, /* Riebl	*/
     93 	{ 0xffcffff0, 0xffcf0000,      5, 16, 64*1024,
     94 				LE_PAM },		     /* PAM	*/
     95 	{ 0xfecffff0, 0xfecf0000,      5, 16, 64*1024,
     96 				LE_ROTHRON },		     /* Rhotron	*/
     97 	{ 0xfeff4100, 0xfe000000,      4,  8, VMECF_MEMSIZ_DEFAULT,
     98 				LE_BVME410 }		     /* BVME410 */
     99 };
    100 
    101 #define	NLESTD	(sizeof(lestd) / sizeof(lestd[0]))
    102 
    103 /*
    104  * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
    105  * are the manufacturer id.
    106  */
    107 static u_char riebl_def_mac[] = {
    108 	0x00, 0x00, 0x36, 0x04, 0x00, 0x00
    109 };
    110 
    111 static int le_intr __P((struct le_softc *, int));
    112 static void lepseudointr __P((struct le_softc *, void *));
    113 static int le_vme_match __P((struct device *, struct cfdata *, void *));
    114 static void le_vme_attach __P((struct device *, struct device *, void *));
    115 static int probe_addresses __P((bus_space_tag_t *, bus_space_tag_t *,
    116 				bus_space_handle_t *, bus_space_handle_t *));
    117 static void riebl_skip_reserved_area __P((struct lance_softc *));
    118 static int nm93c06_read __P((bus_space_tag_t, bus_space_handle_t, int));
    119 static int bvme410_probe __P((bus_space_tag_t, bus_space_handle_t));
    120 static int bvme410_mem_size __P((bus_space_tag_t, u_long));
    121 static void bvme410_copytobuf __P((struct lance_softc *, void *, int, int));
    122 static void bvme410_zerobuf __P((struct lance_softc *, int, int));
    123 
    124 CFATTACH_DECL(le_vme, sizeof(struct le_softc),
    125     le_vme_match, le_vme_attach, NULL, NULL);
    126 
    127 #if defined(_KERNEL_OPT)
    128 #include "opt_ddb.h"
    129 #endif
    130 
    131 #ifdef DDB
    132 #define	integrate
    133 #define hide
    134 #else
    135 #define	integrate	static __inline
    136 #define hide		static
    137 #endif
    138 
    139 hide void lewrcsr __P((struct lance_softc *, u_int16_t, u_int16_t));
    140 hide u_int16_t lerdcsr __P((struct lance_softc *, u_int16_t));
    141 
    142 hide void
    143 lewrcsr(sc, port, val)
    144 	struct lance_softc	*sc;
    145 	u_int16_t		port, val;
    146 {
    147 	struct le_softc		*lesc = (struct le_softc *)sc;
    148 	int			s;
    149 
    150 	s = splhigh();
    151 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
    152 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
    153 	splx(s);
    154 }
    155 
    156 hide u_int16_t
    157 lerdcsr(sc, port)
    158 	struct lance_softc	*sc;
    159 	u_int16_t		port;
    160 {
    161 	struct le_softc		*lesc = (struct le_softc *)sc;
    162 	u_int16_t		val;
    163 	int			s;
    164 
    165 	s = splhigh();
    166 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
    167 	val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
    168 	splx(s);
    169 
    170 	return (val);
    171 }
    172 
    173 static int
    174 le_vme_match(parent, cfp, aux)
    175 	struct device	*parent;
    176 	struct cfdata	*cfp;
    177 	void		*aux;
    178 {
    179 	struct vme_attach_args	*va = aux;
    180 	int			i;
    181 	bus_space_tag_t		iot;
    182 	bus_space_tag_t		memt;
    183 	bus_space_handle_t	ioh;
    184 	bus_space_handle_t	memh;
    185 
    186 	iot  = va->va_iot;
    187 	memt = va->va_memt;
    188 
    189 	for (i = 0; i < NLESTD; i++) {
    190 		struct le_addresses	*le_ap = &lestd[i];
    191 		int			found  = 0;
    192 
    193 		if ((va->va_iobase != IOBASEUNK)
    194 		     && (va->va_iobase != le_ap->reg_addr))
    195 			continue;
    196 
    197 		if ((va->va_maddr != MADDRUNK)
    198 		     && (va->va_maddr != le_ap->mem_addr))
    199 			continue;
    200 
    201 		if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
    202 			continue;
    203 
    204 		if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0, &ioh)) {
    205 			printf("leprobe: cannot map io-area\n");
    206 			return (0);
    207 		}
    208 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
    209 			if (bvme410_probe(iot, ioh)) {
    210 				bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
    211 				le_ap->mem_size = bvme410_mem_size(memt, le_ap->mem_addr);
    212 			}
    213 		}
    214 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
    215 			bus_space_unmap(iot, ioh, le_ap->reg_size);
    216 			continue;
    217 		}
    218 
    219 		if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0, &memh)) {
    220 			bus_space_unmap(iot, ioh, le_ap->reg_size);
    221 			printf("leprobe: cannot map memory-area\n");
    222 			return (0);
    223 		}
    224 		found = probe_addresses(&iot, &memt, &ioh, &memh);
    225 		bus_space_unmap(iot, ioh, le_ap->reg_size);
    226 		bus_space_unmap(memt, memh, le_ap->mem_size);
    227 
    228 		if (found) {
    229 			va->va_iobase = le_ap->reg_addr;
    230 			va->va_iosize = le_ap->reg_size;
    231 			va->va_maddr  = le_ap->mem_addr;
    232 			va->va_msize  = le_ap->mem_size;
    233 			va->va_aux    = le_ap;
    234 			if (va->va_irq == IRQUNK)
    235 				va->va_irq = le_ap->irq;
    236 			return 1;
    237 		}
    238     }
    239     return (0);
    240 }
    241 
    242 static int
    243 probe_addresses(iot, memt, ioh, memh)
    244 bus_space_tag_t		*iot;
    245 bus_space_tag_t		*memt;
    246 bus_space_handle_t	*ioh;
    247 bus_space_handle_t	*memh;
    248 {
    249 	/*
    250 	 * Test accesibility of register and memory area
    251 	 */
    252 	if(!bus_space_peek_2(*iot, *ioh, LER_RDP))
    253 		return 0;
    254 	if(!bus_space_peek_1(*memt, *memh, 0))
    255 		return 0;
    256 
    257 	/*
    258 	 * Test for writable memory
    259 	 */
    260 	bus_space_write_2(*memt, *memh, 0, 0xa5a5);
    261 	if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
    262 		return 0;
    263 
    264 	/*
    265 	 * Test writability of selector port.
    266 	 */
    267 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
    268 	if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
    269 		return 0;
    270 
    271 	/*
    272 	 * Do a small register test
    273 	 */
    274 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
    275 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
    276 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
    277 		return 0;
    278 
    279 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
    280 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
    281 		return 0;
    282 
    283 	return 1;
    284 }
    285 
    286 /*
    287  * Interrupt mess. Because the card's interrupt is hardwired to either
    288  * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
    289  * (it kills the serial at the least), we use a 2-level interrupt scheme. The
    290  * card interrupt is routed to 'le_intr'. If the previous ipl was below
    291  * splnet, just call the mi-function. If not, save the interrupt status,
    292  * turn off card interrupts (the card is *very* persistent) and arrange
    293  * for a softint 'callback' through 'lepseudointr'.
    294  */
    295 static int
    296 le_intr(lesc, sr)
    297 	struct le_softc	*lesc;
    298 	int		 sr;
    299 {
    300 	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
    301 	u_int16_t		csr0;
    302 
    303 	if ((sr & PSL_IPL) < (IPL_NET & PSL_IPL))
    304 		am7990_intr(sc);
    305 	else {
    306 		sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
    307 		lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
    308 		add_sicallback((si_farg)lepseudointr, lesc, sc);
    309 	}
    310 	return 1;
    311 }
    312 
    313 
    314 static void
    315 lepseudointr(lesc, sc)
    316 struct le_softc	*lesc;
    317 void		*sc;
    318 {
    319 	int	s;
    320 
    321 	s = splx(lesc->sc_splval);
    322 	am7990_intr(sc);
    323 	splx(s);
    324 }
    325 
    326 static void
    327 le_vme_attach(parent, self, aux)
    328 	struct device *parent, *self;
    329 	void *aux;
    330 {
    331 	struct le_softc		*lesc = (struct le_softc *)self;
    332 	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
    333 	struct vme_attach_args	*va = aux;
    334 	bus_space_handle_t	ioh;
    335 	bus_space_handle_t	memh;
    336 	struct le_addresses	*le_ap;
    337 	int			i;
    338 
    339 	printf("\n%s: ", sc->sc_dev.dv_xname);
    340 
    341 	if (bus_space_map(va->va_iot, va->va_iobase, va->va_iosize, 0, &ioh))
    342 		panic("leattach: cannot map io-area");
    343 	if (bus_space_map(va->va_memt, va->va_maddr, va->va_msize, 0, &memh))
    344 		panic("leattach: cannot map mem-area");
    345 
    346 	lesc->sc_iot    = va->va_iot;
    347 	lesc->sc_ioh    = ioh;
    348 	lesc->sc_memt   = va->va_memt;
    349 	lesc->sc_memh   = memh;
    350 	lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
    351 	le_ap           = (struct le_addresses *)va->va_aux;
    352 
    353 	/*
    354 	 * Go on to find board type
    355 	 */
    356 	if ((le_ap->type_hint & LE_PAM)
    357 		&& bus_space_peek_1(va->va_iot, ioh, LER_EEPROM)) {
    358 		printf("PAM card");
    359 		lesc->sc_type = LE_PAM;
    360 		bus_space_read_1(va->va_iot, ioh, LER_MEME);
    361 	}
    362 	else if((le_ap->type_hint & LE_BVME410)
    363 		&& bvme410_probe(va->va_iot, ioh)) {
    364 		printf("BVME410");
    365 		lesc->sc_type = LE_BVME410;
    366 	}
    367 	else if (le_ap->type_hint & (LE_NEW_RIEBL|LE_OLD_RIEBL)) {
    368 		printf("Riebl card");
    369 		if(bus_space_read_4(va->va_memt, memh, RIEBL_MAGIC_ADDR)
    370 								== RIEBL_MAGIC)
    371 			lesc->sc_type = LE_NEW_RIEBL;
    372 		else {
    373 			printf("(without battery) ");
    374 			lesc->sc_type = LE_OLD_RIEBL;
    375 		}
    376 	}
    377 	else printf("le_vme_attach: Unsupported card!");
    378 
    379 	switch (lesc->sc_type) {
    380 	    case LE_BVME410:
    381 		sc->sc_copytodesc   = bvme410_copytobuf;
    382 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
    383 		sc->sc_copytobuf    = bvme410_copytobuf;
    384 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
    385 		sc->sc_zerobuf      = bvme410_zerobuf;
    386 		break;
    387 	    default:
    388 		sc->sc_copytodesc   = lance_copytobuf_contig;
    389 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
    390 		sc->sc_copytobuf    = lance_copytobuf_contig;
    391 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
    392 		sc->sc_zerobuf      = lance_zerobuf_contig;
    393 		break;
    394 	}
    395 
    396 	sc->sc_rdcsr   = lerdcsr;
    397 	sc->sc_wrcsr   = lewrcsr;
    398 	sc->sc_hwinit  = NULL;
    399 	sc->sc_conf3   = LE_C3_BSWP;
    400 	sc->sc_addr    = 0;
    401 	sc->sc_memsize = va->va_msize;
    402 	sc->sc_mem     = (void *)memh; /* XXX */
    403 
    404 	/*
    405 	 * Get MAC address
    406 	 */
    407 	switch (lesc->sc_type) {
    408 	    case LE_OLD_RIEBL:
    409 		bcopy(riebl_def_mac, sc->sc_enaddr,
    410 					sizeof(sc->sc_enaddr));
    411 		break;
    412 	    case LE_NEW_RIEBL:
    413 		for (i = 0; i < sizeof(sc->sc_enaddr); i++)
    414 		    sc->sc_enaddr[i] =
    415 			bus_space_read_1(va->va_memt, memh, i + RIEBL_MAC_ADDR);
    416 			break;
    417 	    case LE_PAM:
    418 		i = bus_space_read_1(va->va_iot, ioh, LER_EEPROM);
    419 		for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
    420 		    sc->sc_enaddr[i] =
    421 			(bus_space_read_2(va->va_memt, memh, 2 * i) << 4) |
    422 			(bus_space_read_2(va->va_memt, memh, 2 * i + 1) & 0xf);
    423 		}
    424 		i = bus_space_read_1(va->va_iot, ioh, LER_MEME);
    425 		break;
    426 	    case LE_BVME410:
    427 		for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
    428 		    u_int16_t tmp;
    429 
    430 		    tmp = nm93c06_read(va->va_iot, ioh, i);
    431 		    sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
    432 		    sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
    433 		}
    434 		bus_space_write_2(va->va_iot, ioh, BVME410_BAR, 0x1); /* XXX */
    435 	}
    436 
    437 	am7990_config(&lesc->sc_am7990);
    438 
    439 	if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
    440 		riebl_skip_reserved_area(sc);
    441 
    442 	/*
    443 	 * XXX: We always use uservector 64....
    444 	 */
    445 	if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
    446 				(hw_ifun_t)le_intr, lesc)) == NULL) {
    447 		printf("le_vme_attach: Can't establish interrupt\n");
    448 		return;
    449 	}
    450 
    451 	/*
    452 	 * Notify the card of the vector
    453 	 */
    454 	switch (lesc->sc_type) {
    455 		case LE_OLD_RIEBL:
    456 		case LE_NEW_RIEBL:
    457 			bus_space_write_2(va->va_memt, memh, RIEBL_IVEC_ADDR,
    458 								64 + 64);
    459 			break;
    460 		case LE_PAM:
    461 			bus_space_write_1(va->va_iot, ioh, LER_IVEC, 64 + 64);
    462 			break;
    463 		case LE_BVME410:
    464 			bus_space_write_2(va->va_iot, ioh, BVME410_IVEC, 64 + 64);
    465 			break;
    466 	}
    467 
    468 	/*
    469 	 * Unmask the VME-interrupt we're on
    470 	 */
    471 	if (machineid & ATARI_TT)
    472 		SCU->vme_mask |= 1 << va->va_irq;
    473 }
    474 
    475 /*
    476  * True if 'addr' containe within [start,len]
    477  */
    478 #define WITHIN(start, len, addr)	\
    479 		((addr >= start) && ((addr) <= ((start) + (len))))
    480 static void
    481 riebl_skip_reserved_area(sc)
    482 	struct lance_softc	*sc;
    483 {
    484 	int	offset = 0;
    485 	int	i;
    486 
    487 	for(i = 0; i < sc->sc_nrbuf; i++) {
    488 		if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START)
    489 		    || WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
    490 			offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
    491 		}
    492 		sc->sc_rbufaddr[i] += offset;
    493 	}
    494 
    495 	for(i = 0; i < sc->sc_ntbuf; i++) {
    496 		if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START)
    497 		    || WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
    498 			offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
    499 		}
    500 		sc->sc_tbufaddr[i] += offset;
    501 	}
    502 }
    503 
    504 static int
    505 nm93c06_read(iot, ioh, nm93c06reg)
    506 	bus_space_tag_t iot;
    507 	bus_space_handle_t ioh;
    508 	int nm93c06reg;
    509 {
    510 	int bar;
    511 	int shift;
    512 	int bits = 0x180 | (nm93c06reg & 0xf);
    513 	int data = 0;
    514 
    515 	bar = 1<<BVME410_CS_SHIFT;
    516 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    517 	delay(1); /* tCSS = 1 us */
    518 	for (shift = 9; shift >= 0; shift--) {
    519 		if (((bits >> shift) & 1) == 1)
    520 			bar |= 1<<BVME410_DIN_SHIFT;
    521 		else
    522 			bar &= ~(1<<BVME410_DIN_SHIFT);
    523 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    524 		delay(1); /* tDIS = 0.4 us */
    525 		bar |= 1<<BVME410_CLK_SHIFT;
    526 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    527 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
    528 		bar &= ~(1<<BVME410_CLK_SHIFT);
    529 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    530 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
    531 	}
    532 	bar &= ~(1<<BVME410_DIN_SHIFT);
    533 	for (shift = 15; shift >= 0; shift--) {
    534 		delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
    535 		bar |= 1<<BVME410_CLK_SHIFT;
    536 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    537 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
    538 		data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
    539 		bar &= ~(1<<BVME410_CLK_SHIFT);
    540 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    541 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
    542 	}
    543 	bar &= ~(1<<BVME410_CS_SHIFT);
    544 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    545 	delay(1); /* tCS = 1 us */
    546 	return data;
    547 }
    548 
    549 static int
    550 bvme410_probe(iot, ioh)
    551 	bus_space_tag_t iot;
    552 	bus_space_handle_t ioh;
    553 {
    554 	if (!bus_space_peek_2(iot, ioh, BVME410_IVEC))
    555 		return 0;
    556 
    557 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0x0000);
    558 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xff00)
    559 		return 0;
    560 
    561 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xffff);
    562 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffff)
    563 		return 0;
    564 
    565 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xa5a5);
    566 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffa5)
    567 		return 0;
    568 
    569 	return 1;
    570 }
    571 
    572 static int
    573 bvme410_mem_size(memt, mem_addr)
    574 	bus_space_tag_t memt;
    575 	u_long mem_addr;
    576 {
    577 	bus_space_handle_t memh;
    578 	int r;
    579 
    580 	if (bus_space_map(memt, mem_addr, 256*1024, 0, &memh))
    581 		return VMECF_MEMSIZ_DEFAULT;
    582 	if (!bus_space_peek_1(memt, memh, 0)) {
    583 		bus_space_unmap(memt, memh, 256*1024);
    584 		return VMECF_MEMSIZ_DEFAULT;
    585 	}
    586 	bus_space_write_1(memt, memh, 0, 128);
    587 	bus_space_write_1(memt, memh, 64*1024, 32);
    588 	bus_space_write_1(memt, memh, 32*1024, 8);
    589 	r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
    590 	bus_space_unmap(memt, memh, 256*1024);
    591 	return r;
    592 }
    593 
    594 /*
    595  * Need to be careful when writing to the bvme410 dual port memory.
    596  * Continue writing each byte until it reads back the same.
    597  */
    598 
    599 static void
    600 bvme410_copytobuf(sc, from, boff, len)
    601 	struct lance_softc *sc;
    602 	void *from;
    603 	int boff, len;
    604 {
    605 	volatile char *buf = (volatile char *) sc->sc_mem;
    606 	char *f = (char *) from;
    607 
    608 	for (buf += boff; len; buf++,f++,len--)
    609 		do {
    610  			*buf = *f;
    611 		} while (*buf != *f);
    612 }
    613 
    614 static void
    615 bvme410_zerobuf(sc, boff, len)
    616 	struct lance_softc *sc;
    617 	int boff, len;
    618 {
    619 	volatile char *buf = (volatile char *)sc->sc_mem;
    620 
    621 	for (buf += boff; len; buf++,len--)
    622 		do {
    623  			*buf = '\0';
    624 		} while (*buf != '\0');
    625 }
    626 
    627